
ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

1

The diagram to the right illustrates the
simplistic view of what goes on in a typical
system. Applications run in the context of the
operating system. However, the operating
system is actually broken down further into the
OS kernel and a set of OS utilities. The utilities
are things like the shell, the windowing system,
compilers, linkers, loaders, etc. They often run
in user-mode (i.e., they are like APPS).
What does “user-mode” mean? It means that
there are special instructions that directly affect the state of the machine and perform powerful operations.
Normal applications are not allowed access to these instructions; if a normal application executed one of
these instructions, the operating system would kill it. An example is the instruction that sets the ASID
register (address-space identifier). This register identifies the process that is currently running, so that
different processes do not interfere with each other. The instruction that sets a value in the ASID register is
protected, because if a normal application could set the value in the ASID register, then it could
masquerade as any other process on the system.
To provide protection against such abuse, the hardware typically has at least two modes of operation. We
will concern ourself with a simple, common model of two modes: USER and PRIVILEGED. If the
machine is in privileged mode, then privileged instructions are allowed. Otherwise, their use causes a
special interrupt. The kernel is a big block of code that runs in privileged mode. Moreover, it is the only
block of code that runs in privileged mode.
Applications cannot have direct access to all of the hardware all the time, else anarchy. Otherwise, you
have to force them to cooperate (which is similar to anarchy if done poorly, or similar to the above diagram
if done well).
In reality, an application is made to think that it has direct access to the hardware, but that access is
moderated by the operating system, which can take over at any time. Here is an example that demonstrates
what actually goes on in a real system.
We will look at three processes that execute “simultaneously” on a single processor.

So. We have three processes: APP, CAT, and NET, and we have the KERNEL code. The following depicts
an interval of time on the machine. We begin in media res, with all of the processes having run for a while.
Note that this example is very stylized, it assumes that each process only has a single thread of control
(from the kernel’s point of view), and it was written in stream-of-consciousness off the top of my head. It
is intended to present an impression of what goes on between the hardware and operating system, and not
necessarily depict a perfectly accurate (or even self-consistent) OS implementation.

APP references a data structure for the first time and is going to cause a
TLB miss, then a page fault

CAT is reading a large portion of a file to the disk (which succeeds)

NET is sending a large network packet out

APP APP APP UTIL UTIL

KERNEL

HARDWARE

OPERATING SYSTEM

Multitasking, Syscalls, Devices: An Example
ENEE 447: Operating Systems
Prof. Bruce Jacob

ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

2

ASID USER-CODE KERNEL-CODE HARDWARE

APP APP is running
executes load/store, causes TLB miss (say the TLB is software-managed)

APP
TLBMISS interrupt
save EPC/EPC+1
turn on privs.
vector to TLBMISS

APP

TLBMISS entry point:
build address for PTE
load PTE
insert into TLB
jump to EPC + turn off privileges

APP
Retries load/store instruction (we jumped to EPC, not EPC+1)
this time, it succeeds
APP keeps running, oblivious

APP

TIMER interrupt
save EPC/EPC+1
turn on privs.
vector to TIMER

APP
TIMER entry point:
Evidently, APP has exceeded its quota

call scheduler()

APP

function scheduler:
check RunQ for another process: is there another? yes — CAT
copy CPU state to u.state (registers, etc.)
put EPC+1 into u.nextPC
put CAT into ASID register

CAT
copy u.state into CPU + reset timer
put u.nextPC into register
jump to register + turn off privileges

CAT

CAT begins executing from where it last left off
calls read(fd, &buf, 64K)
read() is a library routine:

puts address of BUF into u.base_addr
puts 64K into u.count
puts SYSCALL_READ into reg1
puts FD into reg2
calls SYSCALL -- interrupts machine

CAT
SYSCALL interrupt
save EPC/EPC+1
turn on privs.
vector to SYSCALL

CAT

SYSCALL entry point:
looks in reg1: SYSCALL_READ
looks in reg2: FILEDES
looks in u.filedes[FILEDES] for state of device
call function devices[DEV].entrypoint[SYSCALL-READ] with args:

