
ENEE 447: Operating Systems — Project 7 (4%)

Purpose
Up until this point, all of the “user” applications that have been run as separate and separately scheduled
threads have been code compiled into the kernel binary, just run in user mode. In this project, the user
applications are all in separate files. You will have to interact with the SD Card, but all of the driver work,
in particular the SD interface and FAT filesystem running atop it, has been done for you.
You will read in application binaries from the SD card to start threads, and you will do this both as the
startup thread (the shell) as well as in response to “RUN” commands executed in the shell, which will
start up either or both of the “app1” and “app2” binaries.

Reading from the SD Card
The following shows the boot sequence for the code as given to you. In the kernel.c module, there is a
function called test_read() that provides an example on how to interface with the SDCard.c module.
After initializing the SD card and opening up the kernel7.img file (your bootable file on the card), it reads
into a local buffer the first 1024 bytes of the kernel7.img file, prints out the first 64 words of it, and then
goes into a forever loop.

[c0|00:02.259] ...  
[c0|00:02.261] System is booting, kernel cpuid = 00000000 
[c0|00:02.266] Kernel version: [p7, Fri Apr 12 16:13:13 EDT 2019]  
[c0|00:02.272] Initializing SD Card ...  
[c0|00:02.276] ---------------> sdInitCard [init]  
[c0|00:02.280] EMMC: reset card.  
[c0|00:02.283] EMMC: setting clock speed to 00061A80 
[c0|00:02.288] GO_IDLE_STATE 00000000 
[c0|00:02.291] SEND_IF_COND 000001AA 
[c0|00:02.295] APP_CMD 00000000 
[c0|00:02.298] SD_SENDOPCOND 50FF8000 
[c0|00:02.702] APP_CMD 00000000 
[c0|00:02.704] SD_SENDOPCOND 50FF8000 
[c0|00:02.708] ALL_SEND_CID 00000000 
[c0|00:02.711] SEND_REL_ADDR 00000000 
[c0|00:02.715] SEND_CSD AAAA0000 
[c0|00:02.718] EMMC: setting clock speed to 017D7840 
[c0|00:02.722] CARD_SELECT AAAA0000 
[c0|00:02.726] APP_CMD AAAA0000 
[c0|00:02.729] SEND_SCR 00000000 
[c0|00:02.734] SET_BLOCKLEN 00000200 
sdTransferBlocks read blk 00000000 len 00000001 addr 0002BD88 
[c0|00:02.743] READ_SINGLE 00000000 
sdTransferBlocks read blk 00002000 len 00000001 addr 0002BD88 
[c0|00:02.756] READ_SINGLE 00002000 
[c0|00:02.770] ---------------> sdInitCard [term]  
[c0|00:02.774] SD Card working.  
[c0|00:02.777] create_thread:  
[c0|00:02.780] NULL thread 00000000 
[c0|00:02.783] stack = 00031000 
[c0|00:02.786] start = 00000044 
[c0|00:02.789] tcb = 00013B00 
[c0|00:02.792] create_thread:  
[c0|00:02.795] shell.bin 00000000 
[c0|00:02.798] Eggshell 00000001 
[c0|00:02.801] stack = 00032000 
[c0|00:02.804] start = 00000000 
[c0|00:02.807] tcb = 00013B64 
[c0|00:02.810] ...  
[c0|00:02.812] Init complete. Please hit any key to continue.

<hit enter>

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Project 7: Apps in Separate Files (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned: Tuesday, Apr 16; Due: Sunday, Apr 28

ENEE 447: Operating Systems — Project 7 (4%)

[c0|00:05.890] test_read - SD Card example usage  
sdTransferBlocks read blk 00003DCA len 00000001 addr 000070B8 
[c0|00:05.909] READ_SINGLE 00003DCA 
LocateFATEntry: [kernel7.im] 
sdTransferBlocks read blk 00003DCB len 00000001 addr 000070B8 
[c0|00:05.923] READ_SINGLE 00003DCB 
sdTransferBlocks read blk 0000F6CA len 00000001 addr 000070B8 
[c0|00:05.934] READ_SINGLE 0000F6CA 
[c0|00:05.941] Reading file into buf at 000136D0 
[c0|00:05.945] kernel7.img  
sdTransferBlocks read blk 0000F6CB len 00000001 addr 000070B8 
[c0|00:05.953] READ_SINGLE 0000F6CB

