
ENEE 447: Operating Systems — Project 5 (4%)

Purpose
In this project, your main task is to implement non-blocking I/O for just two scenarios: reading and 
writing the DEV_WORD devices, which includes the LED (write-only) and the Console (read/write). 
You also need to implement the C-language scheduler, which is now more complex than in the previous 
project, as it handles a set of threads, not just two, and it maintains a TCB for each thread that is running. 
Much has been improved since the last project: you will work with a slightly more fleshed-out shell; you 
will invoke threads from the shell; and you can get a list of running processes. The thread creation and 
invocation facilities are more generalized and therefore support a more extensive system. Thus, you are 
being exposed to techniques that better exemplify the way things are normally done, and you will build 
the hardest parts (95% of the work has been done for you: the easy part that nonetheless would take quite 
a while to implement).  

The Simplest Possible Operating System™
As said before, at its simplest, an OS is nothing more than a collection of vectors: it does nothing unless it 
is responding to interrupts. This is what we are building in Projects 3, 4, and 5. Project 3 implemented a 
system-call facility and provided an extremely rudimentary shell that runs in user mode — but still within 
the kernel proper, for now. Project 4 added to that the preemptive context switch and a rudimentary 
scheduler: the scheduler simply switches processes every time quantum, involved by a timer interrupt. 
Project 5 makes the I/O non-blocking so that the kernel can better respond to multiple sources of input 
“simultaneously” arriving from different sources. 

Interrupt Handlers and Thread Context
Firstly, we have provided a simplified mechanism for saving and restoring state. In the boot.s code, you 
will find the following assembly-code routines: 

save_lr_irq: .word 0 

// courtesy of Prof Vince Weaver, U Maine 
irq_handler: 

    ldr     sp, tcb_address_runningthread 
    stmia   sp,{r0-lr}^ @ Save all user registers r0-lr 
    @ (the ^ means user registers) 
    str     lr,[sp,#60]     @ store saved PC on stack 
    str     lr, save_lr_irq           @ save the SVC lr 
    mrs     lr, SPSR        @ load SPSR (assume ip not a swi arg)  
    str     lr,[sp,#64]     @ store on stack 
    ldr     lr, save_lr_irq           @ save the SVC lr 

    @ Call the C version of the handler 
    mov     sp, #SVCSTACK0 
    bl      clear_timer_interrupt 
    bl      periodic_timer 
    bl      set_timer 

    ldr     sp, tcb_address_runningthread 
    ldr     r0,[sp,#64]     @ pop saved CPSR 
    msr     SPSR_cxsf, r0       @ move it into place 

    ldr     lr,[sp,#60]     @ restore address to return to 

    @ Restore saved values.  The ^ means to restore the userspace registers  
    ldmia   sp, {r0-lr}  ̂
    subs    pc, lr, #4                  @ return from exception 

© Copyright 2016, 2019 Bruce Jacob,  All Rights Reserved �1

Project 5: Non-Blocking I/O (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned:  Tuesday, Mar 12;  Due:  Sunday, Mar 31



ENEE 447: Operating Systems — Project 5 (4%)

save_r0_svc: .word 0 

// courtesy of Prof Vince Weaver, U Maine 
svc_handler: 

    ldr     sp, tcb_address_runningthread 
    stmia   sp,{r0-lr}^ @ Save all user registers r0-lr 
    @ (the ^ means user registers) 
    add     ip, lr, #4 
    str     ip,[sp,#60]     @ store saved PC on stack 
    mrs     ip, SPSR        @ load SPSR (assume ip not a swi arg)  
    str     ip,[sp,#64]     @ store on stack 

    @ Call the C version of the handler 
    mov     sp, #SVCSTACK0 
    bl      trap_handler 

    ldr     sp, tcb_address_runningthread 
    ldr     r0,[sp,#64]     @ pop saved CPSR 
    msr     SPSR_cxsf, r0       @ move it into place 

    ldr     lr,[sp,#60]     @ restore address to return to 

    @ Restore saved values.  The ^ means to restore the userspace registers  
    ldmia   sp, {r0-lr}  ̂
    subs    pc, lr, #4                  @ return from exception 

