
ENEE 447: Operating Systems — Project 5 (4%)

Purpose
In this project, your main task is to implement non-blocking I/O for just two scenarios: reading and
writing the DEV_WORD devices, which includes the LED (write-only) and the Console (read/write).
You also need to implement the C-language scheduler, which is now more complex than in the previous
project, as it handles a set of threads, not just two, and it maintains a TCB for each thread that is running.
Much has been improved since the last project: you will work with a slightly more fleshed-out shell; you
will invoke threads from the shell; and you can get a list of running processes. The thread creation and
invocation facilities are more generalized and therefore support a more extensive system. Thus, you are
being exposed to techniques that better exemplify the way things are normally done, and you will build
the hardest parts (95% of the work has been done for you: the easy part that nonetheless would take quite
a while to implement).

The Simplest Possible Operating System™
As said before, at its simplest, an OS is nothing more than a collection of vectors: it does nothing unless it
is responding to interrupts. This is what we are building in Projects 3, 4, and 5. Project 3 implemented a
system-call facility and provided an extremely rudimentary shell that runs in user mode — but still within
the kernel proper, for now. Project 4 added to that the preemptive context switch and a rudimentary
scheduler: the scheduler simply switches processes every time quantum, involved by a timer interrupt.
Project 5 makes the I/O non-blocking so that the kernel can better respond to multiple sources of input
“simultaneously” arriving from different sources.

Interrupt Handlers and Thread Context
Firstly, we have provided a simplified mechanism for saving and restoring state. In the boot.s code, you
will find the following assembly-code routines:

save_lr_irq: .word 0

// courtesy of Prof Vince Weaver, U Maine 
irq_handler:

 ldr sp, tcb_address_runningthread 
 stmia sp,{r0-lr}^ @ Save all user registers r0-lr 
 @ (the ^ means user registers) 
 str lr,[sp,#60] @ store saved PC on stack 
 str lr, save_lr_irq @ save the SVC lr 
 mrs lr, SPSR @ load SPSR (assume ip not a swi arg)  
 str lr,[sp,#64] @ store on stack 
 ldr lr, save_lr_irq @ save the SVC lr

 @ Call the C version of the handler 
 mov sp, #SVCSTACK0 
 bl clear_timer_interrupt 
 bl periodic_timer 
 bl set_timer

 ldr sp, tcb_address_runningthread 
 ldr r0,[sp,#64] @ pop saved CPSR 
 msr SPSR_cxsf, r0 @ move it into place

 ldr lr,[sp,#60] @ restore address to return to

 @ Restore saved values. The ^ means to restore the userspace registers  
 ldmia sp, {r0-lr}  ̂
 subs pc, lr, #4 @ return from exception

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Project 5: Non-Blocking I/O (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned: Tuesday, Mar 12; Due: Sunday, Mar 31

ENEE 447: Operating Systems — Project 5 (4%)

save_r0_svc: .word 0

// courtesy of Prof Vince Weaver, U Maine 
svc_handler:

 ldr sp, tcb_address_runningthread 
 stmia sp,{r0-lr}^ @ Save all user registers r0-lr 
 @ (the ^ means user registers) 
 add ip, lr, #4 
 str ip,[sp,#60] @ store saved PC on stack 
 mrs ip, SPSR @ load SPSR (assume ip not a swi arg)  
 str ip,[sp,#64] @ store on stack

 @ Call the C version of the handler 
 mov sp, #SVCSTACK0 
 bl trap_handler

 ldr sp, tcb_address_runningthread 
 ldr r0,[sp,#64] @ pop saved CPSR 
 msr SPSR_cxsf, r0 @ move it into place

 ldr lr,[sp,#60] @ restore address to return to

 @ Restore saved values. The ^ means to restore the userspace registers  
 ldmia sp, {r0-lr}  ̂
 subs pc, lr, #4 @ return from exception

These two routines are the only interrupt handlers, and the IRQ will neither interrupt itself (unless we set
the timer too fast), nor will it interrupt the SVC mode. On a single core, the SVC mode will not
interrupt itself. Therefore, none of this code will conflict with itself. What that means is that you won’t
have to worry about the tcb_address_runningthread value changing out from underneath you, and
potential weirdness of that sort.
The code begins by performing the following save-register functions:

• The address of the TCB for the currently running thread is loaded into the sp register, which does
not destroy the USER mode’s copy of the sp register (see previous write-ups on the ARM register
file).

• Registers r0–r14 are stored upwards starting at this address. These are the user registers, so the sp
and lr registers are the user’s copies.