00000000: EA000006 EA00000E EA00003F EA00000C EA00000B EA00000A EA000029 EA000008  
00000020: EE110F10 E3800A01 E3C00A02 EE010F10 EE100FB0 E7E10050 E3500000 0A000002  
00000040: EAFFFFFF E320F003 EAFFFFFD E3A00000 E169F000 E162F300 E166F300 E16EF300  
00000060: E164F300 E160F300 E16EF200 E3A00000 E12EF300 F1020012 E3A0DA2E F1020011  
00000080: E3A0DA2F F1020013 E3A0DA2D F102001F E3A0D90B EB000D7C EB001185 F1020010  
000000A0: E59FD010 E59F0008 E1A0F000 EAFFFFE4 00000000 00000000 00000000 00000000  
000000C0: 00000000 E51FD010 E8CD7FFF E58DE03C E50FE018 E14FE000 E58DE040 E51FE024  
000000E0: E3A0DA2D EB00116B EB000D20 EB001170 E51FD03C E59D0040 E16FF000 E59DE03C

[c0|00:06.018] Compare output to first 256 bytes of kernel7.list  
[c0|00:06.023] Done.

When you build the code and run it, this is exactly what you should see. If not, there is a problem, and it
is most likely with your SD card or the timing between your laptop and your SD card.
This shows the normal initialization sequence, with a new addition: the use of the SD card, which is
initialized at the beginning, and then it is read at the end. The initialization sequence is heavily dependent
on relative timing of the commands, and you will need a Class-10 card, for starters. Please check as soon
as possible to see if your system works correctly, because debugging timing issues with drivers and devices
can take an enormous amount of time, and it is not something you will want to be doing the weekend that
the project is due.
The code that initializes the SD card looks like this:

sdInitCard(NULL, NULL, true);

And because it may not work initially, we have put it into a while() loop that keeps trying until successful.
The code that reads the SD card looks like this:

fh = sdCreateFile(filename, GENERIC_READ, 0, 0, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, 0);

sdReadFile(fh, (void *)buf, 1024, &bytesRead, 0)

sdCloseHandle(fh);

The variable “fh” is a “file handle,” which happens to be an integer index into an array of data structures
in the SDCard.c module. The sdCreateFile() function opens the file up and populates a data structure
with information about the file, including where it is located in the file system, and how big it is, etc. The
main argument you will use is the first one: the file name, a string with the name of one of the files at the
root directory of your SD card.
When the file handle that sdCreateFile() returns is passed to the sdReadFile() function, the sdReadFile()
function can use the previously discovered and stored information about the file to go find it and load it.
This means that you do not have to know anything about sectors, blocks, or even the FAT filesystem
structure.
The arguments of the sdReadFile() function are as follows:

• file handle - data value returned by the sdCreateFile function
• buffer - address into which the data should be read
• size - the amount of bytes to read from the file into the buffer

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

ENEE 447: Operating Systems — Project 7 (4%)

• return: bytes read (a pointer to a uint32_t variable) - a return value indicating the amount of data
actually read by the function

• unused (leave as 0)
The first three arguments are the ones you will care the most about.
Lastly, the sdCloseHandle() function should be fairly self-explanatory, and it should be called as soon as
you are done using the file.

What Address?
The main issue in this project is figuring out where to put things. Here is a basic structure for the kernel
executable file. This is what is in kernel7.img and what is shown in human-readable form in kernel7.list.

To find this information out, you must look through the file kernel7.list. This is extremely important, in
general, because it is the easiest way to figure out your code size and code layout. Note that if you simply
rely upon the listed file size for the kernel binary, you might be misled into thinking that its size is
something that it is not. When you look at the compiled size of the kernel file, your laptop will report
that the size of the file kernel7.img (or kernel7.bin) is roughly 25K.
Why is this worth paying attention to?

