

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 1 of 53

Application Note
Bare-metal Boot Code for ARMv8-A

Processors
Version 1.0

Non-Confidential

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 2 of 53

Bare-metal Boot Code for ARMv8-A Processors
Copyright © 2017 ARM. All rights reserved.

Release Information

The following changes have been made to this Application Note.

Document History

Date Issue Confidentiality Change

31/03/2017 A Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this
document may be reproduced in any form by any means without the express prior written permission of ARM. No
license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in
reference to ARM’s customers is not intended to create or refer to any partnership relationship with any other
company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that
if there is any conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU
and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow ARM’s trademark usage guidelines at http://www.arm.com/about/trademark-
usage-guidelines.php

Copyright © [2017], ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

http://www.arm.com/about/trademark-usage-guidelines.php
http://www.arm.com/about/trademark-usage-guidelines.php

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 3 of 53

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 4 of 53

Contents
Bare-metal Boot Code for ARMv8-A Processors

1 Conventions and Feedback ... 5

2 Preface ... 7
2.1 References ... 8

2.2 Terms and abbreviations .. 9
3 Introduction ... 10
3.1 Document purpose ... 11

3.2 Document scope ... 12

4 Boot code for AArch32 mode .. 13
4.1 Initializing exceptions .. 14

4.2 Initializing registers ... 16

4.3 Configuring the MMU and caches .. 21

4.4 Enabling NEON and Floating Point .. 28

4.5 Changing modes .. 30
5 Boot code for AArch64 mode .. 35
5.1 Initializing exceptions .. 36

5.2 Initializing registers ... 41

5.3 Configuring the MMU and caches .. 45

5.4 Enabling NEON and Floating Point .. 50

5.5 Changing Exception levels ... 51

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 5 of 53

1 Conventions and Feedback

The following section describes the typographical conventions and how to give feedback:

Typographical conventions

The following typographical conventions are used:

monospace denotes text that can be entered at the keyboard, such as
commands, file and program names, and source code.

monospace denotes a permitted abbreviation for a command or option. The
underlined text can be entered instead of the full command or option
name.

monospace italic
denotes arguments to commands and functions where the argument
is to be replaced by a specific value.

monospace bold
denotes language keywords when used outside example code.

italic highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold highlights interface elements, such as menu names. Also used for
emphasis in descriptive lists, where appropriate, and for ARM®
processor signal names.

Feedback on documentation

If you have comments on the documentation, e-mail errata@arm.com. Give:

• The title.

• The number, ARM DAI 0527A.

• If viewing a PDF version of a document, the page numbers to which your comments
apply.

• A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM periodically provides updates and corrections to its documentation on the ARM
Information Center, together with knowledge articles and Frequently Asked Questions
(FAQs).

Other information

• ARM Information Center, http://infocenter.arm.com/help/index.jsp.

• ARM Technical Support Knowledge Articles,
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html.

• ARM Support and Maintenance, http://www.arm.com/support/services/support-
maintenance.php.

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/index.html
http://www.arm.com/support/services/support-maintenance.php
http://www.arm.com/support/services/support-maintenance.php

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 6 of 53

• ARM Glossary, http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html.

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 7 of 53

2 Preface

This preface contains the following topics:

• References on page 8.

• Terms and abbreviations on page 9.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 8 of 53

2.1 References
• ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile (ARM

DDI 0487).

• ARM® Cortex™-A Series Programmer’s Guide for ARMv7-A (ARM DEN 0013).

• ARM® Cortex®-A Series Programmer’s Guide for ARMv8-A (ARM DEN0024).

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 9 of 53

2.2 Terms and abbreviations
Abbreviations and terms used in this document are defined here.

EL Exception level.

MMU Memory Management Unit.

PL Privilege Level.

SoC System on Chip.

SP Stack Pointer.

TRM Technical Reference Manual.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 10 of 53

3 Introduction

This chapter describes the purpose and scope of this application note.

It contains the following topics:

• Document purpose on page 11.

• Document scope on page 12.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 11 of 53

3.1 Document purpose
Hardware verification engineers often run bare-metal tests to verify core-related function
in a System on Chip (SoC). However, it can be challenging to write boot code for a bare-
metal system, without a basic understanding of software development on the ARM
architecture.

This application note assumes that you are not familiar with ARM software development.
It is intended to help you write boot code for ARMv8-A processors.

You can reference the boot code examples in this application note, and write your own
boot code for a bare-metal system that is based on ARMv8-A processors.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 12 of 53

3.2 Document scope
This application note provides code examples for the following important operations that
are involved in booting a bare-metal system:

• Initializing exceptions.

• Initializing registers.

• Configuring the MMU and caches.

• Enabling NEON and Floating Point.

• Changing Exception levels.

The code examples are written with the GNU assembly grammar and are tested on the
Cortex-A53, Cortex-A72, and Cortex-A73 processors. They also apply to other ARMv8-A
processors.

The ARMv8-A architecture supports two different Execution states:

• AArch32.

• AArch64.

This application note provides boot code examples for each Execution state.

For boot code examples applicable to ARMv7-A processors, see the ARM ® CortexTM-A
Series Programmer’s Guide for ARMv7-A.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 13 of 53

4 Boot code for AArch32 mode

Read this chapter for boot code examples for AArch32.

It contains the following topics:

• Initializing exceptions on page 14.

• Initializing registers on page 16.

• Configuring the MMU and Caches on page 21.

• Enabling NEON and Floating Point on page 28.

• Changing modes on page 30.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 14 of 53

4.1 Initializing exceptions
Exception initialization requires setting up the vector tables and enabling asynchronous
exceptions.

4.1.1 Setting up a vector table
When booting a processor in AArch32 mode, the value of SCTLR.V sets the location of
the reset vector:

• When SCTLR.V is 0, the processor starts execution at address 0x00000000.
• When SCTLR.V is 1, the processor starts execution at address 0xFFFF0000.

You can use the hardware input VINITHI to set the reset value of SCTLR.V.

For exceptions other than reset, the processor looks up vector tables, which can be
placed at customized places by programming vector base address registers. There are up
to four vector tables. The corresponding vector base address registers are:

• Vector Base Address Register (VBAR) (Secure).
• Monitor Vector Base Address Register (MVBAR).
• Hyp Vector Base Address Register (HVBAR).
• VBAR (Non-secure).

Example 4-1 shows a typical vector table that is used for reset and other exceptions.

Example 4-1 Typical vector table

.balign 0x20

vector_table_base_address:

B reset_handler

B undefined_handler

B svc_handler

B prefetch_handler

B data_handler

NOP

B IRQ_handler

// You can place the FIQ handler code here.

The vector entries in the four tables might be different. For details, see the section,
Exception vectors and the exception base address, in the ARM® Architecture Reference
Manual ARMv8, for ARMv8-A architecture profile.

You must initialize the four vector tables, and program the vector table base address
registers before using the vector tables. The base addresses of vector tables must be 32-
byte aligned.

Example 4-2 shows you how to initialize VBAR and MVBAR after reset.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 15 of 53

Example 4-2 VBAR and MVBAR initialization

LDR R1, =secure_vector_table_base_address

MCR P15, 0, R1, C12, C0, 0 // Initialize VBAR (Secure).

LDR R1, =monitor_vector_table_base_address

MCR P15, 0, R1, C12, C0, 1 // Initialize MVBAR.

4.1.2 Enabling asynchronous exceptions
Asynchronous exceptions include asynchronous abort, IRQ and FIQ. They can be
masked by CPSR.{A,I,F} register bits after reset. Therefore, if asynchronous aborts, IRQ
and FIQ are to be taken, the CPSR.{A,I,F} bits must be cleared.

