
ENEE 447: Operating Systems — Project 8 (4%)

Purpose
In this project you will figure out how to turn on the ARM’s virtual memory system and run at least two
different threads in two different virtual spaces that are the “same” addresses but map to completely
different physical locations. Virtual memory underlies many of computing’s most important facilities,
including process protection, shared memory, multitasking, the kernel’s privileged mode, the familiar
virtual-machine programming model, and more. It is essential to most operating systems, especially
general-purpose operating systems. Your implementation will be very simple but will have all of the
essentials, including shared pages (two different virtual pages mapping to the same physical page),
different mapping characteristics for different pages, etc. This is as real as it gets. With this, you will have
built all of the primary functions one finds in a modern operating system.
You will read in application binaries from the SD card to start threads, and you will do this both as the
startup thread (the shell) as well as in response to “RUN” commands executed in the shell, which will
start up either or both of the “app1” and “app2” binaries. The difference between this project and the
previous one is that, whereas, in the previous project each of the applications were hard-coded at build
time to run in predefined memory locations (something that is not really practical in a general-purpose
machine), in this project, each application has its code and data start at location 0x00100000, and its
stack start at location 0x7FFFFFF0. Thus, to run two different user-level threads, you need to have
separate page tables for each process and to figure out how to tell the ARM processor about two different
ASIDs.

Working Example
You have been given a working binary file to experiment with. The following is its boot sequence.

[c0|00:01.957] ...  
[c0|00:01.959] System is booting, kernel cpuid = 00000000 
[c0|00:01.964] Kernel version [p8-solution, Mon Apr 22 20:45:29 EDT 2019]  
[c0|00:01.971] Initializing SD Card ...  
[c0|00:01.975] EMMC: reset card.  
[c0|00:01.978] EMMC: setting clock speed to 00061A80 
[c0|00:01.983] GO_IDLE_STATE 00000000 
[c0|00:01.986] SEND_IF_COND 000001AA 
[c0|00:01.989] APP_CMD 00000000 
[c0|00:01.992] SD_SENDOPCOND 50FF8000 
[c0|00:02.396] APP_CMD 00000000 
[c0|00:02.399] SD_SENDOPCOND 50FF8000 
[c0|00:02.403] ALL_SEND_CID 00000000 
[c0|00:02.406] SEND_REL_ADDR 00000000 
[c0|00:02.409] SEND_CSD AAAA0000 
[c0|00:02.412] EMMC: setting clock speed to 017D7840 
[c0|00:02.417] CARD_SELECT AAAA0000 
[c0|00:02.420] APP_CMD AAAA0000 
[c0|00:02.423] SEND_SCR 00000000 
[c0|00:02.429] SET_BLOCKLEN 00000200 
 sdTransferBlocks read blk 00000000 len 00000001 addr 0002BD80 
[c0|00:02.437] READ_SINGLE 00000000 
 sdTransferBlocks read blk 00002000 len 00000001 addr 0002BD80 
[c0|00:02.450] READ_SINGLE 00002000 
[c0|00:02.464] ... SD Card working.  
[c0|00:02.467] Starting virtual memory ...  
[c0|00:02.471] TTBCR before = 00000000 
[c0|00:02.475] Initialize DACR  
[c0|00:02.478] Initialize SCTLR.AFE  
[c0|00:02.481] SCTLR before AFE = 00C51838 
[c0|00:02.485] Setting page table to 00030000 
[c0|00:02.489] PTE[0] = 00026C0A 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �1

Project 8: Virtual Memory (4%)
ENEE 447: Operating Systems — Spring 2019
Assigned: Tuesday, Apr 23; Due: Sunday, May 5

ENEE 447: Operating Systems — Project 8 (4%)

[c0|00:02.492] PTE[1] = 00126C0A 
[c0|00:02.495] SCTLR before = 00C51838 
[c0|00:02.498] SCTLR after = 00C5183D 
[c0|00:02.502] ... VM up and running  
[c0|00:02.505] Calling create_thread  
[c0|00:02.509] NULL thread 00000000 
[c0|00:02.512] tcb = 00013DF4 
[c0|00:02.515] stack = 0001FFFC 
[c0|00:02.518] start = 00000040 
[c0|00:02.521] ttbr0 = 0003004A 
[c0|00:02.524] asid = 00000000 
[c0|00:02.527] PTE[0] = 00026C0A 
[c0|00:02.530] PTE[1] = 00126C0A 
[c0|00:02.533] PTE[2] = 00226C0A 
[c0|00:02.536] Calling create_thread  
 sdTransferBlocks read blk 00003DCA len 00000001 addr 000077A8 
[c0|00:02.545] READ_SINGLE 00003DCA 
 LocateFATEntry: [shell.bin] 
 sdTransferBlocks read blk 00003DCB len 00000001 addr 000077A8 
[c0|00:02.559] READ_SINGLE 00003DCB 
 sdTransferBlocks read blk 00027A0A len 00000001 addr 000077A8 
[c0|00:02.570] READ_SINGLE 00027A0A 
[c0|00:02.576] create success 00000001 
 sdTransferBlocks read blk 00027A0B len 00000001 addr 000077A8 
[c0|00:02.585] READ_SINGLE 00027A0B 
 sdTransferBlocks read blk 00027A0C len 00000001 addr 000077A8 
[c0|00:02.596] READ_SINGLE 00027A0C 
 sdTransferBlocks read blk 00027A0D len 00000001 addr 000077A8 
[c0|00:02.608] READ_SINGLE 00027A0D 
 sdTransferBlocks read blk 00027A0E len 00000001 addr 000077A8 
[c0|00:02.619] READ_SINGLE 00027A0E 
 sdTransferBlocks read blk 00027A0F len 00000001 addr 000077A8 
[c0|00:02.631] READ_SINGLE 00027A0F 
[c0|00:02.637] create_thread - successful file read into 00200000  
[c0|00:02.642] new thread from disk:  
[c0|00:02.646] shell.bin 00200000 
[c0|00:02.649] shell 00000001 
[c0|00:02.651] tcb = 00013E5C 
[c0|00:02.654] stack = 7FFFFFF0 
[c0|00:02.657] start = 00100000 
[c0|00:02.660] ttbr0 = 0003404A 
[c0|00:02.663] asid = 00000001 
[c0|00:02.666] PTE[0] = 00000000 
[c0|00:02.669] PTE[1] = 00226C0A 
[c0|00:02.673] PTE[2] = 00000000 
[c0|00:02.676] ...  
[c0|00:02.677] Init complete. Please hit any key to continue.