These two routines are the only interrupt handlers, and the IRQ will neither interrupt itself (unless we set 
the timer too fast), nor will it interrupt the SVC mode. On a single core, the SVC mode will not 
interrupt itself. Therefore, none of this code will conflict with itself. What that means is that you won’t 
have to worry about the tcb_address_runningthread value changing out from underneath you, and 
potential weirdness of that sort. 
The code begins by performing the following save-register functions: 

• The address of the TCB for the currently running thread is loaded into the sp register, which does 
not destroy the USER mode’s copy of the sp register (see previous write-ups on the ARM register 
file).  

• Registers r0–r14 are stored upwards starting at this address. These are the user registers, so the sp 
and lr registers are the user’s copies. 

• The return address is stored at the next address, which would correspond to the location for r15. 
This is because the return address is r15, as that is the Program Counter in the ARM32 
architecture. 

• Last, at the next location beyond that, we store the process’s saved SPSR. 
Therefore, one can think of the register set being saved as looking like the following: 

    REG_r0,  
    REG_r1,  
    REG_r2,  
    REG_r3,  
    REG_r4,  
    REG_r5,  
    REG_r6,  
    REG_r7,  
    REG_r8,  
    REG_r9,  
    REG_r10,  
    REG_r11,  
    REG_r12,  
    REG_sp,  
    REG_lr,  
    REG_pc,  
    REG_spsr, 

That is exactly the data that is save and restored for a context switch. These values, in that order, are stored 
in the following structure, for which there is one for every process in the system: 
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struct tcb {  
    LL_PTRS;  
    char    name[NAMESIZE]; 
    long    threadid; 
    long    stack; 
    long    regs[17];   // 17th reg is the SPSR saved by context switch  
} tcbs[ NUM_THREADS ]; 

Note that we have a statically-declared set of thread structures, tcbs[NUM_THREADS]. Thread 0 is the 
“NULL thread,” and the rest of the thread numbers can be assigned to anything. 
Note that the name, thread ID, and stack are static values: they should not change. When a thread runs, 
all of its context is stored in the regs portion of the TCB. For instance, the stack member of the struct is 
the statically assigned starting point for the threads stack: user thread stacks begin at 0x20000, and each 
thread is given its own 4KB segment: thread 0 gets the first 4KB; thread 1 gets the next; etc. This will 
change once we have virtual memory, but just remember not to modify this value, and when a new thread 
starts up, use that as its initial stack pointer (for instance, you could put the value in REG_sp). 
Back to the assembly code; once the registers are saved, the code calls C-language routines to do the work. 
Because the handlers cannot be interrupted by themselves, we simply assign the same static starting stack 
location for each handler invocation. This works because we are running single-core for the moment. 
After the C-language routines finish, we restore state from the thread control block: 

• The address of the TCB for the currently running thread is loaded into the sp register.  

• First, from the topmost location (corresponding to what would be r16 in the TCB), we restore 
the process’s saved SPSR. 

• Next we retrieve the user process’s return address from the TCB location corresponding to r15. 
This is held temporarily in the lr link register, which is not the user link register. 

• Lastly, registers r0–r14 are restored upwards starting at the bottom address. These are the user 
registers, so the sp and lr registers are the user’s copies and do not overwrite the “sp” or “lr” 
registers being used by the handler code. 