To enable interrupts, you must also initialize the external interrupt controller to deliver the
interrupt to the processor, but it is not covered in this document.

Example 4-3 shows you how to enable asynchronous abort, IRQ and FIQ.

Example 4-3 Asynchronous abort, IRQ and FIQ exceptions enablement

// Enable asynchronous aborts, interrupts, and fast interrupts.

CPSIE aif

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 16 of 53

4.2 Initializing registers
Register initialization involves initializing the following registers:

• General purpose registers.
• Stack pointer registers.
• System control registers.

4.2.1 Initializing general purpose registers
Some registers in ARM processors use non-reset flip-flops. This can cause X-propagation
issues in hardware simulations. Register initialization reduces the possibility of this issue.

 Note
This initialization is not required on silicon chips because X status only exists in hardware
simulations.

Example 4-4 shows you how to initialize general-purpose registers after reset. Because
there are banked general-purpose registers for different modes in AArch32, the example
code changes to different modes and initializes them all.

Example 4-4 General-purpose registers initialization

 // Processors are in Secure SVC mode after reset.

MOV R0, #0

MOV R1, #0

MOV R2, #0

MOV R3, #0

MOV R4, #0

MOV R5, #0

MOV R6, #0

MOV R7, #0

MOV R8, #0

MOV R9, #0

MOV R10, #0

MOV R11, #0

MOV R12, #0

MOV R13, #0

MOV R14, #0

CPS #0x11 // Change to FIQ mode.

MOV R8, #0

MOV R9, #0

MOV R10, #0

MOV R11, #0

MOV R12, #0

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 17 of 53

MOV R13, #0

MOV R14, #0

CPS #0x12 // Change to IRQ mode.

MOV R13, #0

MOV R14, #0

CPS #0x1F // Change to System mode.

MOV R13, #0 // System and User modes reuse the same banking

MOV R14, #0 // of r13 and r14.

CPS #0x17 // Change to Abort mode.

MOV R13, #0

MOV R14, #0

CPS #0x1B // Change to Undef mode.

MOV R13, #0

MOV R14, #0

CPS #0x16 // Change to Monitor mode.

MOV R13, #0

MOV R14, #0

MOV R0, #0 // Use MSR in Monitor Mode.

MSR SP_hyp, R0 // Initialize Hyp mode R13.

If a processor implements NEON technology and FP extensions, floating-point registers
must be initialized as well.

Example 4-5 shows you how to initialize floating-point registers after reset.

Example 4-5 Floating-point registers initialization

// Enable access to FP registers.

MOV R1, #(0xF << 20)

MCR P15, 0, R1, C1, C0, 2 // CPACR full access to cp11 and cp10.

MOV R1, #(0x1 << 30)

// Enable Floating point and Neon unit.

VMSR FPEXC, R1 // Set FPEXC.EN.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 18 of 53

ISB // Ensure the enable operation takes effect.

MOV R1, #0

MOV R2, #0

VMOV.F64 D0, R1, R2

VMOV.F64 D1, D0

VMOV.F64 D2, D0

VMOV.F64 D3, D0

VMOV.F64 D4, D0

VMOV.F64 D5, D0

VMOV.F64 D6, D0

VMOV.F64 D7, D0

VMOV.F64 D8, D0

VMOV.F64 D9, D0

VMOV.F64 D10, D0

VMOV.F64 D11, D0

VMOV.F64 D12, D0

VMOV.F64 D13, D0

VMOV.F64 D14, D0

VMOV.F64 D15, D0

VMOV.F64 D16, D0

VMOV.F64 D17, D0

VMOV.F64 D18, D0

VMOV.F64 D19, D0

VMOV.F64 D20, D0

VMOV.F64 D21, D0

VMOV.F64 D22, D0

VMOV.F64 D23, D0

VMOV.F64 D24, D0

VMOV.F64 D25, D0

VMOV.F64 D26, D0

VMOV.F64 D27, D0

VMOV.F64 D28, D0

VMOV.F64 D29, D0

VMOV.F64 D30, D0

VMOV.F64 D31, D0

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 19 of 53

4.2.2 Initializing stack pointer registers
The stack pointer register (r13) is implicitly used in some instructions, for example, push
and pop. You must initialize it with a proper value before using it.

In an MPCore system, different Stack Pointers (SPs) must point to different memory
addresses to avoid overwriting the stack area. If SPs are used in different modes, you
must initialize all of them.

Example 4-6 initializes an SP for one mode. The stack that is pointed to by the SP is
located at stack_top, and the stack size is CPU_STACK_SIZE bytes.

Example 4-6 SP initialization

// Initialize the stack pointer.

LDR R13, =stack_top

ADD R13, R13, #4

MRC P15, 0, R0, C0, C0, 5 // Read MPIDR.

AND R0, R0, #0xFF // R0 == core number.

MOV R2, #CPU_STACK_SIZE

MUL R1, R0, R2 // Create separate stack spaces

SUB R13, R13, R1 // for each processor.

4.2.3 Initializing system control registers
For some system control registers, such as the Saved Program Status Register (SPSR)
and Exception Link Register Hype mode (ELR_hyp), the architecture does not define
reset values for them. Therefore, you must initialize the registers before using them.

Example 4-7 shows you how to initialize SPSR and ELR_hyp in Monitor mode.

Example 4-7 SPSR and ELR_hyp initialization

// Initialize SPSR in all modes.

MOV R0, #0

MSR SPSR, R0

MSR SPSR_svc, R0

MSR SPSR_und, R0

MSR SPSR_hyp, R0

MSR SPSR_abt, R0

MSR SPSR_irq, R0

MSR SPSR_fiq, R0

// Initialize ELR_hyp.

MOV R0, #0

MSR ELR_hyp, R0

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 20 of 53

Example 4-7 does not cover all system registers that must be initialized. Theoretically,
you must initialize all system registers that do not have architecturally defined reset
values.

However, some registers can have IMPLEMENTATION- DEFINED reset values,
depending on the implementation of a particular processor. For details, see the section,
General system control registers, in the ARM® Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile and the Technical Reference Manual (TRM) of the relevant
processor.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 21 of 53

4.3 Configuring the MMU and caches
The MMU and Cache configuration involves the following operations:

• Cleaning and invalidating the caches on page 21.
• Setting up the MMU on page 22.
• Enabling the MMU and caches on page 27.

4.3.1 Cleaning and invalidating the caches
The content in cache RAM is invalid after reset, so you must perform invalidation
operations to initialize all caches in a processor.

In some ARMv7-A processors such as the Cortex-A9 processor, you must use software
to invalidate all cache RAMs. In ARMv8-A processors and most ARMv7-A processors,
you do not have to do this because hardware automatically invalidates all cache RAMs
after reset. However, you must use software to clean and invalidate data cache in some
situations, such as the core powerdown process.

Example 4-8 shows you how to clean and invalidate L1 data cache by using looped
DCCISW instructions. You can easily modify the code for other level caches or other cache
operations.

Example 4-8 Clean and invalidate L1 data cache

// Disable L1 Caches.

MRC P15, 0, R1, C1, C0, 0 // Read SCTLR.

BIC R1, R1, #(0x1 << 2) // Disable D Cache.

MCR P15, 0, R1, C1, C0, 0 // Write SCTLR.

// Invalidate Data cache to create general-purpose code. Calculate the

// cache size first and loop through each set + way.

MOV R0, #0x0 // R0 = 0x0 for L1 dcache 0x2 for L2 dcache.

MCR P15, 2, R0, C0, C0, 0 // CSSELR Cache Size Selection Register.

