
ENEE 447: Operating Systems — Project 6 (4%)

Purpose
In this project, you will get a taste of what dealing with multicore is like. You will create a new system call
to get the Core ID of the core you are running on (for debugging purposes), and then experiment with
turning on all four cores of the CPU.

Create a System Call for get_coreid()
Your first task is to get the ID of the core your code is running on. If you try to call core_id() directly
from the shell, you will find that nothing happens. This is because the shell runs in user mode, whereas
getting access to the special control registers such as the one holding the Core ID is a privileged action.
Therefore, you will have to ask the operating system for the ID of the core you are on.
Do this by adding a new system call. You have two primary options:

• Create a new system call just for getting the core ID, which involves creating a new entry in the
list of system calls, a new function to execute, and a new entry in the switch() statement in the
kernel’s trap-handler routine.

• Define a new device and call the syscall_read_word() system call on it, which involves creating a
new device type and adding a new entry to the devtab[] array in the io.c module.

The choice is yours; either is fine. In the mean time, to get your code to build, you can simply define the
function get_coreid() to be a constant, and use that until your system call is working.

Verify the Code Works
You have been given what is effectively a solution to Project 4. It is my Project 5 solution, with the
mechanisms for non-blocking I/O stripped out. It also has a few other additions.
You will see that, in the project directory, there is no 1_boot.s file, but there are instead a few other
similarly named files. Here is the primary difference between the first two. Note that the res_handler
block is the code called right at initialization.

1_boot.good
res_handler:  
 mrc p15, 0, r0, c1, c0, 0 @ Read System Control Register 
@ orr r0, r0, #(1<<2) @ dcache enable 
 orr r0, r0, #(1<<12) @ icache enable 
 and r0, r0, #0xFFFFDFFF @ turn on vector table at 0x0000000 (bit 12)  
 mcr p15, 0, r0, c1, c0, 0 @ Write System Control Register

 // check core ID 
 mrc p15, 0, r0, c0, c0, 5 
 ubfx r0, r0, #0, #2 
 cmp r0, #0 // is it core 0? 
 beq core0 // if so, branch to core0

 // it is not core0, so do things that are appropriate for SVC level as opposed to HYP  
 // like set up separate stacks for each core, etc.

 b hang

.globl hang  
hang: wfi  
 b hang

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Project 6: Multicore Madness (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned: Tuesday, Apr 2; Due: Sunday, Apr 14

ENEE 447: Operating Systems — Project 6 (4%)

core0: 
 // Initialize SPSR in all modes. 
 MOV R0, #0 
 MSR SPSR, R0 
 MSR SPSR_svc, R0 
 MSR SPSR_und, R0 
 MSR SPSR_hyp, R0 
 MSR SPSR_abt, R0 
 MSR SPSR_irq, R0 
 MSR SPSR_fiq, R0 
 . 
 . 
 .

1_boot.multi
res_handler:  
 mrc p15, 0, r0, c1, c0, 0 @ Read System Control Register 
@ orr r0, r0, #(1<<2) @ dcache enable 
 orr r0, r0, #(1<<12) @ icache enable 
 and r0, r0, #0xFFFFDFFF @ turn on vector table at 0x0000000 (bit 12)  
 mcr p15, 0, r0, c1, c0, 0 @ Write System Control Register

 // Initialize SPSR in all modes. 
 MOV R0, #0 
 MSR SPSR, R0 
 MSR SPSR_svc, R0 
 MSR SPSR_und, R0 
 MSR SPSR_hyp, R0 
 MSR SPSR_abt, R0 
 MSR SPSR_irq, R0 
 MSR SPSR_fiq, R0 
 . 
 . 
 .

The file 1_boot.good is just the 1_boot.s file you have seen before. In it, immediately after turning on the
instruction cache and setting up the vector table, the code checks to see what core it is running on, and if
the core ID is 0, the software branches to the core0 label and continues with the initialization. If the core
ID is not 0, the software goes into an infinite loop.
The second file removes all of that and simply goes straight into initialization.
Use the file 1_boot.good to begin with (copy it to 1_boot.s and compile). When you run your code, you
should see the familiar start-up:

[c0|00:02.022] ...  
[c0|00:02.024] System is booting, kernel cpuid = 00000000 
[c0|00:02.029] Kernel version: [p6, Mon Apr 1 14:04:32 EDT 2019]  
[c0|00:02.035] create_thread:  
[c0|00:02.038] NULL thread 00000000 
[c0|00:02.041] stack = 00021000 
[c0|00:02.044] start = 00000044 
[c0|00:02.047] tcb = 0000DE18 
[c0|00:02.050] create_thread:  
[c0|00:02.053] shell 00000001 
[c0|00:02.055] stack = 00022000 
[c0|00:02.058] start = 000022E8 
[c0|00:02.061] tcb = 0000DE7C 
[c0|00:02.064] ...  
[c0|00:02.066] Init complete. Please hit any key to continue.