<hit enter>

Running the eggshell on core 0. 
Available commands: 
 RUN = 004E5552 
 PS = 00005350 
 TIME = 454D4954 
 LED = 0044454C 
 LOG = 00474F4C 
 EXIT = 54495845 
 DUMP = 504D5544

Please enter a command. 
 c0> PS

CMD_PS 
[c0|00:29.279] Active processes ...  
[c0|00:29.282] Dumping TCB for thread 00000001 
[c0|00:29.286] shell 00000001 
[c0|00:29.289] tcb @ 00013E5C 
[c0|00:29.291] r0 00000001 
[c0|00:29.294] r1 0000000A 
[c0|00:29.297] r2 00005350 
[c0|00:29.300] r3 00005350 
[c0|00:29.303] r4 7FFFFFB8 
[c0|00:29.305] r5 00000000 
[c0|00:29.308] r6 00000000 
[c0|00:29.311] r7 00000009 
[c0|00:29.314] r8 00000000 
[c0|00:29.317] r9 00100BA8 
[c0|00:29.319] r10 00000000 
[c0|00:29.322] r11 504D5544 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �2

ENEE 447: Operating Systems — Project 8 (4%)

[c0|00:29.325] r12 7FFFFFB2 
[c0|00:29.328] sp 7FFFFF94 
[c0|00:29.331] lr 001008E8 
[c0|00:29.333] pc 00100270 
[c0|00:29.336] spsr 60000150 
[c0|00:29.339] ttbr 0003404A 
[c0|00:29.342] asid 00000001

Please enter a command. 
 c0>

A few things to note from this. The following lines show that the bottom two bits of the kernel’s PTEs are
0b10, which indicates that the pages are mapped at a “section” level, meaning 1MB pages (this simplifies
the mapping scheme tremendously). They also indicate that the kernel’s mappings are global (the bit at
0x00020000 is bit 17, set to 1, which is the “not-global” bit, meaning that the mappings are shared across
all code).

[c0|00:02.489] PTE[0] = 00026C0A 
[c0|00:02.492] PTE[1] = 00126C0A

The following line shows that the data is read into physical page 0x002 (address 0x00200000):
[c0|00:02.637] create_thread - successful file read into 00200000

The kernel uses de facto physical addresses, because the ARM’s virtual memory mechanism does not have
any easy way to allow the kernel to use physical addresses while user applications use virtual ones. When
the MMU is turned on, all addresses will be translated, so we have the kernel do a 1:1 mapping.
You will also notice that, in the earlier section it is shown that the start address of the newly created
thread, the shell, is 0x00100000, and its stack address is 0x7FFFFFF0. Later, when the PS command is
run, the shell has been executing for a short while, and its PC and SP registers indicate that it does,
indeed, execute starting at 0x00100000, and its stack does indeed start just below 0x80000000 and work
its way downward.
One of the difficult aspects of moving data back and forth between the user code and the kernel code is
the transfer of data through pointers. Character-based I/O is relatively simple (e.g., reading and writing to
the console), but more complex data requires bulk transfer through pointers. The problem is that pointers
do not work across address spaces, as we have discussed in class. The solution that most operating systems
adopt is to use physical addresses, or de facto physical addresses as mentioned above, to “copy in” or “copy
out” data between the kernel space and the user’s space. This requires a manual translation between the
user’s virtual address (what is sent in through a system call), and its physical location. An example of this
in action is the transfer of a character string from user space to kernel space in the LOG system call:

Please enter a command. 
 c0> LOG "FOO BAR”

CMD_LOG [FOO BAR] 
[c0|01:05.075] FOO BAR

Please enter a command. 
 c0>

The string “FOO BAR” is read in a character at a time from the console, and then it is sent as a string to
the kernel-log device. If the translation is not done correctly, this will either produce garbage, or it will
cause a non-recoverable address fault, at which point the OS comes to a grinding halt.
Transferring strings is also used to start up applications. Note that the trap handler recognizes both file
names and the simple integers “1” and “2” as input (as indicating “app1.bin” and “app2.bin” respectively).
This will allow you to test your code even if the string-transfer is not working correctly.

Please enter a command. 
 c0> RUN BLK "APP1.BIN"

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �3

ENEE 447: Operating Systems — Project 8 (4%)

CMD_RUN [BLK, 00100BB1] 
[c0|01:27.345] SYSCALL_START_THREAD name = 004B4C42 
[c0|01:27.350] SYSCALL_START_THREAD file = 00100BB1 
[c0|01:27.354] BLK  
[c0|01:27.356] Calling create_thread  
 sdTransferBlocks read blk 00003DCA len 00000001 addr 000077A8 
[c0|01:27.365] READ_SINGLE 00003DCA 
 LocateFATEntry: [APP1.BIN] 
 sdTransferBlocks read blk 00003DCB len 00000001 addr 000077A8 
[c0|01:27.379] READ_SINGLE 00003DCB 
 sdTransferBlocks read blk 00027A4A len 00000001 addr 000077A8 
[c0|01:27.390] READ_SINGLE 00027A4A 
[c0|01:27.396] create success 00000001 
 sdTransferBlocks read blk 00027A4B len 00000001 addr 000077A8 
[c0|01:27.405] READ_SINGLE 00027A4B 
[c0|01:27.411] create_thread - successful file read into 00400000  
[c0|01:27.416] new thread from disk:  
[c0|01:27.420] APP1.BIN 00400000 
[c0|01:27.423] BLK 00000002 
[c0|01:27.425] tcb = 00013EC4 
[c0|01:27.428] stack = 7FFFFFF0 
[c0|01:27.431] start = 00100000 
[c0|01:27.434] ttbr0 = 0003804A 
[c0|01:27.437] asid = 00000002 
[c0|01:27.440] PTE[0] = 00000000 
[c0|01:27.443] PTE[1] = 00426C0A 
[c0|01:27.446] PTE[2] = 00000000

Please enter a command. 
 c0>

At this point, the LED starts blinking in a 1/2/3/4/1/2/3 … pattern, and the shell is responsive.
A few things to note from the output above. First, the string transfer, as described above. Second, the data
is copied into physical page 0x004 (physical address 0x00400000), like the previous application binary
went into page 0x002. Every application starts out with two 1MB pages: one to hold code & data, the
other to hold the stack.
If the PS command were run at this point, we would see those values changing over time as the code
executes and moves up and down the stack:

Please enter a command. 
 c0> PS

CMD_PS 
[c0|01:39.441] Active processes ...  
[c0|01:39.444] Dumping TCB for thread 00000001 
[c0|01:39.448] shell 00000001 
[c0|01:39.451] tcb @ 00013E5C 
[c0|01:39.454] r0 00000001 
[c0|01:39.457] r1 0000000A 
[c0|01:39.460] r2 00005350 
[c0|01:39.462] r3 00005350 
[c0|01:39.465] r4 7FFFFFB8 
[c0|01:39.468] r5 00000000 
[c0|01:39.471] r6 00000000 
[c0|01:39.474] r7 00000009 
[c0|01:39.476] r8 00000000 
[c0|01:39.479] r9 00100BA8 
[c0|01:39.482] r10 00000000 
[c0|01:39.485] r11 504D5544 
[c0|01:39.488] r12 7FFFFFB2 
[c0|01:39.491] sp 7FFFFF94 
[c0|01:39.493] lr 001008E8 
[c0|01:39.496] pc 00100270 
[c0|01:39.499] spsr 60000150 
[c0|01:39.502] ttbr 0003404A 
[c0|01:39.505] asid 00000001 
[c0|01:39.507] Dumping TCB for thread 00000002 
[c0|01:39.512] BLK 00000002 
[c0|01:39.514] tcb @ 00013EC4 
[c0|01:39.517] r0 00000003 
[c0|01:39.520] r1 7FFFFFD0 
[c0|01:39.523] r2 00000008 
[c0|01:39.525] r3 00000000 
[c0|01:39.528] r4 00000000 
[c0|01:39.531] r5 000AAE60 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �4

ENEE 447: Operating Systems — Project 8 (4%)

[c0|01:39.534] r6 05EE2A63 
[c0|01:39.537] r7 00000004 
[c0|01:39.539] r8 00000000 
[c0|01:39.542] r9 00000000 
[c0|01:39.545] r10 00000000 
[c0|01:39.548] r11 00000000 
[c0|01:39.551] r12 00000000 
[c0|01:39.553] sp 7FFFFFCC 
[c0|01:39.556] lr 00100220 
[c0|01:39.559] pc 00100050 
[c0|01:39.562] spsr 80000150 
[c0|01:39.565] ttbr 0003804A 
[c0|01:39.568] asid 00000002

Please enter a command. 
 c0>

As said before, this represents all of the main points of an operating system: we have multiple threads
running in user space, each using the same virtual address (which simplifies the job of the compiler and
linker), but each is operating out of a different physical space. This is what virtual memory is all about,
and with this project, you have encountered the heart of the OS.

Virtual Memory and the ARM/Raspberry Pi
Address translation is the mechanism through which the operating system provides virtual address spaces
to user-level applications. The operating system maintains a set of mappings that translate references
within the per-process virtual spaces to the system’s physical space. Addresses are usually mapped at a page
granularity—typically several kilobytes. The mappings are organized in a page table, and for performance
reasons most hardware systems provide a translation lookaside buffer (TLB) that caches those PTEs (page-
table entries; i.e. mappings) that have been needed recently. When a process performs a load or store to a
virtual address, the hardware translates this to a physical address using the mapping information in the
TLB. If the mapping is not found in the TLB, it must be retrieved from the page table and loaded into
the TLB before processing can continue. The ARM has a TLB, and its hardware can automatically walk
the page tables and load the TLB with the required information, when it find it in the page table.
The ARM’s page table looks like this:

Note that there is one 4096-entry page in the first-level table and potentially thousands of pages making
up the second-level table. However, if the PTE at the first level indicates that it maps a large area, like a
1MB “section” or a 16MB “supersection,” then there need be no second-level table at all. That is what we

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1325
ID051414 Non-Confidential

Figure B3-3 gives a general view of address translation when using the Short-descriptor translation table format.

Figure B3-3 General view of address translation using Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page B3-1328 describes why, when using
the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in
Figure B3-3.

Short-descriptor translation table format descriptors, Memory attributes in the Short-descriptor translation table
format descriptors on page B3-1328, and Control of Secure or Non-secure memory access, Short-descriptor format
on page B3-1330 describe the format of the descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:
• Selecting between TTBR0 and TTBR1, Short-descriptor translation table format on page B3-1330
• Translation table walks, when using the Short-descriptor translation table format on page B3-1331.

B3.5.1 Short-descriptor translation table format descriptors

The following sections describe the formats of the entries in the Short-descriptor translation tables:
• Short-descriptor translation table first-level descriptor formats on page B3-1326
• Short-descriptor translation table second-level descriptor formats on page B3-1327.

For more information about second-level translation tables see Additional requirements for Short-descriptor format
translation tables on page B3-1328.

Note
 Previous versions of the ARM Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup on page B3-1320 describes the classification of the non-address
fields in the descriptors as address map control, access control, or attribute fields.

TTBR0 or TTBR1
First-level table

Indexed by
VA[19:12]

Section
1MB
memory
region

Page table

Supersection
16MB
memory
region

Second-level table

Indexed by
VA[31-N:20]‡

Large page
64KB
memory
page

Small page
4KB
memory
page

‡ When using TTBR1, N is 0. When using TTBR0, 0 ≤ N < 8.
† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated
16 times†

Repeated
16 times†

Large page

See text for more information.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �5

ENEE 447: Operating Systems — Project 8 (4%)

will do: have one simple 4096-entry table per process (and one for the kernel as well), with each entry
mapping a 1MB “section” of memory.
The format of the ARM PTE (page-table entry) looks like this:

Putting 0b10 in the bottom two bits indicates that the PTE is for a 1MB section. That is what we will do.
Go to the ARM documentation for the details on the various fields in the entry: each topic shown you in
this write-up will constitute anywhere from a few pages to a dozen pages in the ARM documentation, so
it is a bit much to copy every page into this write-up.

Your First-Ever VM Implementation
We will implement the simplest of facilities: a single level page table (just an array, really) of page-table
entries (PTEs) indexed by the virtual page number. Our page sizes will be the 1MB sections, so the page
table need only hold 4K entries to map the entire 4GB space. Using large pages allows the table to be
relatively small: 16KB per page table.
Note that, if a page size is 1MB, then the bottom 20 bits are page-offset bits, and the topmost 12 bits
create the virtual page number. Thus an address looks like the following in hex:

0xVVVOOOOO

Where the “V” bits make up the virtual page number, and the “O” bits make up the page offset.
The kernel code on core0 at the outset initializes the user page tables to 0s … in other words, all PTEs are
invalid at startup. Thus, the enable_vm() routine needs only to set a handful of PTEs and then turn the
correct switches to get the TLB operational. There are only a handful of distinct pages being used by your
code at the moment the enable_vm() function is called:

• 0x3F0xxxxx — GPIO addresses

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1326 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Short-descriptor translation table first-level descriptor formats

Each entry in the first-level table describes the mapping of the associated 1MB MVA range.

Figure B3-4 shows the possible first-level descriptor formats.

Figure B3-4 Short-descriptor first-level descriptor formats

Inclusion of the PXN attribute in the Short-descriptor translation table formats is:
• OPTIONAL in an implementation that does not include the Large Physical Address Extension
• required in an implementation includes the Large Physical Address Extension.

Descriptor bits[1:0] identify the descriptor type. On an implementation that supports the PXN attribute, for the
Section and Supersection entries, bit[0] also defines the PXN value. The encoding of these bits is:

0b00, Invalid

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Software can use bits[31:2] of the descriptor for its own purposes, because the hardware ignores
these bits.