MRC P15, 1, R4, C0, C0, 0 // CCSIDR read Cache Size.

AND R1, R4, #0x7

ADD R1, R1, #0x4 // R1 = Cache Line Size.

LDR R3, =0x7FFF

AND R2, R3, R4, LSR #13 // R2 = Cache Set Number – 1.

LDR R3, =0x3FF

AND R3, R3, R4, LSR #3 // R3 = Cache Associativity Number – 1.

CLZ R4, R3 // R4 = way position in CISW instruction.

MOV R5, #0 // R5 = way loop counter.

way_loop:

MOV R6, #0 // R6 = set loop counter.

set_loop:

ORR R7, R0, R5, LSL R4 // Set way.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 22 of 53

ORR R7, R7, R6, LSL R1 // Set set.

MCR P15, 0, R7, C7, C6, 2 // DCCISW R7.

ADD R6, R6, #1 // Increment set counter.

CMP R6, R2 // Last set reached yet?

BLE set_loop // If not, iterate set_loop,

ADD R5, R5, #1 // else, next way.

CMP R5, R3 // Last way reached yet?

BLE way_loop // if not, iterate way_loop.

4.3.2 Setting up the MMU
ARMv8-A processors use VMSAv8-32 to perform the following operations in AArch32:

• Translate physical address to virtual address.
• Determine memory attributes and check access permission.

Address translation is defined by the translation table and managed by the Memory
Management Unit (MMU). Before enabling the MMU, you must set up the translation table
and translation table walk rules.

Every Privilege Level (PL) has dedicated translation tables and control registers. You
must set up all translation tables and control registers before use.

For details, see the section, About VMSAv8-32, in the ARM® Architecture Reference
Manual ARMv8, for ARMv8-A architecture profile.

AArch32 supports two translation table formats:

• The VMSAv8-32 short-descriptor format.

• The VMSAv8-32 long-descriptor format.

In ARMv8-A, the hierarchy of software execution privilege, within a Security state, is
defined by the Exception Level (EL). For relationship between PLs and ELs, please see
the section, Execution privilege, Exception levels, and AArch32 Privilege levels, in ARM
Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

VMSAv8-32 short-descriptor format
The short-descriptor format uses 32-bit descriptor entries in the translation tables, and
supports:

• 32-bit input addresses.
• Output addresses of up to 40 bits.
• Address lookup of up to two levels.
• 4KB granule size.

You can use the short-descriptor format only in stage 1 translation at PL0 and PL1. For
details, see the section, The VMSAv8-32 Short-descriptor translation table format, in the
ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

Example 4-9 uses the short-descriptor format to build a translation table covering 4GB
memory space.

• 0-1GB is configured as Normal Cacheable memory.
• 1-4GB is configured as Device-nGnRnE memory.

The translation table contains 4096 x 1MB sections, and is placed at the address defined
by TTBR0.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 23 of 53

In this translation table, TEX is remapped and the access flag feature is not used.
Example 4-9 Translation table using the VMSAv8-32 short-descriptor format

// Initialize TTBCR.

MOV R0, #0 // Use short descriptor.

MCR P15, 0, R0, C2, C0, 2 // Base address is 16KB aligned.

 // Perform translation table walk for TTBR0.

// Initialize DACR.

LDR R1, =0x55555555 // Set all domains as clients.

MCR P15, 0, R1, C3, C0, 0 // Accesses are checked against the

 // permission bits in the translation tables.

// Initialize SCTLR.AFE.

MRC P15, 0, R1, C1, C0, 0 // Read SCTLR.

BIC R1, R1, #(0x1 <<29) // Set AFE to 0 and disable Access Flag.

MCR P15, 0, R1, C1, C0, 0 // Write SCTLR.

// Initialize TTBR0.

LDR R0, =ttb0_base // ttb0_base must be a 16KB-aligned address.

MOV R1, #0x2B // The translation table walk is normal, inner

ORR R1, R0, R1 // and outer cacheable, WB WA, and inner

MCR P15, 0, R1, C2, C0, 0 // shareable.

// Set up translation table entries in memory

LDR R4, =0x00100000 // Increase 1MB address each time.

LDR R2, =0x00015C06 // Set up translation table descriptor with

 // Secure, global, full accessibility,

 // executable.

 // Domain 0, Shareable, Normal cacheable memory

LDR R3, =1024 // executes the loop 1024 times to set up

 // 1024 descriptors to cover 0-1GB memory.

loop:

STR R2, [R0], #4 // Build a page table section entry.

ADD R2, R2, R4 // Update address part for next descriptor.

SUBS R3, #1

BNE loop

LDR R2, =0x40010C02 // Set up translation table descriptors with

 // secure, global, full accessibility,

 // Domain=0 Shareable Device-nGnRnE Memory.

LDR R3, =3072 // Executes loop 3072 times to set up 3072

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 24 of 53

 // descriptors to cover 1-4GB memory.

loop2:

STR R2, [R0], #4 // Build a translation table section entry.

ADD R2, R2, R4 // Update address part for next descriptor.

SUBS R3, #1

BNE loop2

VMSAv8-32 long-descriptor format
The long-descriptor format uses 64-bit descriptor entries in the translation tables, and
supports:

• Input and output addresses of up to 40 bits.
• Address lookup of up to three levels.
• 4KB granule size.

You can use the long-descriptor format for all PLs and stages translation. For details, see
the section, The VMSAv8-32 Long-descriptor translation table format, in the ARM®
Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

Example 4-10 and Example 4-11 use the long-descriptor format to build a translation
table covering 4GB memory space:

• 0-1GB memory is configured as Normal Cacheable memory.
• 1-4GB memory is configured as Device-nGnRnE memory.

The translation table contains 512 level2 blocks of 2MB size and 3 level1 blocks of 1GB
size.

Example 4-10 initializes translation table control registers, and then uses looped store
instructions to build a translation table, which is easier to port.

Example 4-10 Translation table using the VMSAv8-64 long-descriptor format

// Initialize translation table control registers

LDR R1, =0xFF440400 // ATTR0 is Device-nGnRnE. ATTR1 is Device.

 // ATTR2 is Normal Non-Cacheable.

 // ATTR3 is Normal Cacheable.

MCR P15, 0, R1, C10, C2, 0 // Only use MAIR0.

LDR R0, =0xB0003500 // Use TTBR0 and long descriptor formant.

MCR P15, 0, R0, C2, C0, 2 // translation table walk is Inner-shareable

 // Normal Inner and Outer cacheable.

LDR R0, =ttb0_base

MOV R1, #0

MCRR P15, 0, R0, R1, C2 // TTBR0 ASID=0.

// Set up translation table entries in memory with looped store instructions.

// Set a level 1 translation table.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 25 of 53

// The first entry points to level2_pagetable.

LDR R1, =level2_pagetable // Must be a 4KB-aligned address.

LDR R2, =0xFFFFF000

AND R2, R1, R2

ORR R2, R2, #0x3

MOV R3, #0 // NSTable=0 APTable=0 XNTable=0 PXNTable=0.

STRD R2, R3, [R0], #8

// The second entry is 1GB block, 0x40000000 - 0x7FFFFFFF.

MOV R3, #0 // XN=0 PXN=0.

LDR R2, =0x40000741 // nG=0 AF=1 Inner and Outer Shareable.

STRD R2, R3, [R0], #8 // R/W at all ELs secure memory.

// The third entry is 1GB block, 0x80000000 - 0xBFFFFFFF.

LDR R2, =0x80000741 // AttrIdx=000 Device-nGnRnE.

STRD R2, R3, [R0], #8

// The fourth entry is 1GB block, 0xC0000000 - 0xFFFFFFFF.