OUT: u.base_addr, SIZE: u.count,
DISKBLOCK: u.filedes[FILEDES].curblock

[this sets up transfers from DISK to internal buffer pool, then copies data from the buffers (once they are full) into user space, one
buffer at a time, each time incrementing u.base_addr and decrementing u.count]

CAT
function devices[DEV].entrypoint[SYSCALL-READ]:
sends request to DISK: get block u.filedes[FILEDES].curblock
goes to sleep on u.filedes[FILEDES].curblock

ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

3

CAT

function sleep (sleep acts something like a context switch):
save PC of instruction after sleep() in u.kernPC
take CAT off RunQ & put on SleepQ

call scheduler()

CAT

function scheduler:
check RunQ for another process: is there another? yes — NET
copy CPU state to u.state (registers, etc.)
put EPC+1 into u.nextPC
put NET into ASID register

NET
copy u.state into CPU + reset timer
put u.nextPC into register
jump to register + turn off privileges

NET

NET begins executing from where it last left off
calls send(sockfd, buf, siz)
send() is a library routine:

puts BUF into u.base_addr
puts SIZ into u.count
puts SYSCALL_WRITE into reg1
puts SOCKFD into reg2
calls SYSCALL -- interrupts machine

NET
SYSCALL interrupt
save EPC/EPC+1
turn on privs.
vector to SYSCALL

NET

SYSCALL entry point:
looks in reg1: SYSCALL_WRITE
looks in reg2: FILEDES
looks in u.filedes[FILEDES] for state of device
call function devices[DEV].entrypoint[SYSCALL_WRITE] with args:

IN: u.base_addr, SIZE: u.count
PORT: u.filedes[FILEDES].portnum

[assume buffer space available in the driver]

NET

function devices[DEV].entrypoint[SYSCALL_WRITE]:
copy u.count bytes: u.base_addr -> local buffer
update u.status_of_syscall == DONE
send msg to device: WAKEUP! sending you u.count bytes on PORT
goes to sleep on PORT (or some corresponding addr)
save PC after sleep() in u.kernPC

[THIS TIME, sleep() doesn’t take NET off RunQ, because the data is safely in the kernel, and as far as NET knows, the packet has
gone out onto network. The kernel can either go directly back to NET (by jumping to EPC+1) or switch to another process]

NET copy u.nextPC into register
jump to register + turn off privileges

NET NET returns from send(), continues processing

NET
TIMER interrupt
save EPC/EPC+1
turn on privs.
vector to TIMER

NET
TIMER entry point:
Evidently, NET has exceeded its quota

call scheduler()

NET

function scheduler:
check RunQ for another process: is there another? yes — APP
copy CPU state to u.state (registers, etc.)
put EPC+1 into u.nextPC
put APP into ASID register

ASID USER-CODE KERNEL-CODE HARDWARE

ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

4

APP
copy u.state into CPU + reset timer
put u.nextPC into register
jump to register + turn off privileges

APP APP begins executing from where it last left off

APP
DEVICE interrupt
save EPC/EPC+1
turn on privs.
vector to device[DEV].intr()

APP

device[DEV].intr entry point:
happens to be DEV = disk: block BLOCKNUM is here
wakeup(BLOCKNUM)

anyone sleeping on BLOCKNUM?
yes -- this is what CAT was waiting for

awaken() sleeping kernel thread

APP
copy CPU state to u.state
put EPC+1 into u.nextPC
put CAT into ASID register (to get access to CAT’s u. struct & VM space)

CAT

copy u.state into CPU + reset timer
put u.kernPC into register
jump to register + turn on privileges

! jumps to 1st instruction after sleep()

CAT

! in function devices[DEV].entrypoint[SYSCALL-READ]:

copy block BLOCKNUM from disk to internal buffer
copyout(u.base_addr, block, blocksize)
u.base_addr += blocksize;
u.count -= blocksize;
if (u.count == 0) {

make CAT active again
} else {

get next block (or portion thereof)
}

[assume we’re done ... u.count == 0]

CAT u.status_of_syscall = DONE
move CAT from SleepQ to RunQ

[at this point, we have two choices. we can either go back to APP, who was preempted by the disk I/O, or we can restart CAT.
perhaps we want to look at the timing logs -- if CAT had previously eaten up very little of its quantum, then maybe we jump straight
to it. ... there is room for choices ... assume that the copyin & copyout took a while ... CAT doesn’t have much time left to it (it
would execute very few instructions before ending its quantum). so we return to APP]