Here’s the weirdness. The ARM32 architecture often used the following snippet to return from IRQ and 
FIQ exceptions: 

subs    pc, lr, #4                  @ return from exception 

It is clearly a hack. It is inelegant. It is how IRQ and FIQ interrupts generally work. However—and here 
is where the weirdness comes in—it is NOT how ARM’s SVC trap handlers generally work. If you try to 
subtract 4 from the SVC handler’s link register on return from exception, you will get a stalled processor. 
But nonetheless, we would like to structure our kernel so that at both entry points into the kernel, a 
process is saved so that it can potentially be swapped out as a result of calling the interrupt.  
What this requires is that the process must be saved and restored identically in both places, no matter 
which interrupt handler does the saving/restoring. Thus, what gets stored by the register-save protocol 
into the TCB is a number that will work with the “-4” on the return-from-exception at the end of both 
interrupt handlers (we do it in the SVC handler even though we don’t need to, just to ensure symmetry). 
This is expected for the IRQ, but it is not expected for the SVC trap handler. Thus, you see that, when 
the SVC handler stores the return value, it first adds 4 to it. Yes, this is inelegant. Yes, this is stupid. 
Welcome to interfacing with hardware. So what is stored in the TCB structure above is—and should be—
4 bytes larger than the PC destination where you you really want to go. Keep this in mind when you are 
manually putting values into REG_pc or printing them out. I know that it is nonsensical, but it is a hack 
to overcome ARM32 weirdness. 
The upside: you need not write any assembly code for this project, unless you want to. 
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General Kernel Structure
The idea is that on either a trap (SVC handler) or a periodic timer interrupt (IRQ handler), a process can 
get swapped out, so we save its context at the start and restore it at the end. This allows the kernel to put 
threads to sleep if they make sys calls that require blocking I/O, or to swap threads during the periodic 
timer interrupt. And, as mentioned before, these two interrupt handlers do not conflict with each other, 
so it should, in theory, all work out. Therefore, on a trap to the SVC handler, a process can get swapped 
out if it is a long-latency I/O operation (for this project, you will do this when encountering a 
SYSCALL_RD_WORD or SYSCALL_WR_WORD). On an invocation of the IRQ handler (due to a 
periodic timer interrupt), we will always swap processes, if there is another to swap to. 
The threads.c module maintains three lists of processes: 

• The tfree free list (contains TCB structures not being used) 

• The runq (TCB structures for threads that can run) 

• The sleepq (TCB structures for threads that cannot run and are waiting on I/O to finish) 
• Pointers to the active_thread and null_thread 

Note that a thread will be on one and only one of the queues at any given moment. In addition, the 
tcbs[NUM_THREADS] data block described earlier is indexed by the thread ID, so, for instance, if you 
want to find thread number i you can always do it this way: 

struct tcb *tp = &tcbs[i]; 

You can manage these queues however you want … for instance, should the NULL thread be on the runq 
or not? Should the currently executing thread (pointed to by the active_thread pointer) be on the runq or 
not? These are implementation details that are up to you and should reflect the way your scheduling 
algorithm is designed. 
The create_thread() routine sets up a thread and moves its TCB structure onto the runq, where it is likely 
to begin executing (become the currently active thread), starting with the next periodic timer interrupt. It 
does not need to do anything more than this, because, for instance, in a given time quantum one could 
imagine multiple instances of create_thread() being called, and if each was allowed to think that it was 
selecting the next thread to run, they would all step on each other’s toes. 
The scheduler() function is what actually makes the selection of what thread to run, and make it the 
active thread. The function takes as an input one of three values: 

• THREAD_INIT — indicates that there is no active thread to remove; we simply need to select 
someone from the runq and initialize the TCB pointer, as well as stack and start addresses that are 
going to be used by the boot.s assembly code (see where core0 starts up the first user thread). 

• THREAD_RUN — indicates that the currently active thread should be preemptively swapped 
out for another thread, provided that there is another to run. If there is no other thread on the 
runq, then the currently active thread should simply continue to execute. 

• THREAD_SLEEP — indicates that the currently active thread needs to be put onto the sleepq, 
because it is waiting on long-latency I/O operations to finish. If the runq is empty, the NULL 
thread is run as a default; that is the only reason it exists. 