Running the eggshell on core 0. 
Available commands: 
 RUN = 004E5552  
 PS = 00005350  
 TIME = 454D4954  
 LED = 0044454C  
 LOG = 00474F4C 
 EXIT = 54495845 
 HANG = 474E4148 
 DUMP = 504D5544

Please enter a command. 
c0>

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

ENEE 447: Operating Systems — Project 6 (4%)

At this point, if you list out the processes, you will see the following:
Please enter a command. 
c0> PS 
CMD_PS 
[c0|00:26.650] PS: Active processes ... 
[c0|00:26.654] Dumping TCB for thread 00000001 
[c0|00:26.658] shell 00000001 
[c0|00:26.661] stack 00022000 
[c0|00:26.664] tcb @ 0000DE7C 
[c0|00:26.666] r0 00000001 
[c0|00:26.669] r1 0000000A 
[c0|00:26.672] r2 00005350 
[c0|00:26.675] r3 00005350 
[c0|00:26.678] r4 00021FC8  
[c0|00:26.680] r5 00000000 
[c0|00:26.683] r6 00000000 
[c0|00:26.686] r7 00000009 
[c0|00:26.689] r8 00000000 
[c0|00:26.692] r9 0000E458 
[c0|00:26.695] r10 00000000 
[c0|00:26.697] r11 474E4148 
[c0|00:26.700] r12 00021FC2 
[c0|00:26.703] sp 00021FA4 
[c0|00:26.706] lr 000026B8 
[c0|00:26.709] pc 000019BC 
[c0|00:26.711] spsr 60000150

Please enter a command. 
c0>

We can invoke the blinker loop, and if you look in the kernel7.list file, you should see that it is located at
address 0x21c4 (verify this, though … your compiler may produce different results than mine):

000021c4 <do_blinker>: 
 21c4: e92d41f0 push {r4, r5, r6, r7, r8, lr} 
 21c8: e3a04000 mov r4, #0, 0 
 21cc: e1a08004 mov r8, r4 
 21d0: e59f505c ldr r5, [pc, #92] ; 2234 <do_blinker+0x70>  
 . 
 . 
 .

You can invoke the blinker by using the RUN command:
Please enter a command. 
c0> RUN LED 0X21C4 
CMD_RUN [LED, 000021C4] 
[c0|00:51.549] SYSCALL_START THREAD name = 0044454C 
[c0|00:51.553] SYSCALL_START THREAD addr = 000021C4 
[c0|00:51.558] LED 000021C4 
[c0|00:51.561] create_thread:  
[c0|00:51.563] LED 00000002 
[c0|00:51.566] stack = 00023000 
[c0|00:51.569] start = 000021C4 
[c0|00:51.572] tcb = 0000DEE0

Please enter a command. 
c0>

The command reports back that it worked, but you will notice that the LED does not start blinking. As
you type, you might notice it changing from on to off and back, but it will not do the 1/2/3/4 pattern as
it should. You can verify that the RUN command has created a thread by listing the processes out again,
which should produce the following result:

Please enter a command. 
c0> PS 
CMD_PS 
[c0|01:19.300] PS: Active processes ... 
[c0|01:19.304] Dumping TCB for thread 00000001 
[c0|01:19.308] shell 00000001 
[c0|01:19.311] stack 00022000 
[c0|01:19.314] tcb @ 0000DE7C 
[c0|01:19.317] r0 00000001 
[c0|01:19.320] r1 0000000A 
[c0|01:19.322] r2 00005350 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

ENEE 447: Operating Systems — Project 6 (4%)

[c0|01:19.325] r3 00005350 
[c0|01:19.328] r4 00021FC8 
[c0|01:19.331] r5 00000000 
[c0|01:19.334] r6 00000000 
[c0|01:19.336] r7 00000009 
[c0|01:19.339] r8 00000000 
[c0|01:19.342] r9 0000E458 
[c0|01:19.345] r10 00000000 
[c0|01:19.348] r11 474E4148 
[c0|01:19.350] r12 00021FC2 
[c0|01:19.353] sp 00021FA4 
[c0|01:19.356] lr 000026B8 
[c0|01:19.359] pc 000019BC 
[c0|01:19.362] spsr 60000150 
[c0|01:19.364] Dumping TCB for thread 00000002 
[c0|01:19.369] LED 00000002 
[c0|01:19.371] stack 00023000 
[c0|01:19.374] tcb @ 0000DEE0 
[c0|01:19.377] r0 00000001 
[c0|01:19.380] r1 00022FE0 
[c0|01:19.382] r2 00000008 
[c0|01:19.385] r3 00000000 
[c0|01:19.388] r4 00000001 
[c0|01:19.391] r5 000AAE60 
[c0|01:19.394] r6 04C253BE 
[c0|01:19.397] r7 00000004 
[c0|01:19.399] r8 00000000 
[c0|01:19.402] r9 00000000 
[c0|01:19.405] r10 00000000 
[c0|01:19.408] r11 00000000 
[c0|01:19.411] r12 00000000 
[c0|01:19.413] sp 00022FDC 
[c0|01:19.416] lr 00002220 
[c0|01:19.419] pc 00001958 
[c0|01:19.422] spsr 80000150