0b01, Page table

The descriptor gives the address of a second-level translation table, that specifies the mapping of the
associated 1MByte VA range.

0 0

31 2 1 0

IGNOREDInvalid

Page table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Page table base address, bits[31:10]

SBZ
NS

PXN†

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG
AP[2]

TEX[2:0]
AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]
NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

1 1

31 2 1 0

Reserved, UNK/SBZP
Reserved, when Large

Physical Address Extension
not implemented

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN‡

PXN‡

† If the implementation does not support the PXN attribute this bit is SBZ.
‡ If the implementation does not support the PXN attribute these bits must be 0.

An implementation that includes the Large Physical
Address Extension must support the PXN attribute.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �6

ENEE 447: Operating Systems — Project 8 (4%)

• 0x3F1xxxxx — GPIO addresses

• 0x3F2xxxxx — GPIO addresses

• 0x3F3xxxxx — GPIO addresses

• 0x400xxxxx — timer/clock device-register addresses

• 0x000xxxxx — where nearly all your code and data lies
You will also want to use the following for user code, data, and stack data:

• 0x001xxxxx–0x010xxxxx — for thread code, data, stacks (can be as big a region as you want)
You will want to create a mapping for each. The general code and data should be mapped as normal data,
but the I/O addresses (0x3Fxxxxxx and 0x40xxxxxx) should be marked as non-cacheable so that they are
handled correctly. This is controlled by the TEX field starting at bit 12 in the PTE.

ARM Documentation
You will find the ARM Architecture Reference Manual to be invaluable. I will point out some of the most
important pages, but you need to explore this document yourself, because the information that you need
is spread out all over the document. This is one of those (perhaps many) instances in which you curse
ARM, because they really are a misnomer: ARM stands for Acorn RISC Machines, and RISC means
Reduced Instruction-Set Computer … any computer architecture that requires tens of thousands of pages
of documentation cannot possibly—in any way, shape, or form—be considered “reduced” …

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �7

ENEE 447: Operating Systems — Project 8 (4%)

Above is a picture the format of the PTE … each of the bits has meaning, and the pages appearing after
this one in the Architectural Reference Manual go into detail (and some are described much later in the
document). Pay close attention to the bits involved in how the memory behaves (e.g., caching), because
some of the settings are specifically for I/O addresses.
Note: in this project we are re-routing I/O addresses through the TLB. I suspect this is unusual, except for
hypervisor/guest-operating-system configurations, because the OS on other architectures often runs in
physical mode and is the only one allowed to touch the devices.

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1326 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Short-descriptor translation table first-level descriptor formats

Each entry in the first-level table describes the mapping of the associated 1MB MVA range.

Figure B3-4 shows the possible first-level descriptor formats.

Figure B3-4 Short-descriptor first-level descriptor formats

Inclusion of the PXN attribute in the Short-descriptor translation table formats is:
• OPTIONAL in an implementation that does not include the Large Physical Address Extension
• required in an implementation includes the Large Physical Address Extension.

Descriptor bits[1:0] identify the descriptor type. On an implementation that supports the PXN attribute, for the
Section and Supersection entries, bit[0] also defines the PXN value. The encoding of these bits is:

0b00, Invalid

The associated VA is unmapped, and any attempt to access it generates a Translation fault.

Software can use bits[31:2] of the descriptor for its own purposes, because the hardware ignores
these bits.

0b01, Page table

The descriptor gives the address of a second-level translation table, that specifies the mapping of the
associated 1MByte VA range.

0 0

31 2 1 0

IGNOREDInvalid

Page table Domain 0 1

31 10 9 8 5 4 3 2 1 0

Page table base address, bits[31:10]

SBZ
NS

PXN†

0 S Domain C B 1

31 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Section base address, PA[31:20]Section

NS nG
AP[2]

TEX[2:0]
AP[1:0]

XN

1 S C B 1

31 24 23 20 19 18 17 16 15 14 12 11 10 9 8 5 4 3 2 1 0

Supersection base address, PA[31:24]

Supersection

Extended base address, PA[35:32]
NS nG

AP[2]

IMPLEMENTATION DEFINED

XN

1 1

31 2 1 0

Reserved, UNK/SBZP
Reserved, when Large

Physical Address Extension
not implemented

Extended base address, PA[39:36]

TEX[2:0]

AP[1:0]

IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED

PXN‡

PXN‡

† If the implementation does not support the PXN attribute this bit is SBZ.
‡ If the implementation does not support the PXN attribute these bits must be 0.

An implementation that includes the Large Physical
Address Extension must support the PXN attribute.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �8

ENEE 447: Operating Systems — Project 8 (4%)

Shown above is the TTBCR, the register that determines how big the page size is, and whether there is
one page-table or two, via the N bits. We will set it to use just one: the TTBR0 table, and we will disable
the TTBR1 table, through the setting of the N bits in the TTBCR register.

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1725
ID051414 Non-Confidential

TTBCR format when using the Short-descriptor translation table format

In an implementation that includes the Security Extensions and is using the Short-descriptor translation table format,
the TTBCR bit assignments are:

In an implementation that does not include the Security Extensions, and is using the Short-descriptor translation
table format, the TTBCR bit assignments are:

EAE, bit[31], if implementation includes the Large Physical Address Extension

Extended Address Enable. The meanings of the possible values of this bit are:

0 Use the 32-bit translation system, with the Short-descriptor translation table format. In
this case, the format of the TTBCR is as described in this section.

1 Use the 40-bit translation system, with the Long-descriptor translation table format. In
this case, the format of the TTBCR is as described in TTBCR format when using the
Long-descriptor translation table format on page B4-1726.

This bit resets to 0, in both the Secure and the Non-secure copies of the TTBCR.

Bit[31], if implementation does not include the Large Physical Address Extension

Reserved, UNK/SBZP.

Bits[30:6, 3] Reserved, UNK/SBZP.

PD1, bit[5], in an implementation that includes the Security Extensions

Translation table walk disable for translations using TTBR1. This bit controls whether a translation
table walk is performed on a TLB miss, for an address that is translated using TTBR1. The encoding
of this bit is:

0 Perform translation table walks using TTBR1.

1 A TLB miss on an address that is translated using TTBR1 generates a Translation fault.
No translation table walk is performed.

PD0, bit[4], in an implementation that includes the Security Extensions

Translation table walk disable for translations using TTBR0. This bit controls whether a translation
table walk is performed on a TLB miss for an address that is translated using TTBR0. The meanings
of the possible values of this bit are equivalent to those for the PD1 bit.

Bits[5:4], in an implementation that does not include the Security Extensions

Reserved, UNK/SBZP.

Reserved, UNK/SBZP

31 3 2 0

N

456

(0)

PD1
PD0

30

EAE†

† Reserved, UNK/SBZP, if the implementation does not include the Large Physical Address Extension.