CAT

function scheduler:
check RunQ for another process: is there another? yes — APP
copy CPU state to u.state (registers, etc.) — [may not be necessary]
put EPC+1 into u.nextPC
put APP into ASID register

APP
copy u.state into CPU + reset timer
put u.nextPC into register
jump to register + turn off privileges

APP APP begins executing from where it last left off

APP
DEVICE interrupt
save EPC/EPC+1
turn on privs.
vector to device[DEV].intr()

ASID USER-CODE KERNEL-CODE HARDWARE

ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

5

APP

device[DEV].intr entry point:
happens to be NUM = network controller: ready for data on PORTNUM
wakeup(PORTNUM)

anyone sleeping on PORTNUM?
yes -- NET was waiting for this

awaken() sleeping kernel thread

APP
copy CPU state to u.state
put EPC+1 into u.nextPC
put NET into ASID register

NET

copy u.state into CPU + reset timer
put u.kernPC into register
jump to register + turn on privileges

! jumps to 1st instruction after sleep()

NET

! in function devices[DEV].entrypoint[SYSCALL_WRITE]:

copies bytes from buffer to network controller
if it all fits, we can stop
if the network controller can take only a portion, we go to sleep again

[if there had not been room in the driver to copy bytes in, we also would have to sleep, but at a different place.]

NET
assume we are done.

call scheduler()

NET

function scheduler:
check RunQ for another process: is there another? yes — APP
copy CPU state to u.state (registers, etc.)
put EPC+1 into u.nextPC
put APP into ASID register

APP
copy u.state into CPU + reset timer
put u.nextPC into register
jump to register + turn off privileges

APP APP begins executing from where it last left off, again.
This time, it performs another load/store that causes a TLB miss

APP
TLBMISS interrupt
save EPC/EPC+1
turn on privs.
vector to TLBMISS

APP
TLBMISS entry point:
build address for PTE
load PTE

[oops -- the PTE says that it is currently not a valid translation -- that the data is not in memory but on disk. here is a design choice:
do we actually CHECK the PTE or do we blindly put it into the TLB? checking will increase overhead of the common case by 20-
30%. MIPS solution: put it blindly into TLB]

APP insert into TLB
jump to EPC + turn off privileges

APP
Retries load/store instruction (we jumped to EPC, not EPC+1)
it fails again, but this time, with a different interrupt type:
this time, the mapping is in the TLB, so we don’t miss, but the mapping is INVALID, so we get a PAGE FAULT.

APP
PAGEFAULT interrupt
save EPC/EPC+1
turn on privs.
vector to PAGEFAULT

APP
PAGEFAULT entry point:
look at PTE -- what are its flags?
says that page is on disk, not in memory

THIS IS WHERE LIFE GETS WEIRD.

ASID USER-CODE KERNEL-CODE HARDWARE

ENEE 447: Operating Systems — Multitasking, Syscalls, Devices: An Example

6

One of the main questions that is glossed over COMPLETELY by this discussion is: WHICH STACK?
when the operating system is executing, which stack does it use?
The way I’ve set it up, the ASID corresponds roughly to whose stack you’re operating on.

[now, we (potentially) have to involve the filesystem. up to now, there have been strict boundaries between devices, allowing us
to have strict boundaries between the drivers — no overlap of duties, no contention for resources within the kernel.

however, NOW, we mix the virtual memory system with the filesystem/disk-I/O ... this is an issue that is implemented differently in
virtually EVERY operating system — the interplay between VM and FILESYSTEM. this is one reason why so many people are
suggesting we merge the two (as in Multics, the original OS). this is one of the things the SASOS guys talk about.

For now, let’s just say we INITIATE DISK XFER into the application’s address space — just like the read() call that happened
earlier in CAT.]

APP
we put APP to sleep(), take it off runQ
when the data comes back, we copy it out
APP’s address space and put APP back on RunQ

ASID USER-CODE KERNEL-CODE HARDWARE