LDR R2, =0xC0000741 // AttrIdx=000 Device-nGnRnE.

STRD R2, R3, [R0], #8

// Set level 2 translation table.

LDR R0, =level2_pagetable // R0 is the base address of level2_pagetable.

LDR R2, =0x0000074D // nG=0 AF=1 Inner and Outer Shareable.

 // R/W at all ELs secure memory.

 // AttrIdx=011 Normal Cacheable.

MOV R3, #0 // XN=0 PXN=0.

MOV R4, #512 // Set 512 level2 block entries.

LDR R5, =0x00200000 // Increase 2MB address each time.

loop:

STRD R2, R3, [R0], #8 // Each entry occupies two words.

ADD R2, R2, R5

SUBS R4, #1

BNE loop

Example 4-11 creates a section as a translation table at compile time. This method is fast
for simulations. It is written with the GNU assembly grammar. The code to initialize
translation table control registers in example 4-10 is still required.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 26 of 53

Example 4-11 Build translation tables using sections at compile time

// Put a 64-bit value with little endianness.

.macro PUT_64B high, low

.word \low

.word \high

.endm

// Create an entry pointing to a next-level table.

.macro TABLE_ENTRY PA, ATTR

PUT_64B \ATTR, (\PA) + 0x3

.endm

// Create an entry for a 1GB block.

.macro BLOCK_1GB PA, ATTR_HI, ATTR_LO

PUT_64B \ATTR_HI, ((\PA) & 0xC0000000) | \ATTR_LO | 0x1

.endm

// Create an entry for a 2MB block.

.macro BLOCK_2MB PA, ATTR_HI, ATTR_LO

PUT_64B \ATTR_HI, ((\PA) & 0xFFE00000) | \ATTR_LO | 0x1

.endm

.align 12

ttb0_base:

TABLE_ENTRY level2_pagetable, 0

BLOCK_1GB 0x40000000, 0, 0x740

BLOCK_1GB 0x80000000, 0, 0x740

BLOCK_1GB 0xC0000000, 0, 0x740

.align 12

level2_pagetable:

.set ADDR, 0x000 // The current page address.

.rept 0x200

BLOCK_2MB (ADDR << 20), 0, 0x74C

.set ADDR, ADDR+2

.endr

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 27 of 53

4.3.3 Enabling the MMU and caches
You must initialize the MMU and caches before enabling them. You must set the SMPEN
bit before enabling the MMU and cache for all ARMv8-A processors, to support hardware
coherency.

Example 4-12 shows you how to set the SMPEN bit and enable the MMU and caches.
Example 4-12 SMPEN bit setting and the MMU and cache enablement

// SMP is implemented in the CPUECTLR register.

MRRC P15, 1, R0, R1, C15 // Read CPUECTLR.

ORR R0, R0, #(0x1 << 6) // Set SMPEN.

MCRR P15, 1, R0, R1, C15 // Write CPUECTLR.

// Enable caches and the MMU.

MRC P15, 0, R1, C1, C0, 0 // Read SCTLR.

ORR R1, R1, #(0x1 << 2) // The C bit (data cache).

ORR R1, R1, #(0x1 << 12) // The I bit (instruction cache).

ORR R1, R1, #0x1 // The M bit (MMU).

MCR P15, 0, R1, C1, C0, 0 // Write SCTLR.

DSB

ISB

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 28 of 53

4.4 Enabling NEON and Floating Point
In AArch32 mode, access to NEON technology and FP functionality is disabled by default,
so it must be explicitly enabled. For details, see the section, Enabling Advanced SIMD
and floating-point support, in the ARM® Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile.

This section describes how to enable general NEON technology and FP functionality in
both the Secure world and the Non-secure world.

4.4.1 Enabling general NEON and FP functionality
Example 4-13 shows you how to enable general NEON technology and FP functionality
after reset.

Example 4-13 NEON and FP function enablement

// Enable access to NEON/FP by enabling access to Coprocessors 10 and 11.

// Enable Full Access in both privileged and non-privileged modes.

MOV R0, #(0xF << 20) // Enable CP10 & CP11 function

MCR P15, 0, R0, C1, C0, 2 // Write the Coprocessor Access Control

ISB // Register (CPACR).

// Switch on the FP and NEON hardware.

MOV R1, #(0x1 << 30)

VMSR FPEXC, R1

4.4.2 Enabling access to the NEON and FP functionality in the Non-secure world
Access to NEON technology and FP functionality from the Non-secure world is disabled
after reset. If software requires access to the NEON and FP registers in the Non-secure
world, Non-secure Access Control Register (NSACR) must be initialized in EL3.

Example 4-14 shows you how to configure the NSACR after reset.
Example 4-14 NSACR configuration

// Enable access NEON/FP in Non-secure world.

MOV R1, #(0x3 << 10) // Enable Non-secure access to CP10 & CP11.

MCR P15, 0, R1, C1, C1, 2 // Write NSACR.

4.4.3 Enabling access to the NEON and FP functionality in Non-secure EL1 and EL0
Access to the NEON and FP functionality from Non-secure EL1 or EL0 can be trapped to
Hypervisor mode. The trap must be disabled if a program must access NEON and FP
functionality in Non-secure EL1 or EL0. The trap function is disabled by default after core
reset, so this step might be unnecessary.

Example 4-15 shows you how to disable trap of accesses to NEON technology and FP
functionality from Non-secure EL1 or EL0 by programming the Hyp Architectural Feature
Trap Register (HCPTR) register.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 29 of 53

Example 4-15 Enable access to the NEON and FP function

// Enable access to NEON and FP in Non-secure EL1 and EL0.

LDR R1, =0x33FF

MCR P15, 4, R1, C1, C1, 2 // Write HCPTR.

 Note
The HCPTR register can be accessed in EL2 and EL3 (NS=1).

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 30 of 53

4.5 Changing modes
If the Security Extension is implemented, AArch32 has two security states and nine
processor modes:

• Security states:

Secure state.

Non-secure state.

• Processor modes

User.

System.

FIQ.

IRQ.

Supervisor.

Abort.

Undefined.

Hyp

Monitor.

The following figure shows how the security states and processor modes are structured
and their relationship with Exception levels in AArch32.

Figure 4-1 Security states and processor modes

For details, see the section, Security state, in the ARM® Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile.

The following sections describe how to change between these modes when a processor
runs in AArch32:

• Changing between User, System, FIQ, IRQ, Supervisor, Abort, Undefined modes
on page 31.

• Changing between Secure world and Non-secure world on page 31.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 31 of 53

• Changing between Hypervisor mode and other modes on page 33.

4.5.1 Changing between User, System, FIQ, IRQ, Supervisor, Abort, Undefined modes
When booting in AArch32 mode, processors enter secure Supervisor mode after reset.

Normally, processors take or return exceptions to change to other modes. To simplify the
test, it can be done by directly changing the CPSR.M bits in a bare-metal test.

Example 4-16 shows you how to change from a non-User mode to other modes.
Example 4-16 Mode change

.equ Mode_USR, 0x10

.equ Mode_FIQ, 0x11

.equ Mode_IRQ, 0x12

.equ Mode_SVC, 0x13

.equ Mode_MNT, 0x16

.equ Mode_ABT, 0x17

.equ Mode_HYP, 0x1A

.equ Mode_UND, 0x1B

.equ Mode_SYS, 0x1F

// When a processor is in Monitor, System, FIQ, IRQ, Supervisor, Abort

// or Undefined mode, use the CPS instruction to change modes.

CPS #Mode_FIQ

Example 4-17 shows you how to change from User mode to Supervisor mode.