Thus, if you want to put the current task to sleep, call scheduler(THREAD_SLEEP); if you want to 
simply schedule the next available task on the runq but keep the currently executing thread active, call 
scheduler(THREAD_RUN); etc. 
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The scheduler displaces whatever thread is currently active, moves it to the desired state (e.g., RUN or 
SLEEP), corresponding to moving it to one of the two queues, and then it selects a new thread to run and 
makes it active, which includes telling the interrupt handlers where to restore the thread’s TCB state from.  

Handling I/O Operations in a Non-Blocking Manner
As described in class, when your trap handler sees that the system call is SYSCALL_RD_WORD or 
SYSCALL_WR_WORD, you invoke the timeout queue instead of performing a blocking call to I/O 
routines. The mechanism for using the timeout queue has been changed slightly. First, the create() routine 
looks like this: 

void create_timeoutq_event(int timeout, int repeat, int max, pfv_t function, namenum_t data) 

The timeout is the time until the event fires; the repeat value, if non-zero, indicates when after that it 
should re-fire. The max value indicates the maximum number of repeats, and the function/data pair acts 
like before. 
Another difference, as you will see if you look in the callout.c module, is that the input to the user-
specified timeout function is the data structure itself: 

    ep = (struct event *)LL_DETACH(timeoutq, ep); 

    ep->go(ep); 

    if (ep->repeat_interval > 0 && ep->max_repeats-- > 0) { 
        ep->timeout = ep->repeat_interval; 
        insert_event(ep); 
    } else {  
        LL_PUSH(freelist, ep); 
    } 

Your user-defined function is given read/write access to the data structure that determines how it will be 
inserted back onto the timeoutq, or whether it will be put back on the timeoutq at all. This allows your 
user-defined timeout function to determine for itself if it wants to continue repeating. If it wants to 
continue, it can manually set the struct’s repeat and max values to appropriate non-zero values, and if it 
wants to terminate, it sets them to zero. This is what you will implement in the function do_dev_word in 
the io.c module.  
Other facilities that this code will use are the new read and write check() functions in the device structure. 
You will notice that the device table has been redefined slightly, with the addition of these two new 
structure members: 

struct dev {  
    char devname[8]; 
    int devtype; 
    pfv_t init; 
    pfi_t read; 
    pfi_t write; 
    pfi_t rcheck; 
    pfi_t wcheck; 
}; 

Each device-table entry now contains rcheck and wcheck members, which are used to check and see if the 
device is ready to read or write. These functions have been provided for you, at least for the UART device 
(the main device for which you will be using them in this project). They are in the uart.c module: 

//------------------------------------------------------------------------  
int uart_recvcheck ( void ) 
{ 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x01) return(1); 
    return(0); 
} 
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//------------------------------------------------------------------------  
int uart_sendcheck ( void ) 
{ 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    if(GET32(AUX_MU_LSR_REG)&0x20) return(1); 
    return(0); 
} 

Using repetitive checks is a hack to improve responsiveness. Recall that this replaces a while() loop—the 
fact there was a long-lasting series of checks in a while() loop suggests that sometimes it may take a while 
[pun intended] to get the UART’s attention. If we only checked once, and failed, then we might have to 
wait potentially 1/100 to 1/10 of a second to try again … might as well give it a bunch of tries (kind of 
like replacing the while() loop with a short for() loop that can be retried periodically), because it increases 
the likelihood of success without actually becoming a blocking action. 
Your code, which will implement the do_dev_word() function, will make use of these functions, testing to 
see if the device is ready to read or write — if the call to a ready() function indicates the device is ready, 
perform the function, but if not, reschedule the task to try again in the near future. Whenever the 
do_dev_word() function wakes up, it checks to see if the word-granularity I/O device is ready. If the 
device is ready, it performs the I/O read/write function and sets the event structure not to repeat; however, 
if the device is not ready, the function sets the repeat values in the event structure appropriately to try 
again at a specified point in the future. For WRITE system calls, the data to output to the device will be 
in the data value of the io structure. For READ system calls, you need to figure out how to get the value 
back to the user process, which is currently sleeping on the sleepq. Simply waking it up by putting it onto 
the runq is not enough—you also need to transfer the read data, a single word, back to the thread when it 
wakes up. Hint: use the sleeping thread’s TCB structure!  