Reserved, UNK/SBZP

31 3 2 0

N

31

EAE†

† Reserved, UNK/SBZP, if the implementation does not include the Large Physical Address Extension.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �9

ENEE 447: Operating Systems — Project 8 (4%)

Shown above is the TTBR0 register. This contains the address of the page table for the currently executing
process. When you context switch to another running process (which has a different address space, as
opposed to switching to another thread, which doesn’t), you need to give the hardware the pointer to the
new process’s address space.

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1729
ID051414 Non-Confidential

B4.1.154 TTBR0, Translation Table Base Register 0, VMSA

The TTBR0 characteristics are:

Purpose TTBR0 holds the base address of translation table 0, and information about the memory it
occupies. This is one of the translation tables for the stage 1 translation of memory accesses
from modes other than Hyp mode.

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Used in conjunction with the TTBCR. When the 64-bit TTBR0 format is used, cacheability
and shareability information is held in the TTBCR, not in TTBR0.

Configurations The Multiprocessing Extensions change the TTBR0 32-bit register format.

The Large Physical Address Extension extends TTBR0 to a 64-bit register. In an
implementation that includes the Large Physical Address Extension, TTBCR.EAE
determines which TTBR0 format is used:
EAE==0 32-bit format is used. TTBR0[63:32] are ignored.
EAE==1 64-bit format is used.

If the implementation includes the Security Extensions, this register:

• is Banked

• has write access to the Secure copy of the register disabled when the
CP15SDISABLE signal is asserted HIGH.

Attributes A 32-bit or 64-bit RW register with a reset value that depends on the register
implementation. For more information see the register bit descriptions. See also Reset
behavior of CP14 and CP15 registers on page B3-1450.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

The following subsections describe the TTBR0 formats:
• 32-bit TTBR0 format
• 64-bit TTBR0 and TTBR1 format on page B4-1731.

See TTBCR, Translation Table Base Control Register, VMSA on page B4-1724 for more information about using
this register.

Note
 See TTBCR, Translation Table Base Control Register, VMSA on page B4-1724 for a summary of the registers that
define the translation tables for other address translations.

32-bit TTBR0 format

In an implementation that does not include the Multiprocessing Extensions, the 32-bit TTBR0 bit assignments are:

C

31 x
x-1

6 5 4 3 2 1 0

Translation table base 0 address Reserved, UNK/SBZP RGN S

NOS IMP

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �10

ENEE 447: Operating Systems — Project 8 (4%)

Shown above is the page-table organization, again (this is reproduced to give you the page number). The
first level entries point to second-level entries, which point to the actual page data. When the first-level
entries identify themselves as “sections” they instead point directly to page data.

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1325
ID051414 Non-Confidential

Figure B3-3 gives a general view of address translation when using the Short-descriptor translation table format.

Figure B3-3 General view of address translation using Short-descriptor format translation tables

Additional requirements for Short-descriptor format translation tables on page B3-1328 describes why, when using
the Short-descriptor format, Supersection and Large page entries must be repeated 16 times, as shown in
Figure B3-3.

Short-descriptor translation table format descriptors, Memory attributes in the Short-descriptor translation table
format descriptors on page B3-1328, and Control of Secure or Non-secure memory access, Short-descriptor format
on page B3-1330 describe the format of the descriptors in the Short-descriptor format translation tables.

The following sections then describe the use of this translation table format:
• Selecting between TTBR0 and TTBR1, Short-descriptor translation table format on page B3-1330
• Translation table walks, when using the Short-descriptor translation table format on page B3-1331.

B3.5.1 Short-descriptor translation table format descriptors

The following sections describe the formats of the entries in the Short-descriptor translation tables:
• Short-descriptor translation table first-level descriptor formats on page B3-1326
• Short-descriptor translation table second-level descriptor formats on page B3-1327.

For more information about second-level translation tables see Additional requirements for Short-descriptor format
translation tables on page B3-1328.

Note
 Previous versions of the ARM Architecture Reference Manual, and some other documentation, describes the AP[2]
bit in the translation table entries as the APX bit.

Information returned by a translation table lookup on page B3-1320 describes the classification of the non-address
fields in the descriptors as address map control, access control, or attribute fields.

TTBR0 or TTBR1
First-level table

Indexed by
VA[19:12]

Section
1MB
memory
region

Page table

Supersection
16MB
memory
region

Second-level table

Indexed by
VA[31-N:20]‡

Large page
64KB
memory
page

Small page
4KB
memory
page

‡ When using TTBR1, N is 0. When using TTBR0, 0 ≤ N < 8.
† Repeated entries required because of descriptor field overlaps.

Supersection

Repeated
16 times†

Repeated
16 times†

Large page

See text for more information.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �11

ENEE 447: Operating Systems — Project 8 (4%)

�
The discussion in the page above (and pages following it in the documentation) indicates how the system
behaves wrt multiple multiple simultaneous mappings (e.g. split between two different guest operating
systems). One is mapped through the TTBR0 page table, and the other is mapped through the TTBR1
page table, and the amount of memory assigned to each is variable. We will only use the TTBR0 page
table and register.

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B3-1331
ID051414 Non-Confidential

Figure B3-6 How TTBCR.N controls the boundary between the TTBRs, Short-descriptor format

In the selected TTBR. the following bits define the memory region attributes for the translation table walk:
• the RGN, S and C bits, in an implementation that does not include the Multiprocessing Extensions
• the RGN, S, and IRGN[1:0] bits, in an implementation that includes the Multiprocessing Extensions.

For more information, see TTBCR, Translation Table Base Control Register, VMSA on page B4-1724, TTBR0,
Translation Table Base Register 0, VMSA on page B4-1729 and TTBR1, Translation Table Base Register 1, VMSA
on page B4-1733.

Translation table walks, when using the Short-descriptor translation table format describes the translation.

B3.5.5 Translation table walks, when using the Short-descriptor translation table format

When using the Short-descriptor translation table format, and a memory access requires a translation table walk:
• a section-mapped access only requires a read of the first-level translation table
• a page-mapped access also requires a read of the second-level translation table.

Reading a first-level translation table describes how either TTBR1 or TTBR0 is used, with the accessed VA, to
determine the address of the first-level descriptor.

Reading a first-level translation table shows the output address as A[39:0]:

• On an implementation that includes the Virtualization Extensions, for a Non-secure PL1&0 stage 1
translation, this is the IPA of the required descriptor. A Non-secure PL1&0 stage 2 translation of this address
is performed to obtain the PA of the descriptor.

• Otherwise, this address is the PA of the required descriptor.

The full translation flow for Sections, Supersections, Small pages and Large pages on page B3-1332 then shows the
complete translation flow for each valid memory access.

Reading a first-level translation table

When performing a fetch based on TTBR0:
• the address bits taken from TTBR0 vary between bits[31:14] and bits[31:7]
• the address bits taken from the VA, that is the input address for the translation, vary between bits[31:20] and

bits[24:20].