Example 4-17 Mode switch from User mode to Supervisor mode

// When processors are in User mode, use SVC to change from User mode

// to SVC mode. Make sure that VBAR is initialized before executing SVC.

SVC #0

4.5.2 Changing between the Secure world and Non-secure world
All transitions between Secure and Non-secure world pass through Monitor mode.
Therefore, to change Security status, you must first execute an SMC instruction to enter
Monitor mode.

 Note
Monitor mode belongs in the Secure world.

Example 4-18 shows you how to use the SMC instruction to enter Monitor mode.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 32 of 53

Example 4-18 Enter Monitor mode

// Use an SMC to change to Monitor mode.

// Make sure that MVBAR is initialized before executing the SMC.

SMC #0

To switch from the Secure world to the Non-secure world, the processor must set
SCR.NS to 1 in Monitor mode. After that, the processor returns to Non-secure world with
an exception return.

Example 4-19 shows you how to switch to Non-secure Supervisor mode when the
processor is in Monitor mode.

Example 4-19 Switch from Secure world to Non-secure world

// Use an exception return in the Monitor exception handler to

// enter the Non-secure world.

MRC P15, 0, R1, C1, C1, 0 // Read Secure Configuration Register

 // (SCR).

ORR R1, R1, #(1 << 0) // Set SCR.NS (bit 0).

BIC R1, R1, #(1 << 7) // Clear SCR.SCD (bit 7).

MCR P15, 0, R1, C1, C1, 0 // Write SCR.

// Initialize registers to save values.

MOV R0, #0

MCR P15, 0, R0, C1, C0, 0 // SCTLR(NS).

LDR R1, =vector_table_base_address

MCR P15, 0, R1, C12, C0, 0 // VBAR(NS).

// Exception return.

MSR SPSR_cxsf, #Mode_SVC // entering supervisor mode(NS).

LDR R14, =SVC_entry // SVC_entry points to the first

 // instruction of SVC mode code.

ERET

To switch from the Non-secure world to the Secure world, the processor performs the
following steps:

1. Enter Monitor mode.

2. Set SCR.NS to 0 in Monitor mode.

3. Switch to other modes in the Secure world.

Example 4-20 shows you how to clear the SCR.NS bit when the processor is in Monitor
mode.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 33 of 53

Example 4-20 Clear the SCR.NS bit

MRC P15, 0, R1, C1, C1, 0 // Read SCR.

BIC R1, R1, #(1 << 0) // Set SCR.NS (bit 0).

MCR P15, 0, R1, C1, C1, 0 // Write SCR.

4.5.3 Changing between Hypervisor mode and other modes
To enter Hypervisor mode, use an exception return from Monitor mode (NS=1) or take an
exception in any of the Non-secure System, FIQ, IRQ, Supervisor, Abort, or Undefined
modes.

Example 4-21 shows you how to enter Hypervisor mode from Monitor mode.
Example 4-21 Switch from Monitor mode to Hypervisor mode

// Enter Hypervisor mode by using an exception return when the processor

// is in Monitor mode.

MRC P15, 0, R1, C1, C1, 0 // Read SCR.

ORR R1, R1, #(1 << 0) // Set SCR.NS (bit 0).

ORR R1, R1, #(1 << 8) // Set SCR.HCE (bit 8) and enable HVC.

MCR P15, 0, R1, C1, C1, 0 // Write SCR.

// Initialize registers to save values before changing to Hypervisor mode.

MOV R0, #0

MCR P15, 4, R0, C1, C0, 0 // HSCTLR.

MCR P15, 4, R0, C1, C1, 0 // HCR.

MCR P15, 4, R0, C1, C1, 4 // HCR2.

LDR R1, = hyp_vector_table_base_address

MCR P15, 4, R1, C12, C0, 0 // HVBAR.

MSR SPSR_cxsf, #Mode_HYP

LDR R14, =Hyp_entry // Hyp_entry points to the first

 // instruction of Hypervisor mode code.

ERET

Example 4-22 shows you how to enter Hypervisor mode from any of the Non-secure
System, FIQ, IRQ, Supervisor, Abort, or Undefined modes.

Example 4-22 Enter Hypervisor mode

// Use an HVC to call hypervisor exception.

// Make sure that HVBAR is initialized before executing the HVC.

HVC #0

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 34 of 53

To exit Hypervisor mode, use an SMC instruction to enter Monitor mode or use an
exception to return to Non-secure EL1 or EL0 mode, see Changing between the Secure
world and Non-secure world.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 35 of 53

5 Boot code for AArch64 mode

Read this chapter for boot code examples for AArch64.

It contains the following topics:

• Initializing exceptions on page 36.

• Initializing registers on page 41.

• Configuring the MMU and caches on page 45.

• Enabling NEON and Floating Point on page 50.

• Changing Exception levels on page 51.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 36 of 53

5.1 Initializing exceptions
Exception initialization requires:

• Setting up the vector table.

• Asynchronous exceptions routing and masking configurations.

5.1.1 Setting up a vector table
In AArch64, a reset vector is no longer part of the exception vector table. There are
dedicated configure input pins and registers for the reset vector. Other exception vectors
are stored in the vector table.

Reset vector
In AArch64, the processor starts execution from an IMPLEMENTAION-DEFINED
address, which is defined by the hardware input pins RVBARADDR and can be read by
the RVBAR_EL3 register. You must place boot code at this address.

Vector table
There are dedicated vector tables for each exception level:

• VBAR_EL3.
• VBAR_EL2.
• VBAR_EL1.

The vector table in AArch64 is different from that in AArch32. The vector table in AArch64
mode contains 16 entries. Each entry is 128B in size and contains at most 32 instructions.
Vector tables must be placed at a 2KB-aligned address. The addresses are specified by
initializing VBAR_ELn registers.

For more details about the vector table, see the section, Exception vectors, in the ARM®
Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

The following figure shows you how the vector table is structured.

Figure 5-1 vector table structure

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 37 of 53

Example 5-1 shows you how to initialize VBAR_EL3, VBAR_EL2, and VBAR_EL1 after
reset.

Example 5-1 Vector Base Address registers initialization

// Initialize VBAR_EL3.

LDR X1, = vector_table_el3

MSR VBAR_EL3, X1

LDR X1, = vector_table_el2

MSR VBAR_EL2, X1

LDR X1, = vector_table_el1

MSR VBAR_EL1, X1

Example 5-2 shows a typical vector table for exceptions in AArch64.

Example 5-2 Exception vector table

// Typical exception vector table code.

.balign 0x800

Vector_table_el3:

curr_el_sp0_sync: // The exception handler for the synchronous

 // exception from the current EL using SP0.

.balign 0x80

curr_el_sp0_irq: // The exception handler for the IRQ exception

 // from the current EL using SP0.

.balign 0x80

curr_el_sp0_fiq: // The exception handler for the FIQ exception

 // from the current EL using SP0.

.balign 0x80

curr_el_sp0_serror: // The exception handler for the system error

 // exception from the current EL using SP0.

.balign 0x80

curr_el_spx_sync: // The exception handler for the synchronous

 // exception from the current EL using the

 // current SP.

.balign 0x80

curr_el_spx_irq: // The exception handler for IRQ exception

 // from the current EL using the current SP.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 38 of 53

.balign 0x80

curr_el_spx_fiq: // The exception handler for the FIQ exception

 // from the current EL using the current SP.

.balign 0x80

curr_el_spx_serror: // The exception handler for the system error

 // exception from the current EL using the

 // current SP.

 .balign 0x80

lower_el_aarch64_sync: // The exception handler for the synchronous

 // exception from a lower EL (AArch64).