Example Interaction with the Shell
The following shows how the interaction with the shell might go, indicating what sort of things might 
come next in terms of thread invocation, etc. 

[c0|00:02.023] ...  
[c0|00:02.025] System is booting, kernel cpuid = 00000000 
[c0|00:02.030] Kernel version: [p5-solution, Wed Mar 13 22:38:45 EDT 2019]  
[c0|00:02.037] create_thread:  
[c0|00:02.039] NULL thread 00000000 
[c0|00:02.043]  stack = 00021000 
[c0|00:02.046]  start = 00000044 
[c0|00:02.049]  tcb   = 0000DBB8 
[c0|00:02.052] create_thread:  
[c0|00:02.054] shell 00000001 
[c0|00:02.057]  stack = 00022000 
[c0|00:02.060]  start = 00002294 
[c0|00:02.063]  tcb   = 0000DC1C 
[c0|00:02.066] ...  
[c0|00:02.068] Init complete. Please hit any key to continue.  

<hit any key> 

Running shell. 
Available commands: 
 RUN  = 004E5552 
 PS   = 00005350 
 TIME = 454D4954 
 LED  = 0044454C 
 LOG  = 00474F4C 
 EXIT = 54495845 

Please enter a command. 
> PS 
CMD_PS 
[c0|00:09.695] PS: Active processes ...  
[c0|00:09.698] Dumping TCB for thread 00000001 
[c0|00:09.703] shell 00000001 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[c0|00:09.705]  stack 00022000 
[c0|00:09.708]  tcb @ 0000DC1C 
[c0|00:09.711]   r0   00000001 
[c0|00:09.714]   r1   0000000A 
[c0|00:09.716]   r2   00005350 
[c0|00:09.719]   r3   00005350 
[c0|00:09.722]   r4   00021FD4 
[c0|00:09.725]   r5   00000000 
[c0|00:09.728]   r6   00021FD4 
[c0|00:09.731]   r7   00000009 
[c0|00:09.733]   r8   54495845 
[c0|00:09.736]   r9   454D4954 
[c0|00:09.739]   r10  00002C84 
[c0|00:09.742]   r11  00000000 
[c0|00:09.745]   r12  00021FCD 
[c0|00:09.747]   sp   00021FA4 
[c0|00:09.750]   lr   000025D0 
[c0|00:09.753]   pc   00001A44 
[c0|00:09.756]   spsr 60000150 

At this point, there are two threads that have been created: the NULL thread and the shell. However, 
when I do a PS, the NULL thread doesn’t show up, because, in my implementation, it isn’t kept on the 
runq. That is an unimportant detail; as mentioned above, you can do whatever is easiest or most logical 
for you.  
At this point, we can start up do_blinker by invoking it from the shell. The inputs for RUN are a short 
name (1–3 characters, so that it fits into a 4-byte word with a NULL terminator) and a starting address. 
Looking at the kernel7.list file, we find that do_blinker is located at address 0x00002194. Thus we have 
the following: 

Please enter a command. 
> RUN BLK 0X2194 
CMD_RUN [BLK, 00002194] 
[c0|00:54.005] SYSCALL_START THREAD name = 004B4C42 
[c0|00:54.009] SYSCALL_START THREAD addr = 00002194 
[c0|00:54.014] BLK 00002194 
[c0|00:54.017] create_thread:  
[c0|00:54.019] BLK 00000002 
[c0|00:54.022]  stack = 00023000 
[c0|00:54.025]  start = 00002194 
[c0|00:54.028]  tcb   = 0000DC80 