• The return address is stored at the next address, which would correspond to the location for r15.
This is because the return address is r15, as that is the Program Counter in the ARM32
architecture.

• Last, at the next location beyond that, we store the process’s saved SPSR.
Therefore, one can think of the register set being saved as looking like the following:

 REG_r0,  
 REG_r1,  
 REG_r2,  
 REG_r3,  
 REG_r4,  
 REG_r5,  
 REG_r6,  
 REG_r7,  
 REG_r8,  
 REG_r9,  
 REG_r10,  
 REG_r11,  
 REG_r12,  
 REG_sp,  
 REG_lr,  
 REG_pc,  
 REG_spsr,

That is exactly the data that is save and restored for a context switch. These values, in that order, are stored
in the following structure, for which there is one for every process in the system:

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

ENEE 447: Operating Systems — Project 5 (4%)

struct tcb {  
 LL_PTRS;  
 char name[NAMESIZE]; 
 long threadid; 
 long stack; 
 long regs[17]; // 17th reg is the SPSR saved by context switch  
} tcbs[NUM_THREADS];

Note that we have a statically-declared set of thread structures, tcbs[NUM_THREADS]. Thread 0 is the
“NULL thread,” and the rest of the thread numbers can be assigned to anything.
Note that the name, thread ID, and stack are static values: they should not change. When a thread runs,
all of its context is stored in the regs portion of the TCB. For instance, the stack member of the struct is
the statically assigned starting point for the threads stack: user thread stacks begin at 0x20000, and each
thread is given its own 4KB segment: thread 0 gets the first 4KB; thread 1 gets the next; etc. This will
change once we have virtual memory, but just remember not to modify this value, and when a new thread
starts up, use that as its initial stack pointer (for instance, you could put the value in REG_sp).
Back to the assembly code; once the registers are saved, the code calls C-language routines to do the work.
Because the handlers cannot be interrupted by themselves, we simply assign the same static starting stack
location for each handler invocation. This works because we are running single-core for the moment.
After the C-language routines finish, we restore state from the thread control block:

• The address of the TCB for the currently running thread is loaded into the sp register.

• First, from the topmost location (corresponding to what would be r16 in the TCB), we restore
the process’s saved SPSR.

• Next we retrieve the user process’s return address from the TCB location corresponding to r15.
This is held temporarily in the lr link register, which is not the user link register.

• Lastly, registers r0–r14 are restored upwards starting at the bottom address. These are the user
registers, so the sp and lr registers are the user’s copies and do not overwrite the “sp” or “lr”
registers being used by the handler code.

Here’s the weirdness. The ARM32 architecture often used the following snippet to return from IRQ and
FIQ exceptions:

subs pc, lr, #4 @ return from exception

It is clearly a hack. It is inelegant. It is how IRQ and FIQ interrupts generally work. However—and here
is where the weirdness comes in—it is NOT how ARM’s SVC trap handlers generally work. If you try to
subtract 4 from the SVC handler’s link register on return from exception, you will get a stalled processor.
But nonetheless, we would like to structure our kernel so that at both entry points into the kernel, a
process is saved so that it can potentially be swapped out as a result of calling the interrupt.
What this requires is that the process must be saved and restored identically in both places, no matter
which interrupt handler does the saving/restoring. Thus, what gets stored by the register-save protocol
into the TCB is a number that will work with the “-4” on the return-from-exception at the end of both
interrupt handlers (we do it in the SVC handler even though we don’t need to, just to ensure symmetry).
This is expected for the IRQ, but it is not expected for the SVC trap handler. Thus, you see that, when
the SVC handler stores the return value, it first adds 4 to it. Yes, this is inelegant. Yes, this is stupid.
Welcome to interfacing with hardware. So what is stored in the TCB structure above is—and should be—
4 bytes larger than the PC destination where you you really want to go. Keep this in mind when you are
manually putting values into REG_pc or printing them out. I know that it is nonsensical, but it is a hack
to overcome ARM32 weirdness.
The upside: you need not write any assembly code for this project, unless you want to.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

ENEE 447: Operating Systems — Project 5 (4%)

General Kernel Structure
The idea is that on either a trap (SVC handler) or a periodic timer interrupt (IRQ handler), a process can
get swapped out, so we save its context at the start and restore it at the end. This allows the kernel to put
threads to sleep if they make sys calls that require blocking I/O, or to swap threads during the periodic
timer interrupt. And, as mentioned before, these two interrupt handlers do not conflict with each other,
so it should, in theory, all work out. Therefore, on a trap to the SVC handler, a process can get swapped
out if it is a long-latency I/O operation (for this project, you will do this when encountering a
SYSCALL_RD_WORD or SYSCALL_WR_WORD). On an invocation of the IRQ handler (due to a
periodic timer interrupt), we will always swap processes, if there is another to swap to.
The threads.c module maintains three lists of processes:

• The tfree free list (contains TCB structures not being used)

• The runq (TCB structures for threads that can run)

• The sleepq (TCB structures for threads that cannot run and are waiting on I/O to finish)
• Pointers to the active_thread and null_thread

Note that a thread will be on one and only one of the queues at any given moment. In addition, the
tcbs[NUM_THREADS] data block described earlier is indexed by the thread ID, so, for instance, if you
want to find thread number i you can always do it this way:

struct tcb *tp = &tcbs[i];

You can manage these queues however you want … for instance, should the NULL thread be on the runq
or not? Should the currently executing thread (pointed to by the active_thread pointer) be on the runq or
not? These are implementation details that are up to you and should reflect the way your scheduling
algorithm is designed.
The create_thread() routine sets up a thread and moves its TCB structure onto the runq, where it is likely
to begin executing (become the currently active thread), starting with the next periodic timer interrupt. It
does not need to do anything more than this, because, for instance, in a given time quantum one could
imagine multiple instances of create_thread() being called, and if each was allowed to think that it was
selecting the next thread to run, they would all step on each other’s toes.
The scheduler() function is what actually makes the selection of what thread to run, and make it the
active thread. The function takes as an input one of three values:

• THREAD_INIT — indicates that there is no active thread to remove; we simply need to select
someone from the runq and initialize the TCB pointer, as well as stack and start addresses that are
going to be used by the boot.s assembly code (see where core0 starts up the first user thread).

• THREAD_RUN — indicates that the currently active thread should be preemptively swapped
out for another thread, provided that there is another to run. If there is no other thread on the
runq, then the currently active thread should simply continue to execute.

• THREAD_SLEEP — indicates that the currently active thread needs to be put onto the sleepq,
because it is waiting on long-latency I/O operations to finish. If the runq is empty, the NULL
thread is run as a default; that is the only reason it exists.

Thus, if you want to put the current task to sleep, call scheduler(THREAD_SLEEP); if you want to
simply schedule the next available task on the runq but keep the currently executing thread active, call
scheduler(THREAD_RUN); etc.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

ENEE 447: Operating Systems — Project 5 (4%)

The scheduler displaces whatever thread is currently active, moves it to the desired state (e.g., RUN or
SLEEP), corresponding to moving it to one of the two queues, and then it selects a new thread to run and
makes it active, which includes telling the interrupt handlers where to restore the thread’s TCB state from.

Handling I/O Operations in a Non-Blocking Manner
As described in class, when your trap handler sees that the system call is SYSCALL_RD_WORD or
SYSCALL_WR_WORD, you invoke the timeout queue instead of performing a blocking call to I/O
routines. The mechanism for using the timeout queue has been changed slightly. First, the create() routine
looks like this:

void create_timeoutq_event(int timeout, int repeat, int max, pfv_t function, namenum_t data)

The timeout is the time until the event fires; the repeat value, if non-zero, indicates when after that it
should re-fire. The max value indicates the maximum number of repeats, and the function/data pair acts
like before.
Another difference, as you will see if you look in the callout.c module, is that the input to the user-
specified timeout function is the data structure itself:

 ep = (struct event *)LL_DETACH(timeoutq, ep);

 ep->go(ep);

 if (ep->repeat_interval > 0 && ep->max_repeats-- > 0) { 
 ep->timeout = ep->repeat_interval; 
 insert_event(ep); 
 } else {  
 LL_PUSH(freelist, ep); 
 }

Your user-defined function is given read/write access to the data structure that determines how it will be
inserted back onto the timeoutq, or whether it will be put back on the timeoutq at all. This allows your
user-defined timeout function to determine for itself if it wants to continue repeating. If it wants to
continue, it can manually set the struct’s repeat and max values to appropriate non-zero values, and if it
wants to terminate, it sets them to zero. This is what you will implement in the function do_dev_word in
the io.c module.
Other facilities that this code will use are the new read and write check() functions in the device structure.
You will notice that the device table has been redefined slightly, with the addition of these two new
structure members:

struct dev {  
 char devname[8]; 
 int devtype; 
 pfv_t init; 
 pfi_t read; 
 pfi_t write; 
 pfi_t rcheck; 
 pfi_t wcheck; 
};