.balign 0x80

lower_el_aarch64_irq: // The exception handler for the IRQ exception

 // from a lower EL (AArch64).

.balign 0x80

lower_el_aarch64_fiq: // The exception handler for the FIQ exception

 // from a lower EL (AArch64).

.balign 0x80

lower_el_aarch64_serror: // The exception handler for the system error

 // exception from a lower EL(AArch64).

.balign 0x80

lower_el_aarch32_sync: // The exception handler for the synchronous

 // exception from a lower EL(AArch32).

.balign 0x80

lower_el_aarch32_irq: // The exception handler for the IRQ exception

 // from a lower EL (AArch32).

.balign 0x80

lower_el_aarch32_fiq: // The exception handler for the FIQ exception

 // from a lower EL (AArch32).

.balign 0x80

lower_el_aarch32_serror: // The exception handler for the system error

 // exception from a lower EL(AArch32).

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 39 of 53

5.1.2 Enabling asynchronous exceptions
Asynchronous exceptions including SError, IRQ and FIQ. They are default masked after
reset. Therefore, if SError, IRQ and FIQ are to be taken, the routing rules must be set and
the mask must be cleared.

To enable interrupts, you must also initialize the external interrupt to deliver the interrupt
to the processor, but it is not covered in this document.

Asynchronous exceptions routing
Asynchronous exception routing determines which Exception level is used to handle an
asynchronous exception.

To route an asynchronous exception to EL3, you must set SCR_EL3.{EA,IRQ,FIQ}.

Example 5-3 shows how to route SError, IRQ and FIQ to EL3.
Example 5-3 SError, IRQ and FIQ routing enablement in EL3

MRS X0, SCR_EL3

ORR X0, X0, #(1<<3) // The EA bit.

ORR X0, X0, #(1<<1) // The IRQ bit.

ORR X0, X0, #(1<<2) // The FIQ bit.

MSR SCR_EL3, X0

To route an asynchronous exception to EL2 rather than EL3, you must set
HCR_EL2.{AMO,FMO,IMO} and clear SCR_EL3.{EA,IRQ,FIQ}.

Example 5-4 shows you how to route SError, IRQ and FIQ to EL2.
Example 5-4 SError, IRQ and FIQ routing enablement in EL2

MRS X0, HCR_EL2

ORR X0, X0, #(1<<5) // The AMO bit.

ORR X0, X0, #(1<<4) // The IMO bit.

ORR X0, X0, #(1<<3) // The FMO bit.

MSR HCR_EL2, X0

If an interrupt is not routed to EL3 or EL2, it is routed to EL1 by default.

Asynchronous exceptions mask
Whether an asynchronous exception is masked depends on the following factors:

• The target Exception level to which the interrupt is routed.

• The PSTATE.{A,I,F} value.

When a target Exception level is lower than the current Exception level, the asynchronous
exception is masked implicitly, regardless of the PSTATE.{A,I,F} value.

When a target Exception level is same as the current Exception level, the asynchronous
exception is masked if PSTATE.{A,I,F} is 1.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 40 of 53

When a target Exception level is higher than the current Exception level and the target
Exception level is EL2 or EL3, the asynchronous exception is taken, regardless of the
PSTATE.{A,I,F} value.

When a target Exception level is higher than the current Exception level and the target
Exception level is EL1, the asynchronous exception is masked if PSTATE.{A,I,F} is 1.

Example 5-5 shows you how to clear the mask of SError, IRQ and FIQ in PSTATE.
Example 5-5 Enable SError, IRQ and FIQ

// Enable SError, IRQ and FIQ

MSR DAIFClr, #0x7

For more details about enabling asynchronous exceptions, see the section,
Asynchronous exception types, routing, masking and priorities, in the ARM® Architecture
Reference Manual ARMv8, for ARMv8-A architecture profile.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 41 of 53

5.2 Initializing registers
Register initialization involves initializing the following registers:

• General-purpose registers.
• Stack pointer registers.
• System control registers.

5.2.1 Initializing general purpose registers
ARM processors use some non-reset flip-flops. This can cause X-propagation issues in
simulations. Register initialization helps reduce the possibility of the issue.

 Note
This initialization is not required on silicon chips because X status only exists in hardware
simulations.

Example 5-6 shows you how to initialize general-purpose registers after reset.
Example 5-6 Register bank initialization

// Initialize the register bank.

MOV X0, XZR

MOV X1, XZR

MOV X2, XZR

MOV X3, XZR

MOV X4, XZR

MOV X5, XZR

MOV X6, XZR

MOV X7, XZR

MOV X8, XZR

MOV X9, XZR

MOV X10, XZR

MOV X11, XZR

MOV X12, XZR

MOV X13, XZR

MOV X14, XZR

MOV X15, XZR

MOV X16, XZR

MOV X17, XZR

MOV X18, XZR

MOV X19, XZR

MOV X20, XZR

MOV X21, XZR

MOV X22, XZR

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 42 of 53

MOV X23, XZR

MOV X24, XZR

MOV X25, XZR

MOV X26, XZR

MOV X27, XZR

MOV X28, XZR

MOV X29, XZR

MOV X30, XZR

If a processor implements the NEON and FP extension, floating-point registers must be
initialized as well.

Example 5-7 shows you how to initialize floating-point registers after reset.
Example 5-7 Floating-point registers initialization

MSR CPTR_EL3, XZR

MSR CPTR_EL2, XZR

FMOV D0, XZR

FMOV D1, XZR

FMOV D2, XZR

FMOV D3, XZR

FMOV D4, XZR

FMOV D5, XZR

FMOV D6, XZR

FMOV D7, XZR

FMOV D8, XZR

FMOV D9, XZR

FMOV D10, XZR

FMOV D11, XZR

FMOV D12, XZR

FMOV D13, XZR

FMOV D14, XZR

FMOV D15, XZR

FMOV D16, XZR

FMOV D17, XZR

FMOV D18, XZR

FMOV D19, XZR

FMOV D20, XZR

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 43 of 53

FMOV D21, XZR

FMOV D22, XZR

FMOV D23, XZR

FMOV D24, XZR

FMOV D25, XZR

FMOV D26, XZR

FMOV D27, XZR

FMOV D28, XZR

FMOV D29, XZR

FMOV D30, XZR

FMOV D31, XZR

5.2.2 Initializing stack pointer registers
The stack pointer register is implicitly used in some instructions, for example, push and
pop. You must initialize it with a proper value before using it.

In an MPCore system, different stack pointers must point to different memory addresses
to avoid overwriting the stack area. If SPs in different Exception levels are used, you must
initialize all of them.

Example 5-8 shows you how to initialize an SP for the current Exception level. The stack
pointed to by the SP is at stack_top, and the stack size is CPU_STACK_SIZE bytes.

Example 5-8 SP initialization in the current Exception level

// Initialize the stack pointer.

ADR X1, stack_top

ADD X1, X1, #4

MRS X2, MPIDR_EL1

AND X2, X2, #0xFF // X2 == CPU number.

MOV X3, #CPU_STACK_SIZE

MUL X3, X2, X3 // Create separated stack spaces

SUB X1, X1, X3 // for each processor

MOV SP, X1

5.2.3 Initializing system control registers
Some system control registers do not have architectural reset values. Therefore, you
must initialize the registers based on your software requirements before using them.

Example 5-9 shows how to initialize HCR_EL2, SCTLR_EL2, and SCTLR_EL1 after
reset.