<periodic blinking pattern begins> 
Please enter a command. 
>  

At this point, the do_blinker() routine starts running in user mode. It gets invoked the next timer 
interrupt after the “RUN” command is sent over as a system call, but you could just as easily have the trap 
handler put the shell onto the runq and make the blinker active immediately. All up to you. But it blinks 
regularly in the 1,2,3,4,1,2,3, … pattern, all while the shell is allowing us to input commands and receive 
values. That is the hallmark of non-blocking I/O: things that expect to happen at regular intervals are not 
interrupted or stalled by long-running I/O operations. 
At this point, if we do a PS, we should see both threads: 

Please enter a command. 
> PS 
CMD_PS 
[c0|00:58.115] PS: Active processes ...  
[c0|00:58.118] Dumping TCB for thread 00000001 
[c0|00:58.122] shell 00000001 
[c0|00:58.125]  stack 00022000 
[c0|00:58.128]  tcb @ 0000DC1C 
[c0|00:58.131]   r0   00000001 
[c0|00:58.133]   r1   0000000A 
[c0|00:58.136]   r2   00005350 
[c0|00:58.139]   r3   00005350 
[c0|00:58.142]   r4   00021FD4 
[c0|00:58.145]   r5   00000000 
[c0|00:58.147]   r6   00021FD4 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[c0|00:58.150]   r7   00000009 
[c0|00:58.153]   r8   54495845 
[c0|00:58.156]   r9   454D4954 
[c0|00:58.159]   r10  00002C84 
[c0|00:58.161]   r11  00000000 
[c0|00:58.164]   r12  00021FCD 
[c0|00:58.167]   sp   00021FA4 
[c0|00:58.170]   lr   000025D0 
[c0|00:58.173]   pc   00001A44 
[c0|00:58.175]   spsr 60000150 
[c0|00:58.178] Dumping TCB for thread 00000002 
[c0|00:58.183] BLK 00000002 
[c0|00:58.185]  stack 00023000 
[c0|00:58.188]  tcb @ 0000DC80 
[c0|00:58.191]   r0   00000003 
[c0|00:58.193]   r1   00022FE0 
[c0|00:58.196]   r2   00000008 
[c0|00:58.199]   r3   00000000 
[c0|00:58.202]   r4   00000001 
[c0|00:58.205]   r5   000AAE60 
[c0|00:58.208]   r6   037EA464 
[c0|00:58.210]   r7   00000004 
[c0|00:58.213]   r8   00000000 
[c0|00:58.216]   r9   00000000 
[c0|00:58.219]   r10  00000000 
[c0|00:58.222]   r11  00000000 
[c0|00:58.224]   r12  00000000 
[c0|00:58.227]   sp   00022FDC 
[c0|00:58.230]   lr   000021F0 
[c0|00:58.233]   pc   000019E0 
[c0|00:58.236]   spsr 80000150 

Please enter a command. 
> TIME 
CMD_TIME = [00000000 047DD3DD] 

Please enter a command. 
>  

Meanwhile, the blinking continues, with the correct timing and 1,2,3,4,1,2,3 … pattern.  
Among other things, this should make it relatively clear that, as far as the operating system goes, there is 
little difference between two different threads running in two different processes and two different threads 
running in the same process. Multithreading via spawning at the function level would be a trivial 
extension. Perhaps in an upcoming project …  

Bottom Line
This truly represents the The Simplest Possible Operating System™ in that, once you have this working, 
you have a small-scale version of a Unix-like single-core operating system. It truly is a complete OS, the 
heart of any kernel. The main things that a “full” version of Unix or Linux would add to this are virtual 
memory and a file system. Don’t worry; we will get to those. In the mean time, this is basically the entire 
kernel. You now understand operating systems. Next we will go multicore. Buckle up. 

Build It, Load It, Run It
Once you have it working, show us.
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