The width of the TTBR0 and VA fields depend on the value of TTBCR.N, as Figure B3-7 on page B3-1332 shows.

0x00000000

0xFFFFFFFF

0x02000000

TTBR0 region

Boundary, when
TTBCR.N==0b111

Effect of decreasing N

TTBR1 region

TTBR0 region

TTBCR.N==0b000
Use of TTBR1 disabled

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �12

ENEE 447: Operating Systems — Project 8 (4%)

Shown above are the values that indicate how much space goes to the TTBR0 address space, and how
much goes to the TTBR1 address space.

B3 Virtual Memory System Architecture (VMSA)
B3.5 Short-descriptor translation table format

B3-1330 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

B3.5.3 Control of Secure or Non-secure memory access, Short-descriptor format

Access to the Secure or Non-secure physical address map on page B3-1321 describes how the NS bit in the
translation table entries:
• for accesses from Secure state, determines whether the access is to Secure or Non-secure memory
• is ignored by accesses from Non-secure state.

In the Short-descriptor translation table format, the NS bit is defined only in the first-level translation tables. This
means that, in a first-level Page table descriptor, the NS bit defines the physical address space, Secure or
Non-secure, for all of the Large pages and Small pages of memory described by that table.

The NS bit of a first-level Page table descriptor has no effect on the physical address space in which that translation
table is held. As stated in Secure and Non-secure address spaces on page B3-1323, the physical address of that
translation table is in:
• the Secure address space if the translation table walk is in Secure state
• the Non-secure address space if the translation table walk is in Non-secure state.

This means the granularity of the Secure and Non-secure memory spaces is 1MB. However, in these memory
spaces, table entries can define physical memory regions with a granularity of 4KB.

B3.5.4 Selecting between TTBR0 and TTBR1, Short-descriptor translation table format

As described in Determining the translation table base address on page B3-1320, two sets of translation tables can
be defined for each of the PL1&0 stage 1 translations, and TTBR0 and TTBR1 hold the base addresses for the two
sets of tables. When using the Short-descriptor translation table format, the value of TTBCR.N indicates the number
of most significant bits of the input VA that determine whether TTBR0 or TTBR1 holds the required translation
table base address, as follows:
• If N == 0 then use TTBR0. Setting TTBCR.N to zero disables use of a second set of translation tables.
• if N > 0 then:

— if bits[31:32-N] of the input VA are all zero then use TTBR0
— otherwise use TTBR1.

Table B3-1 shows how the value of N determines the lowest address translated using TTBR1, and the size of the
first-level translation table addressed by TTBR0.

Whenever TTBCR.N is nonzero, the size of the translation table addressed by TTBR1 is 16KB.

Figure B3-6 on page B3-1331 shows how the value of TTBCR.N controls the boundary between VAs that are
translated using TTBR0, and VAs that are translated using TTBR1.

Table B3-1 Effect of TTBCR.N on address translation, Short-descriptor format

TTBCR.N First address translated with TTBR1
TTBR0 table

Size Index range

0b000 TTBR1 not used 16KB VA[31:20]

0b001 0x80000000 8KB VA[30:20]

0b010 0x40000000 4KB VA[29:20]

0b011 0x20000000 2KB VA[28:20]

0b100 0x10000000 1KB VA[27:20]

0b101 0x08000000 512 bytes VA[26:20]

0b110 0x04000000 256 bytes VA[25:20]

0b111 0x02000000 128 bytes VA[24:20]

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �13

ENEE 447: Operating Systems — Project 8 (4%)

Shown above is a (partial) list of the various control registers that you have to deal with. Nice to have it in
one place. The mmu.s file has a bunch of functions that read and write many of these registers.

B3 Virtual Memory System Architecture (VMSA)
B3.15 About the system control registers for VMSA

B3-1452 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

Banked system control registers

In an implementation that includes the Security Extensions, some system control registers are Banked. Banked
system control registers have two copies, one Secure and one Non-secure. The SCR.NS bit selects the Secure or
Non-secure copy of the register. Table B3-33 shows which CP15 registers are Banked in this way, and the permitted
access to each register. No CP14 registers are Banked.

Table B3-33 Banked CP15 registers

CRna Banked register Permitted accessesb

c0 CSSELR, Cache Size Selection Register Read/write only at PL1 or higher

c1 SCTLR, System Control Registerc Read/write only at PL1 or higher

ACTLR, Auxiliary Control Registerd Read/write only at PL1 or higher

c2 TTBR0, Translation Table Base 0 Read/write only at PL1 or higher

TTBR1, Translation Table Base 1 Read/write only at PL1 or higher

TTBCR, Translation Table Base Control Read/write only at PL1 or higher

c3 DACR, Domain Access Control Register Read/write only at PL1 or higher

c5 DFSR, Data Fault Status Register Read/write only at PL1 or higher

IFSR, Instruction Fault Status Register Read/write only at PL1 or higher

ADFSR, Auxiliary Data Fault Status Registerd Read/write only at PL1 or higher

AIFSR, Auxiliary Instruction Fault Status Registerd Read/write only at PL1 or higher

c6 DFAR, Data Fault Address Register Read/write only at PL1 or higher

IFAR, Instruction Fault Address Register Read/write only at PL1 or higher

c7 PAR, Physical Address Register Read/write only at PL1 or higher

c10 PRRR, Primary Region Remap Register Read/write only at PL1 or higher

NMRR, Normal Memory Remap Register Read/write only at PL1 or higher

c12 VBAR, Vector Base Address Register Read/write only at PL1 or higher

c13 FCSEIDR, FCSE PID Registere Read/write only at PL1 or higher

CONTEXTIDR, Context ID Register Read/write only at PL1 or higher

TPIDRURW, User Read/Write Thread ID Read/write at all privilege levels, including PL0

TPIDRURO, User Read-only Thread ID Read-only at PL0
Read/write at PL1 or higher

TPIDRPRW, PL1 only Thread ID Read/write only at PL1 or higher

a. For accesses to 32-bit registers. More correctly, this is the primary coprocessor register.
b. Any attempt to execute an access that is not permitted results in an Undefined Instruction exception.
c. Some bits are common to the Secure and the Non-secure copies of the register, see SCTLR, System Control Register,

VMSA on page B4-1707.
d. See ADFSR and AIFSR, Auxiliary Data and Instruction Fault Status Registers, VMSA on page B4-1523. Register is

IMPLEMENTATION DEFINED.
e. Banked only in an implementation that includes the FCSE. The FCSE PID Register is RAZ/WI if the FCSE is not

implemented.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �14

ENEE 447: Operating Systems — Project 8 (4%)

Shown above is the System Control Register, which has the all-important M bit in it, which turns on/off
the MMU (i.e., virtual memory).