Example 5-9 System control registers initialization

MSR HCR_EL2, XZR

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 44 of 53

LDR X1, =0x30C50838

MSR SCTLR_EL2, X1

MSR SCTLR_EL1, X1

This example does not cover all system registers that need initialization. Theoretically,
you must initialize all system registers that do not have architecturally defined reset
values. However, some registers can have IMPLEMENTATION-DEFINED reset values,
depending on the implementation of a particular processor. For details, see the section,
General system control registers, in the ARM® Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile and the TRM of the relevant processor.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 45 of 53

5.3 Configuring the MMU and caches
The MMU and cache configuration involves the following operations:

• Cleaning and invalidating caches on page 45.
• Setting up the MMU on page 46.
• Enabling the MMU and caches on page 49.

5.3.1 Cleaning and invalidating the caches
The content in cache RAM is invalid after reset. ARMv8-A processors implement
hardware that automatically invalidates all cache RAMs after reset, so software
invalidation is unnecessary after reset. However, cleaning and invalidating data cache is
still necessary in some situations, such as the core powerdown process.

Example 5-10 shows you how to clean and invalidate the L1 date cache by using looped
DC CISW instructions in EL3. You can easily modify the code for other level caches or
other cache operations.

Example 5-10 Clean and invalidate L1 data cache

// Disable L1 Caches

MRS X0, SCTLR_EL3 // Read SCTLR_EL3.

BIC X0, X0, #(0x1 << 2) // Disable D Cache.

MSR SCTLR_EL3, X0 // Write SCTLR_EL3.

// Invalidate Data cache to make the code general purpose.

// Calculate the cache size first and loop through each set +

// way.

MOV X0, #0x0 // X0 = Cache level

MSR CSSELR_EL1, x0 // 0x0 for L1 Dcache 0x2 for L2 Dcache.

MRS X4, CCSIDR_EL1 // Read Cache Size ID.

AND X1, X4, #0x7

ADD X1, X1, #0x4 // X1 = Cache Line Size.

LDR X3, =0x7FFF

AND X2, X3, X4, LSR #13 // X2 = Cache Set Number – 1.

LDR X3, =0x3FF

AND X3, X3, X4, LSR #3 // X3 = Cache Associativity Number – 1.

CLZ W4, W3 // X4 = way position in the CISW instruction.

MOV X5, #0 // X5 = way counter way_loop.

way_loop:

MOV X6, #0 // X6 = set counter set_loop.

set_loop:

LSL X7, X5, X4

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 46 of 53

ORR X7, X0, X7 // Set way.

LSL X8, X6, X1

ORR X7, X7, X8 // Set set.

DC cisw, X7 // Clean and Invalidate cache line.

ADD X6, X6, #1 // Increment set counter.

CMP X6, X2 // Last set reached yet?

BLE set_loop // If not, iterate set_loop,

ADD X5, X5, #1 // else, next way.

CMP X5, X3 // Last way reached yet?

BLE way_loop // If not, iterate way_loop.

5.3.2 Setting up the MMU
ARMv8-A processors use VMSAv8-64 to perform the following operations at AArch64:

• Translate physical address to virtual address.
• Determine memory attributes and check access permission.

Address translation is defined by a translation table and managed by the MMU. Each
Exception level has a dedicated translation page table. The translation tables must be set
up before enabling the MMU.

VMSAv8-64 uses 64-bit descriptor format entries in the translation tables. It supports

• Up to 48-bit input and output addresses.

• Three granule sizes: 4KB, 16KB, and 64KB.

• Address lookup of up to four levels.

For details, see the section, The AArch64 Virtual Memory System Architecture, in the
ARM® Architecture Reference Manual ARMv8, for ARMv8-A architecture profile.

Example 5-11 and Example 5-12 build an EL3 translation table with a 4KB granule size
covering 4GB memory space:

• 0-1GB memory is configured as Normal cacheable memory.
• 1-4GB memory is configured as Device-nGnRnE memory.

The translation table contains 512 level2 blocks of 2MB size and 3 level1 blocks of 1GB
size.

Example 5-11 first initializes translation table control registers, and then uses looped store
instructions to build a translation table, which is easier to port.

Example 5-11 Build translation tables using looped store instructions

// Initialize translation table control registers

LDR X1, =0x3520 // 4GB space 4KB granularity

 // Inner-shareable.

MSR TCR_EL3, X1 // Normal Inner and Outer Cacheable.

LDR X1, =0xFF440400 // ATTR0 Device-nGnRnE ATTR1 Device.

MSR MAIR_EL3, X1 // ATTR2 Normal Non-Cacheable.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 47 of 53

 // ATTR3 Normal Cacheable.

ADR X0, ttb0_base // ttb0_base must be a 4KB-aligned address.

MSR TTBR0_EL3, X0

// Set up translation table entries in memory with looped store

// instructions.

// Set the level 1 translation table.

// The first entry points to level2_pagetable.

LDR X1, = level2_pagetable // Must be a 4KB align address.

LDR X2, =0xFFFFF000

AND X2, X1, X2 // NSTable=0 APTable=0 XNTable=0 PXNTable=0.

ORR X2, X2, 0x3

STR X2, [X0], #8

// The second entry is 1GB block from 0x40000000 to 0x7FFFFFFF.

LDR X2, =0x40000741 // Executable Inner and Outer Shareable.

STR X2, [X0], #8 // R/W at all ELs secure memory

 // AttrIdx=000 Device-nGnRnE.

// The third entry is 1GB block from 0x80000000 to 0xBFFFFFFF.

LDR X2, =0x80000741

STR X2, [X0], #8

// The fourth entry is 1GB block from 0xC0000000 to 0xFFFFFFFF.

LDR X2, =0xC0000741

STR X2, [X0], #8

// Set level 2 translation table.

LDR X0, =level2_pagetable // Base address of level2_pagetable.

LDR X2, =0x0000074D // Executable Inner and Outer Shareable.

 // R/W at all ELs secure memory.

 // AttrIdx=011 Normal Cacheable.

MOV X4, #512 // Set 512 level2 block entries.

LDR X5, =0x00200000 // Increase 2MB address each time.

loop:

STR X2, [X0], #8 // Each entry occupies 2 words.

ADD X2, X2, X5

SUBS X4, X4, #1

BNE loop

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 48 of 53

Example 5-12 creates a section as a translation table at compile time. This method is fast
for simulations. It is written with the GNU assembly grammar. The code to initialize
translation table control registers in example 5-11 is still required.

Example 5-12 Build translation tables using sections at compile time

// Put a 64-bit value with little endianness.

.macro PUT_64B high, low

.word \low

.word \high

.endm

// Create an entry pointing to a next-level table.

.macro TABLE_ENTRY PA, ATTR

PUT_64B \ATTR, (\PA) + 0x3

.endm

// Create an entry for a 1GB block.

.macro BLOCK_1GB PA, ATTR_HI, ATTR_LO

PUT_64B \ATTR_HI, ((\PA) & 0xC0000000) | \ATTR_LO | 0x1

.endm

// Create an entry for a 2MB block.

.macro BLOCK_2MB PA, ATTR_HI, ATTR_LO

PUT_64B \ATTR_HI, ((\PA) & 0xFFE00000) | \ATTR_LO | 0x1

.endm

.align 12 // 12 for 4KB granule.

ttb0_base:

TABLE_ENTRY level2_pagetable, 0

BLOCK_1GB 0x40000000, 0, 0x740

BLOCK_1GB 0x80000000, 0, 0x740

BLOCK_1GB 0xC0000000, 0, 0x740

.align 12 // 12 for 4KB granule.

level2_pagetable:

.set ADDR, 0x000 // The current page address.