�
vector table and interrupt handlers

Kernel code

0x0000 0000

0x0000 5000
data: strings

data: regular data, initialized

data: regular data,
uninitialized (BSS)

0x0001 4000

0x0000 6000

Size of
Compiled and

Linked File

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

ENEE 447: Operating Systems — Project 7 (4%)

This is why:
0x14000 ≠ 25,000

The decimal value of 0x14000 is closer to 80K, not 25K. The amount of memory that the kernel uses is
more than three times the size of the file as stored on disk. If you tried to put the various stacks and things
right after the 25K mark, you would be interfering with the kernel’s heap.

Moral of the story: don’t ever use the binary size as an indication of memory footprint.
Anyway, the file ends around 0x06000, and the memory image ends around 0x14000. We have to address
the following questions:

• Where should the kernel stacks go?
• Where should the thread stacks go?
• Where should the user application binaries go?

The first two questions have already been answered in previous projects. We have placed the kernel stacks
in the 0x0002xxxx range, and we have placed the thread stacks (there are only 16 of them, for now) in the
0x0003xxxx range. This is shown below:

The kernel stacks are assigned statically in the 1_boot.s module, and the user-thread stacks are assigned
statically in the threads.c module.
Now that the application binaries (shell, app1, and app2 executables) are external, separate files, they are
no longer part of the kernel binary. This means that you need to load them explicitly from the SD card,
but it also means that you need to decide where to put them.

�

Kernel code & data
0x0000 0000

Kernel heap

0x0001 4000

0x0000 6000

unused
0x0002 0000

0x0003 0000

0x0004 0000

unused

16 User Thread Stacks
(0x31000, 0x32000,

0x33000, … 0x40000)

12 Kernel Stacks
(0x21000, 0x22000,

0x23000, … 0x2c000)

Size of
Compiled and

Linked File

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

ENEE 447: Operating Systems — Project 7 (4%)

The Raspberry Pi has on the order of 1GB of memory, which means that usable memory addresses should
exist up to 0x40000000 (or, actually, 1 less than this). This means you have plenty of space to put your
applications.
One thing that you will have to do is tell the compiler where they are; this needs to be a static decision.
So, for example, if you decide that the shell thread should be loaded at location 0x40000, then you need
to edit the shell’s memmap file to reflect this. This has been done for you, for the shell application.
The memmap files have the following format:

MEMORY 
{ 
 ram : ORIGIN = 0x0000, LENGTH = 0x400000 
}

SECTIONS 
{ 
 .text : { *(.text*) } > ram 
 .bss : { *(.bss*) } > ram 
}

This is an extremely simple linker file (do a little research, and you will see … this is wonderfully simple,
all thanks to David Welch). The main thing you should work with is the ORIGIN variable in the top
part. This tells the linker where the application will start. Because all of the addresses will be different for
each application (we are not yet implementing virtual memory), each will have to be loaded into a region
that does not overlap with anything, and you will need to modify each application’s memmap file to
reflect the location into which it will be loaded.
Yes, this is a pain in the butt, and it is one of the reasons that virtual memory is so awesome. :)
Decide where you want app1 and app2 to be loaded, and modify their linker files accordingly.

Dynamic Thread Creation and Application Loading
Because this does not use virtual memory, the entire application binary must be resident in order to work.
1. Load the binary for the eggshell application during the initialization sequence in kernel.c
2. Load the binary for either/both of app1 and app2 applications when you “RUN” them from the shell
Do this by modifying the create_thread() function, which should now take the following form:

void create_thread(char *name, char *filename, long address);

Now, instead of telling the function where in the kernel to find the executable, you tell the function where
on the disk to find the executable image, with the filename argument. The address argument indicates
where in memory to place the application binary. The create_thread() function should load the binary
into the given address.
The RUN command in the shell has the following arguments now:

RUN <THREAD> “filename”

The “THREAD” argument is up to 3 characters long, like before. The create_thread() routine will simply
use this as part of the TCB data structure and print it out when doing a PS function. The last argument is
the name of the binary file, and it needs to be in quotes for the shell to recognize it as a string.
These will be passed to the trap handler, which should then invoke create_thread() accordingly.
When working, your output should look something like this:

Running the eggshell on core 0. 
Available commands: 
 RUN = 004E5552 
 PS = 00005350 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �5

ENEE 447: Operating Systems — Project 7 (4%)

 TIME = 454D4954 
 LED = 0044454C 
 LOG = 00474F4C 
 EXIT = 54495845 
 DUMP = 504D5544

Please enter a command. 
c0> RUN BLK "APP1.BIN" 
CMD_RUN [BLK, 000409F5] 
[c0|00:18.194] SYSCALL_START_THREAD name = 004B4C42 
[c0|00:18.199] SYSCALL_START_THREAD file = 000409F5 
[c0|00:18.204] BLK  
sdTransferBlocks read blk 00003DCA len 00000001 addr 00007168 
[c0|00:18.211] READ_SINGLE 00003DCA 
LocateFATEntry: [APP1.BIN] 
sdTransferBlocks read blk 00003DCB len 00000001 addr 00007168 
[c0|00:18.225] READ_SINGLE 00003DCB 
sdTransferBlocks read blk 000104CA len 00000001 addr 00007168 
[c0|00:18.236] READ_SINGLE 000104CA 
sdTransferBlocks read blk 000104CB len 00000001 addr 00007168 
[c0|00:18.248] READ_SINGLE 000104CB 
[c0|00:18.254] create_thread - successful file read into 00060000  
[c0|00:18.259] create_thread:  
[c0|00:18.262] APP1.BIN 00060000 
[c0|00:18.265] BLK 00000002 
[c0|00:18.268] stack = 00033000 
[c0|00:18.271] start = 00060000 
[c0|00:18.274] tcb = 00013878

Please enter a command. 
c0>

Running the “blinker” application, which is in the app1.bin file, is done by giving it a name (“BLK”) and
pointing the kernel to the app1.bin file on disk. At this point, the the LED should start blinking in the
1/2/3/4 pattern.
The second application prints a pattern to the screen (it counts to 99 by 2-second time steps), which does
conflict with the shell, but only for output (it does not read input from the console). It is called the
“texter” application, it it should look like this:

Please enter a command. 
c0> RUN TXT "APP2.BIN" 
CMD_RUN [TXT, 000409F5] 
[c0|00:27.336] SYSCALL_START_THREAD name = 00545854 
[c0|00:27.340] SYSCALL_START_THREAD file = 000409F5 
[c0|00:27.345] TXT  
sdTransferBlocks read blk 00003DCA len 00000001 addr 00007168 
[c0|00:27.352] READ_SINGLE 00003DCA 
LocateFATEntry: [APP2.BIN] 
sdTransferBlocks read blk 00003DCB len 00000001 addr 00007168 
[c0|00:27.366] READ_SINGLE 00003DCB 
sdTransferBlocks read blk 000105CA len 00000001 addr 00007168 
[c0|00:27.378] READ_SINGLE 000105CA 
sdTransferBlocks read blk 000105CB len 00000001 addr 00007168 
[c0|00:27.389] READ_SINGLE 000105CB 
sdTransferBlocks read blk 000105CC len 00000001 addr 00007168 
[c0|00:27.401] READ_SINGLE 000105CC 
[c0|00:27.408] create_thread - successful file read into 00080000  
[c0|00:27.413] create_thread:  
[c0|00:27.416] APP2.BIN 00080000 
[c0|00:27.419] TXT 00000003 
[c0|00:27.422] stack = 00034000 
[c0|00:27.425] start = 00080000 
[c0|00:27.428] tcb = 000138DC 
[c0|00:27.431] Texter: zero

Please enter a command. 
c0> [c0|00:29.433] Texter: one  
[c0|00:31.436] Texter: two  
[c0|00:33.439] Texter: three  
[c0|00:35.442] Texter: four  
[c0|00:37.445] Texter: five

Build It, Load It, Run It
Once you have it working, show us.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �6

	Project 7: Apps in Separate Files (4%)
	ENEE 447: Operating Systems — Spring 2019
	Assigned: Tuesday, Apr 16; Due: Sunday, Apr 28

	Purpose
	Reading from the SD Card
	What Address?
	Dynamic Thread Creation and Application Loading
	Build It, Load It, Run It