Each device-table entry now contains rcheck and wcheck members, which are used to check and see if the
device is ready to read or write. These functions have been provided for you, at least for the UART device
(the main device for which you will be using them in this project). They are in the uart.c module:

//--  
int uart_recvcheck (void) 
{ 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
 return(0); 
}

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �5

ENEE 447: Operating Systems — Project 5 (4%)

//--  
int uart_sendcheck (void) 
{ 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
 return(0); 
}

Using repetitive checks is a hack to improve responsiveness. Recall that this replaces a while() loop—the
fact there was a long-lasting series of checks in a while() loop suggests that sometimes it may take a while
[pun intended] to get the UART’s attention. If we only checked once, and failed, then we might have to
wait potentially 1/100 to 1/10 of a second to try again … might as well give it a bunch of tries (kind of
like replacing the while() loop with a short for() loop that can be retried periodically), because it increases
the likelihood of success without actually becoming a blocking action.
Your code, which will implement the do_dev_word() function, will make use of these functions, testing to
see if the device is ready to read or write — if the call to a ready() function indicates the device is ready,
perform the function, but if not, reschedule the task to try again in the near future. Whenever the
do_dev_word() function wakes up, it checks to see if the word-granularity I/O device is ready. If the
device is ready, it performs the I/O read/write function and sets the event structure not to repeat; however,
if the device is not ready, the function sets the repeat values in the event structure appropriately to try
again at a specified point in the future. For WRITE system calls, the data to output to the device will be
in the data value of the io structure. For READ system calls, you need to figure out how to get the value
back to the user process, which is currently sleeping on the sleepq. Simply waking it up by putting it onto
the runq is not enough—you also need to transfer the read data, a single word, back to the thread when it
wakes up. Hint: use the sleeping thread’s TCB structure!

Example Interaction with the Shell
The following shows how the interaction with the shell might go, indicating what sort of things might
come next in terms of thread invocation, etc.

[c0|00:02.023] ...  
[c0|00:02.025] System is booting, kernel cpuid = 00000000 
[c0|00:02.030] Kernel version: [p5-solution, Wed Mar 13 22:38:45 EDT 2019]  
[c0|00:02.037] create_thread:  
[c0|00:02.039] NULL thread 00000000 
[c0|00:02.043] stack = 00021000 
[c0|00:02.046] start = 00000044 
[c0|00:02.049] tcb = 0000DBB8 
[c0|00:02.052] create_thread:  
[c0|00:02.054] shell 00000001 
[c0|00:02.057] stack = 00022000 
[c0|00:02.060] start = 00002294 
[c0|00:02.063] tcb = 0000DC1C 
[c0|00:02.066] ...  
[c0|00:02.068] Init complete. Please hit any key to continue.

<hit any key>

Running shell. 
Available commands: 
 RUN = 004E5552 
 PS = 00005350 
 TIME = 454D4954 
 LED = 0044454C 
 LOG = 00474F4C 
 EXIT = 54495845

Please enter a command. 
> PS 
CMD_PS 
[c0|00:09.695] PS: Active processes ...  
[c0|00:09.698] Dumping TCB for thread 00000001 
[c0|00:09.703] shell 00000001 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �6

ENEE 447: Operating Systems — Project 5 (4%)

[c0|00:09.705] stack 00022000 
[c0|00:09.708] tcb @ 0000DC1C 
[c0|00:09.711] r0 00000001 
[c0|00:09.714] r1 0000000A 
[c0|00:09.716] r2 00005350 
[c0|00:09.719] r3 00005350 
[c0|00:09.722] r4 00021FD4 
[c0|00:09.725] r5 00000000 
[c0|00:09.728] r6 00021FD4 
[c0|00:09.731] r7 00000009 
[c0|00:09.733] r8 54495845 
[c0|00:09.736] r9 454D4954 
[c0|00:09.739] r10 00002C84 
[c0|00:09.742] r11 00000000 
[c0|00:09.745] r12 00021FCD 
[c0|00:09.747] sp 00021FA4 
[c0|00:09.750] lr 000025D0 
[c0|00:09.753] pc 00001A44 
[c0|00:09.756] spsr 60000150

At this point, there are two threads that have been created: the NULL thread and the shell. However,
when I do a PS, the NULL thread doesn’t show up, because, in my implementation, it isn’t kept on the
runq. That is an unimportant detail; as mentioned above, you can do whatever is easiest or most logical
for you.
At this point, we can start up do_blinker by invoking it from the shell. The inputs for RUN are a short
name (1–3 characters, so that it fits into a 4-byte word with a NULL terminator) and a starting address.
Looking at the kernel7.list file, we find that do_blinker is located at address 0x00002194. Thus we have
the following:

Please enter a command. 
> RUN BLK 0X2194 
CMD_RUN [BLK, 00002194] 
[c0|00:54.005] SYSCALL_START THREAD name = 004B4C42 
[c0|00:54.009] SYSCALL_START THREAD addr = 00002194 
[c0|00:54.014] BLK 00002194 
[c0|00:54.017] create_thread:  
[c0|00:54.019] BLK 00000002 
[c0|00:54.022] stack = 00023000 
[c0|00:54.025] start = 00002194 
[c0|00:54.028] tcb = 0000DC80

<periodic blinking pattern begins>
Please enter a command. 
>

At this point, the do_blinker() routine starts running in user mode. It gets invoked the next timer
interrupt after the “RUN” command is sent over as a system call, but you could just as easily have the trap
handler put the shell onto the runq and make the blinker active immediately. All up to you. But it blinks
regularly in the 1,2,3,4,1,2,3, … pattern, all while the shell is allowing us to input commands and receive
values. That is the hallmark of non-blocking I/O: things that expect to happen at regular intervals are not
interrupted or stalled by long-running I/O operations.
At this point, if we do a PS, we should see both threads:

Please enter a command. 
> PS 
CMD_PS 
[c0|00:58.115] PS: Active processes ...  
[c0|00:58.118] Dumping TCB for thread 00000001 
[c0|00:58.122] shell 00000001 
[c0|00:58.125] stack 00022000 
[c0|00:58.128] tcb @ 0000DC1C 
[c0|00:58.131] r0 00000001 
[c0|00:58.133] r1 0000000A 
[c0|00:58.136] r2 00005350 
[c0|00:58.139] r3 00005350 
[c0|00:58.142] r4 00021FD4 
[c0|00:58.145] r5 00000000 
[c0|00:58.147] r6 00021FD4 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �7

ENEE 447: Operating Systems — Project 5 (4%)

[c0|00:58.150] r7 00000009 
[c0|00:58.153] r8 54495845 
[c0|00:58.156] r9 454D4954 
[c0|00:58.159] r10 00002C84 
[c0|00:58.161] r11 00000000 
[c0|00:58.164] r12 00021FCD 
[c0|00:58.167] sp 00021FA4 
[c0|00:58.170] lr 000025D0 
[c0|00:58.173] pc 00001A44 
[c0|00:58.175] spsr 60000150 
[c0|00:58.178] Dumping TCB for thread 00000002 
[c0|00:58.183] BLK 00000002 
[c0|00:58.185] stack 00023000 
[c0|00:58.188] tcb @ 0000DC80 
[c0|00:58.191] r0 00000003 
[c0|00:58.193] r1 00022FE0 
[c0|00:58.196] r2 00000008 
[c0|00:58.199] r3 00000000 
[c0|00:58.202] r4 00000001 
[c0|00:58.205] r5 000AAE60 
[c0|00:58.208] r6 037EA464 
[c0|00:58.210] r7 00000004 
[c0|00:58.213] r8 00000000 
[c0|00:58.216] r9 00000000 
[c0|00:58.219] r10 00000000 
[c0|00:58.222] r11 00000000 
[c0|00:58.224] r12 00000000 
[c0|00:58.227] sp 00022FDC 
[c0|00:58.230] lr 000021F0 
[c0|00:58.233] pc 000019E0 
[c0|00:58.236] spsr 80000150

Please enter a command. 
> TIME 
CMD_TIME = [00000000 047DD3DD]

Please enter a command. 
>

Meanwhile, the blinking continues, with the correct timing and 1,2,3,4,1,2,3 … pattern.
Among other things, this should make it relatively clear that, as far as the operating system goes, there is
little difference between two different threads running in two different processes and two different threads
running in the same process. Multithreading via spawning at the function level would be a trivial
extension. Perhaps in an upcoming project …

Bottom Line
This truly represents the The Simplest Possible Operating System™ in that, once you have this working,
you have a small-scale version of a Unix-like single-core operating system. It truly is a complete OS, the
heart of any kernel. The main things that a “full” version of Unix or Linux would add to this are virtual
memory and a file system. Don’t worry; we will get to those. In the mean time, this is basically the entire
kernel. You now understand operating systems. Next we will go multicore. Buckle up.

Build It, Load It, Run It
Once you have it working, show us.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �8