.rept 0x200

BLOCK_2MB (ADDR << 20), 0, 0x74C

.set ADDR, ADDR+2

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 49 of 53

.endr

5.3.3 Enabling the MMU and caches
You must initialize the MMU and caches before enabling them. All ARMv8-A processors
require the SMPEN bit to be set before enabling the MMU and cache to support hardware
coherency.

Example 5-13 shows you how to set the SMPEN bit and enable the MMU and cache.
Example 5-13 Set the SMPEN bit and enable the MMU and Cache

// It is implemented in the CPUECTLR register.

MRS X0, S3_1_C15_C2_1

ORR X0, X0, #(0x1 << 6) // The SMP bit.

MSR S3_1_C15_C2_1, X0

// Enable caches and the MMU.

MRS X0, SCTLR_EL3

ORR X0, X0, #(0x1 << 2) // The C bit (data cache).

ORR X0, X0, #(0x1 << 12) // The I bit (instruction cache).

ORR X0, X0, #0x1 // The M bit (MMU).

MSR SCTLR_EL3, X0

DSB SY

ISB

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 50 of 53

5.4 Enabling NEON and Floating Point
In AArch64, you do not need to enable access to the NEON and FP registers. However,
access to the NEON and FP registers can still be trapped.
Example 5-14 shows how to disable access trapping to NEON and FP registers in all
Exception levels.

Example 5-14 disable access trapping to NEON and FP registers

// Disable trapping of accessing in EL3 and EL2.

MSR CPTR_EL3, XZR

MSR CPTR_EL3, XZR

// Disable access trapping in EL1 and EL0.

MOV X1, #(0x3 << 20) // FPEN disables trapping to EL1.

MSR CPACR_EL1, X1

ISB

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 51 of 53

5.5 Changing Exception levels
The ARMv8-A architecture introduces four Exception levels.

• EL0.
• EL1.
• EL2.
• EL3.

Sometimes, you must change between these Exception levels in test cases. Processors
change Exception levels when an exception is taken or returned. For details about
Exception Levels, see the section, Exception levels, in the ARM® Architecture Reference
Manual ARMv8, for ARMv8-A architecture profile.

5.5.1 AArch64 EL3 to AArch64 EL0
Processors enter EL3 after reset. The control register and exception status of lower
Exception levels are not defined. To enter a lower Exception level, you must initialize
Execution state and control registers, and then use a fake exception return by executing
ERET instruction.

Example 5-15 shows how to switch from EL3 to Non-secure EL0.
Example 5-15 Switch from EL3 to Non-secure EL0

// Initialize SCTLR_EL2 and HCR_EL2 to save values before entering EL2.

MSR SCTLR_EL2, XZR

MSR HCR_EL2, XZR

// Determine the EL2 Execution state.

MRS X0, SCR_EL3

ORR X0, X0, #(1<<10) // RW EL2 Execution state is AArch64.

ORR X0, X0, #(1<<0) // NS EL1 is Non-secure world.

MSR SCR_EL3, x0

MOV X0, #0b01001 // DAIF=0000

MSR SPSR_EL3, X0 // M[4:0]=01001 EL2h must match SCR_EL3.RW

// Determine EL2 entry.

ADR X0, el2_entry // el2_entry points to the first instruction of

MSR ELR_EL3, X0 // EL2 code.

ERET

el2_entry:

// Initialize the SCTLR_EL1 register before entering EL1.

MSR SCTLR_EL1, XZR

// Determine the EL1 Execution state.

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 52 of 53

MRS X0, HCR_EL2

ORR X0, X0, #(1<<31) // RW=1 EL1 Execution state is AArch64.

MSR HCR_EL2, X0

MOV X0, #0b00101 // DAIF=0000

MSR SPSR_EL2, X0 // M[4:0]=00101 EL1h must match HCR_EL2.RW.

ADR X0, el1_entry // el1_entry points to the first instruction of

MSR ELR_EL2, X0 // EL1 code.

ERET

el1_entry:

// Determine the EL0 Execution state.

MOV X0, #0b00000 // DAIF=0000 M[4:0]=00000 EL0t.

MSR SPSR_EL1, X0

ADR x0, el0_entry // el1_entry points to the first instruction of

MSR ELR_EL1, X0 // EL0 code.

ERET

el0_entry:

// EL0 code here.

5.5.2 AArch64 EL2 to AArch32 EL1
It is possible to have a mix of Execution states in different Exception levels. When a
higher Exception level uses AArch64, lower Exception levels are allowed to use either
AArch64 or AArch32. Therefore, it is possible to change from higher Exception levels in
AArch64 to lower Exception levels in AArch32.

Example 5-16 shows you how to change from AArch64 EL2 to AArch32 EL1.
Example 5-16 Switch from AArch64 EL2 to AArch32 EL1

// Initialize the SCTLR_EL1 register before entering EL1.

MSR SCTLR_EL1, XZR

MRS X0, HCR_EL2

BIC X0, X0, #(1<<31) // RW=0 EL1 Execution state is AArch32.

MSR HCR_EL2, X0

Document Number: ARM DAI 0527A Non-Confidential
Version: 1.0 Page 53 of 53

MOV X0, #0b10011 // DAIF=0000

MSR SPSR_EL2, X0 // M[4:0]=10011 EL1 is SVC mode must match HCR_EL2.RW.

// Determine EL1 Execution state.

ADR X0, el1_entry // el1_entry points to the first instruction of SVC

MSR ELR_EL2, X0 // mode code.

ERET

el1_entry:

// EL1 code here.

	Application Note
	Bare-metal Boot Code for ARMv8-A Processors
	Bare-metal Boot Code for ARMv8-A Processors
	1 Conventions and Feedback
	2 Preface
	2.1 References
	2.2 Terms and abbreviations

	3 Introduction
	3.1 Document purpose
	3.2 Document scope

	4 Boot code for AArch32 mode
	4.1 Initializing exceptions
	4.1.1 Setting up a vector table
	4.1.2 Enabling asynchronous exceptions

	4.2 Initializing registers
	4.2.1 Initializing general purpose registers
	4.2.2 Initializing stack pointer registers
	4.2.3 Initializing system control registers

	4.3 Configuring the MMU and caches
	4.3.1 Cleaning and invalidating the caches
	4.3.2 Setting up the MMU
	VMSAv8-32 short-descriptor format
	VMSAv8-32 long-descriptor format

	4.3.3 Enabling the MMU and caches

	4.4 Enabling NEON and Floating Point
	4.4.1 Enabling general NEON and FP functionality
	4.4.2 Enabling access to the NEON and FP functionality in the Non-secure world
	4.4.3 Enabling access to the NEON and FP functionality in Non-secure EL1 and EL0

	4.5 Changing modes
	4.5.1 Changing between User, System, FIQ, IRQ, Supervisor, Abort, Undefined modes
	4.5.2 Changing between the Secure world and Non-secure world
	4.5.3 Changing between Hypervisor mode and other modes

	5 Boot code for AArch64 mode
	5.1 Initializing exceptions
	5.1.1 Setting up a vector table
	Reset vector
	Vector table

	5.1.2 Enabling asynchronous exceptions
	Asynchronous exceptions routing
	Asynchronous exceptions mask

	5.2 Initializing registers
	5.2.1 Initializing general purpose registers
	5.2.2 Initializing stack pointer registers
	5.2.3 Initializing system control registers

	5.3 Configuring the MMU and caches
	5.3.1 Cleaning and invalidating the caches
	5.3.2 Setting up the MMU
	5.3.3 Enabling the MMU and caches

	5.4 Enabling NEON and Floating Point
	5.5 Changing Exception levels
	5.5.1 AArch64 EL3 to AArch64 EL0
	5.5.2 AArch64 EL2 to AArch32 EL1