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

ARM DDI 0406C.c Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. B4-1707
ID051414 Non-Confidential

B4.1.130 SCTLR, System Control Register, VMSA

The SCTLR characteristics are:

Purpose The SCTLR provides the top level control of the system, including its memory system.

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Control bits in the SCTLR that are not applicable to a VMSA implementation read as the
value that most closely reflects that implementation, and ignore writes.

In ARMv7, some bits in the register are read-only. These bits relate to non-configurable
features of an ARMv7 implementation, and are provided for compatibility with previous
versions of the architecture.

Configurations In an implementation that includes the Security Extensions, the SCTLR:

• is Banked, with some bits common to the Secure and Non-secure copies of the
register

• has write access to the Secure copy of the register disabled when the
CP15SDISABLE signal is asserted HIGH.

For more information, see Classification of system control registers on page B3-1451.

Attributes A 32-bit RW register with an IMPLEMENTATION DEFINED reset value, see Reset value of the
SCTLR on page B4-1713. See also Reset behavior of CP14 and CP15 registers on
page B3-1450.

Note
 In an implementation that includes the Virtualization Extensions, some reset requirements

apply to the Non-secure copy of SCTLR.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

In a VMSAv7 implementation, the SCTLR bit assignments are:

Bit[31] Reserved, UNK/SBZP.

TE, bit[30] Thumb Exception enable. This bit controls whether exceptions are taken in ARM or Thumb state.
The possible values of this bit are:
0 Exceptions, including reset, taken in ARM state.
1 Exceptions, including reset, taken in Thumb state.

In an implementation that includes the Security Extensions, this bit is Banked between the Secure
and Non-secure copies of the register.

An implementation can include a configuration input signal that determines the reset value of the
TE bit. If there is no configuration input signal to determine the reset value of this bit then it resets
to 0 in an ARMv7-A implementation.

For more information about the use of this bit, see Instruction set state on exception entry on
page B1-1182.

0 1 1 1 1 0 V I Z 0 0 0 1 1 1 C A M

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(0)

NMFI
TE

AFE
TRE EE

VE
U FI HA RR SW B

UWXN†
WXN†

† Reserved before the introduction of the Virtualization Extensions, see text for more information.

CP15BEN

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �15

ENEE 447: Operating Systems — Project 8 (4%)

When threads from multiple address spaces run, the hardware needs to be able to distinguish them.
Shown above is the register that does so. It tells the hardware “any PTE you load while running, attach
this ASID to it when you put it into the TLB.” That way, when that process is swapped out and then is
swapped back in later, it can still use its old mappings if they are still in the TLB.
Note that handling the various registers is extremely difficult to do, and so the changeover at process-
switch time has been done for you. Otherwise, you would easily spend weeks trying to get it right.
Remember, the important thing you are to learn in this project is the concept of mapping … learning the
low-level details of how to interact with the ARM hardware is not the main goal. Thus, the interrupt
vectors have been provided … the IRQ vector is shown below (the SVC vector is very similar):

B4 System Control Registers in a VMSA implementation
B4.1 VMSA System control registers descriptions, in register order

B4-1548 Copyright © 1996-1998, 2000, 2004-2012, 2014 ARM. All rights reserved. ARM DDI 0406C.c
Non-Confidential ID051414

B4.1.36 CONTEXTIDR, Context ID Register, VMSA

The CONTEXTIDR characteristics are:

Purpose CONTEXTIDR identifies the current Process Identifier (PROCID) and, when using the
Short-descriptor translation table format, the Address Space Identifier (ASID).

This register is part of the Virtual memory control registers functional group.

Usage constraints Only accessible from PL1 or higher.

Configurations The register format depends on whether address translation is using the Long-descriptor or
the Short-descriptor translation table format.

In an implementation that includes the Security Extensions, this register is Banked.

Attributes A 32-bit RW register with an UNKNOWN reset value. See also Reset behavior of CP14 and
CP15 registers on page B3-1450.

Table B3-45 on page B3-1493 shows the encodings of all of the registers in the Virtual
memory control registers functional group.

In a VMSA implementation, the CONTEXTIDR bit assignments are:

PROCID, bits[31:0], when using the Long-descriptor translation table format

PROCID, bits[31:8], when using the Short-descriptor translation table format

Process Identifier. This field must be programmed with a unique value that identifies the current
process. See also Using the CONTEXTIDR.

ASID, bits[7:0], when using the Short-descriptor translation table format

Address Space Identifier. This field is programmed with the value of the current ASID.

Note
 When using the Long-descriptor translation table format, either TTBR0 or TTBR1 holds the current

ASID.

Using the CONTEXTIDR

The value of the whole of this register is called the Context ID and is used by:

• the debug logic, for Linked and Unlinked Context ID matching, see Breakpoint debug events on
page C3-2041 and Watchpoint debug events on page C3-2059

• the trace logic, to identify the current process.

The ASID field value is an identifier for a particular process. In the translation tables it identifies entries associated
with a process, and distinguishes them from global entries. This means many cache and TLB maintenance
operations take an ASID argument.

For information about the synchronization of changes to the CONTEXTIDR see Synchronization of changes to
system control registers on page B3-1461. There are particular synchronization requirements when changing the
ASID and Translation Table Base Registers, see Synchronization of changes of ASID and TTBR on page B3-1386.

PROCID
31 8 7 0

PROCID

ASIDShort-descriptor†

† Current translation table format

Long-descriptor†

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �16

ENEE 447: Operating Systems — Project 8 (4%)

irq_handler:

 // hard-coded return to kernel VM 
 mov sp,#0 
 mcr p15, 0, sp, c13, c0, 1 @ Write Rt to CONTEXTIDR  
 isb 
 mov sp,#0x30000 
 orr sp,sp,#0x4a 
 mcr p15, 0, sp, c2, c0, 0 @ Write r0 to 32-bit TTBR0  
 isb

 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 stmia sp,{r0-lr}^ @ Save all user registers r0-lr 
 @ (the ^ means user registers)

 str lr,[sp,#60] @ store saved PC to TCB 
 str lr, save_lr_irq @ save the SVC lr 
 mrs lr, SPSR @ load SPSR (assume ip not a swi arg)  
 str lr,[sp,#64] @ store to TCB 
 ldr lr, save_lr_irq @ save the SVC lr

 @ Call the C version of the handler 
 mov sp, #SVCSTACK0 
 bl clear_timer_interrupt 
 bl periodic_timer 
 bl set_timer

 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 ldr r0,[sp,#64] @ retrieve saved CPSR 
 msr SPSR_cxsf, r0 @ move it into place

 ldr lr,[sp,#60] @ restore address to return to

 @ Restore saved values. The ^ means to restore the userspace registers  
 ldmia sp, {r0-lr}^