Please enter a command. 
c0>

So the “LED” thread has indeed been created. It is on the list of active threads. It has thread ID 2. But the
LED is not blinking. Why is it not blinking?
Recall that this is the problem Project 5 is intended to solve. The LED is not blinking because the CPU is
currently blocking, waiting on you to type into the keyboard. Each time you enter a command, a little bit
of work is done, and the shell goes right back to asking you to input a new command — at which point
the kernel stalls, waiting for your keyboard input.
Here is how we can get around that … it is a hack that will let you see that two threads are indeed being
run and switched between:

Please enter a command. 
c0> HANG 10  
CMD_HANG ...  
0000000A 
00000009 
00000008 
00000007 
00000006 
00000005 
00000004 
00000003 
00000002 
00000001

Please enter a command. 
c0>

The “HANG” command counts down from whatever number you give it and does nothing, simply
printing to the screen roughly once per second as it counts down to zero. Once it reaches zero, it goes
back into the normal control loop, waiting for input. But while it is counting down, it is not blocking on
I/O, which means that the kernel can schedule other threads. So while it is counting down, you should
see the LED going through its 1/2/3/4 blinking cycle.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

ENEE 447: Operating Systems — Project 6 (4%)

Turn on Multicore
Once you get to this point, rebuild the kernel using the file 1_boot.multi as 1_boot.s. What happens
when you boot this kernel? Does it behave the same way every time you boot? What is causing its
behavior?
You might think that the main problem is that the cores are all using the same stacks. That is true, but it
is not the main problem. A more extensive boot module can be found in 1_boot.stacks, which has each
core do a different initialization routine. Each gets a different set of stack pointers, and there is no overlap.
You can even change things so that each core starts up a different thread. There will still be a problem
with the use of shared resources, and this fundamental problem will not go away easily.
Your assignment for this portion of the project: think about how you would solve this problem and write
up a solution. It only needs to be a page, at a high level of detail … but how would you deal with this
problem? With multicore, you now have the problem at a kernel level that you previously had at the
application level on a single processor: you cannot easily share resources without having everyone step on
each others’ toes.
Here is how the operating system’s kernel steps in to manage application access to the various hardware
devices:

Rather than giving all applications direct access to all devices, which could easily turn chaotic, the
applications go through a single access point: the kernel. Funneling all requests through a single point
serializes the requests, so that a known order can be determined, and so that a given device is not
manipulated incorrectly or out of sequence. Rather than having applications know the hardware-device
protocols, all device-specific information is encapsulated in the kernel (in its drivers), and the application-
level interface to the array of hardware devices becomes, instead, just the system-call interface, which
invokes the kernel on the application’s behalf.
We created the operating system’s kernel itself to solve that problem at the application level: the kernel is
there to manage access to shared resources, so that applications need not worry about it. However, with
multicore we have the same problem, but at the kernel level. Once we move to multicore the problem

�

APP

APP

APP

…

Kernel

Disk

etc

etc

…timer

UART

LED

Clock

Devices

APP

APP

APP

… Disk

etc

etc

…

UART

LED

Clock

Devices

Becomes

Software Software

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �5

ENEE 447: Operating Systems — Project 6 (4%)

returns, because within a multicore CPU, there are multiple processor cores sharing a single set of
hardware devices. While some hardware devices may be replicated across each core, as in the timer
example below, the majority of the devices are grouped as a set of shared resources that all of the CPU
cores must manage together. This is the setup:

How would you solve this problem? There is no right/wrong answer … the point is to give it some serious
thought and write up a description of your solution.

Build It, Load It, Run It
Once you have it working, show us.

�

APP

APP

APP

…

Kernel

Disk

etc

etc

…
timer

UART

LED

Clock

Devices

Software

APP

APP

APP

…

Kernel

timer

APP

APP

APP

…
Kernel

timer

…

core0

core1

coreN

Becomes ?

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �6

	Project 6: Multicore Madness (4%)
	ENEE 447: Operating Systems — Spring 2019
	Assigned: Tuesday, Apr 2; Due: Sunday, Apr 14

	Purpose
	Create a System Call for get_coreid()
	Verify the Code Works
	Turn on Multicore
	Build It, Load It, Run It