 // no longer need the local-mode sp - use it to switch to user VM  
 ldr sp,[sp,#72] @ retrieve saved ASID 
 mcr p15, 0, sp, c13, c0, 1 @ Write Rt to CONTEXTIDR  
 isb 
 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 ldr sp,[sp,#68] @ retrieve saved TTBR 
 mcr p15, 0, sp, c2, c0, 0 @ Write r0 to 32-bit TTBR0  
 isb

 subs pc, lr, #4 @ return from exception

There is a lot going on here. The following puts the machine back to kernel mode, using the thread ID 0,
and a hard-coded pointer to the thread-0 page table:

 // hard-coded return to kernel VM 
 mov sp,#0 
 mcr p15, 0, sp, c13, c0, 1 @ Write Rt to CONTEXTIDR  
 isb 
 mov sp,#0x30000 
 orr sp,sp,#0x4a 
 mcr p15, 0, sp, c2, c0, 0 @ Write r0 to 32-bit TTBR0  
 isb

The first thing it does is move “0” into the ASID register, and then it moves 0x0003004A into the
TTBR0 register. The 0x00030000 value is a pointer to the page table. The 0x4A is cacheable/sharable
information, and I am not sure that it is necessary.
The next thing that happens is storing of the currently-running thread’s information to its TCB:

 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 stmia sp,{r0-lr}^ @ Save all user registers r0-lr 
 @ (the ^ means user registers)

 str lr,[sp,#60] @ store saved PC to TCB 
 str lr, save_lr_irq @ save the SVC lr 
 mrs lr, SPSR @ load SPSR (assume ip not a swi arg)  
 str lr,[sp,#64] @ store to TCB 
 ldr lr, save_lr_irq @ save the SVC lr

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �17

ENEE 447: Operating Systems — Project 8 (4%)

This looks just like the previous project. A this point the code is free to do the handling. In this case (it is
the IRQ vector, which handles the periodic timer interrupt), the call is to the periodic_timer() function,
and also clearing and re-setting the timer:

 @ Call the C version of the handler 
 mov sp, #SVCSTACK0 
 bl clear_timer_interrupt 
 bl periodic_timer 
 bl set_timer

Next, the register-file state is restored from the TCB. The periodic_timer() function may schedule a new
task, so the new TCB may not be the same as the old TCB.

 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 ldr r0,[sp,#64] @ retrieve saved CPSR 
 msr SPSR_cxsf, r0 @ move it into place

 ldr lr,[sp,#60] @ restore address to return to

 @ Restore saved values. The ^ means to restore the userspace registers  
 ldmia sp, {r0-lr}^

At this point, we cannot touch any of the registers that might affect the thread about to be run. That
includes r0–r14, and the IRQ–lr register (not the same as the USR–lr register). The IRQ–lr register is
used to get back to the user program, and the USR–lr register is the user thread’s most recent function
return point. The only register no longer needed is the IRQ–sp register. Therefore, we use this to set up
the next thread’s virtual memory configuration:

 // no longer need the local-mode sp - use it to switch to user VM  
 ldr sp,[sp,#72] @ retrieve saved ASID 
 mcr p15, 0, sp, c13, c0, 1 @ Write Rt to CONTEXTIDR  
 isb 
 ldr sp, tcb_address_runningthread @ load the now-destroyed r13 w TCB pointer  
 ldr sp,[sp,#68] @ retrieve saved TTBR 
 mcr p15, 0, sp, c2, c0, 0 @ Write r0 to 32-bit TTBR0  
 isb

We grab the ASID register from the TCB and write it to the ASID control register. Then we sync (the
“isb” instruction). Next, we grab the TTBR value (pointer to the user page table) from the TCB and write
it to TTBR0, followed by another sync. Lastly, we return to user code via a de facto return-from-interrupt
instruction, used widely in the ARM-32 architecture:

 subs pc, lr, #4 @ return from exception

As mentioned above, the SVC handler is similar.

Where Things Go
As discussed in the previous project, we know how big the kernel is, and so we know where we can put
things in physical memory. The following diagram indicates the major components for this project:

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �18

ENEE 447: Operating Systems — Project 8 (4%)

The main difference between this and the previous project is that the thread stacks have been moved
elsewhere, since they are virtual pages and not physically assigned. Instead, starting at location
0x00030000 we have the page tables, indexed by the thread ID number. You only beed a handful of
these, because you only need to run two threads (and we only have three application binaries at any rate
…).
The physical page ends at the 1MB boundary: address 0x00100000. At that point we start using space for
the application binaries. This is shown in the following figure:

�

Kernel code & data
0x0000 0000

Kernel heap

0x0001 4000

0x0000 6000

unused
0x0002 0000

0x0003 0000
unused

12 Kernel Stacks
(0x21000, 0x22000,

0x23000, … 0x2c000)

Size of
Compiled and

Linked File

thread 1 table

root table

thread 3 table

thread 2 table

thread 4 table

16KB Page Tables
 (0x30000, 0x34000,
0x38000, 0x3c000,

0x40000, … 0x100000)

…

0x0010 0000

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �19

ENEE 447: Operating Systems — Project 8 (4%)

Everything in the previous figure is in the “page 0 kernel” box at the bottom of the stack above. The
system’s physical memory is divided into 1MB chunks, called “sections” in the ARM documentation, and
there are 4096 of them in the system, so we have 4096-entry page tables to map the space.
The easiest allocation scheme is to start at location 0x00100000 and increment it every time you create a
new task: once for the code and data, and once for the stack.
The code and data starting at 0x00100000 is hard-coded into the linker files (memmap files) in the
application directories.

Other Changes
Some other changes you might notice. To simplify things, the kernel.c module launches into the idle task
first, and then it simply puts the shell on the runq. The shell is started when the timer interrupt causes the
IRQ interrupt handler to run, at which point it finds the shell on the runq and makes the thread active.
Thus, there are only two places where user-thread contexts can be swapped (the two interrupt handlers),
and there is only one place where a newly-created user thread can start running (the IRQ interrupt
handler). The idle thread is actually a kernel thread.

Build It, Load It, Run It
Once you have it working, show us.

�

page 5

page 6

etc

0x0010 0000

page 1

page 0
kernel

page 3

page 2

page 4

0x0000 0000

0x0020 0000

0x0030 0000

0x0040 0000

0x0050 0000

code & data
thread 1

stack
 thread 1

code & data
thread 2

stack
 thread 2

code & data
thread 3

stack
 thread 3

0x0060 0000

0x0070 0000

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved �20

	Project 8: Virtual Memory (4%)
	ENEE 447: Operating Systems — Spring 2019
	Assigned: Tuesday, Apr 23; Due: Sunday, May 5

	Purpose
	Working Example
	Virtual Memory and the ARM/Raspberry Pi
	Your First-Ever VM Implementation
	ARM Documentation
	Where Things Go
	Other Changes
	Build It, Load It, Run It

