
ENEE 447: Operating Systems — Project 2 (4%)

Purpose

This project has you build a timeout-queue facility, based on the classic Unix callout table, and using the
timer library that you built in Project Zero. A timeout queue is a simple and elegant way to keep track of
deadlines and to create periodic jobs.

Your implementation will make use of doubly-linked lists, which will be provided to you … the doubly-
linked list is a technique used to keep track of things, and it is very flexible in that you can walk the list in
either direction, and deleting an item from the list only requires a pointer to the item to delete (as
opposed to a singly-linked list, which requires a pointer to the item as well as a pointer to the preceding
item in the list).

As will be the case in most of the semester’s projects, this is programmed in C and does not interact with
the ARM peripherals, so you can first build and test it on your laptop, before trying to run it on the
Raspberry Pi board.

On Timers and Access to System Registers

There is a very powerful facility in the latest instantiations of the ARM instruction set. The following
comes from toe document ARMv8 Instruction Set Overview:

What this means is that, for all of the I/O registers that are part of the core (as opposed to those that are
defined at the SoC level), you need not know the addresses where they live; you need only know their
names. So, for example, here is a write-up of some of the system registers available in ARMv8 cores (64-
bit cores), taken from the document ARM® Architecture Reference Manual—ARMv8, for ARMv8-A
architecture profile:

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 1

Project 2: Timeout Queue (4%)

ENEE 447: Operating Systems — Spring 2021
Assigned: Tuesday, Feb 9; Due: Sunday, Feb 21

ENEE 447: Operating Systems — Project 2 (4%)

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 2

ENEE 447: Operating Systems — Project 2 (4%)

Let’s focus for the moment just on the timer registers, in particular, CNTPCT_EL0. Here is the
documentation write-up for that register (from the same doc):

How can you use this? The document itself tells you under the heading “Accessing the CNTPCT_EL0”
toward the end of the section. For example, let’s say you type the following assembly code into a text file
called time.s:

.globl get_time 
get_time: 
 mrs x0, cntpct_el0 
 ret

This is a 64-bit implementation that will give you a 64-bit implementation of the get_time() function,
which reads the 64-bit time counter into the register x0 and returns it (in ARMv8, function return values

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 3

ENEE 447: Operating Systems — Project 2 (4%)

are passed through the x0 register). Sadly, we are running in 32-bit mode, so our code will be far, far more
complex, and it has been provided to you in time.c in the project directory. Enjoy. :D

By the way, and sticking with the 64-bit implementation, if you really don’t want to mess with assembly
code, you can type the following in a C-language file:

unsigned long get_time() 
{ 
 register unsigned long t;

 // read the current counter 
 asm volatile ("mrs %0, cntpct_el0" : "=r"(t));

 return t; 
}

We can argue about which of the two is easier. The main point is that these two representations are
equivalent — they end up producing exactly the same binary executable code.

Build a Timeout Queue

You should implement the following functions for handling a timeout queue facility. They have the
following definitions and behaviors:

int bring_timeoutq_current(void);

This function calculates the time difference between now and when the timeout queue was
last updated, and it subtracts that difference from the head of the list. It returns the amount
of time to wait, which can be the value of the next-to-fire event, or perhaps some
MAX_WAIT value if you choose that the kernel should never go to sleep for too long.

void create_timeoutq_event(int start, int repeat, pfv_t function, namenum_t data);

This function takes a pointer to a function (which returns void, i.e., a pfv_t) as well as a
piece of generic 8-byte data (in general, this could be more sophisticated, like a pointer to a
dynamically allocated data structure), and it inserts the function into the timeout queue
with the specified timeout. This is done by taking an event structure off the free list,
initializing its values, and inserting it into the timeout queue with the appropriate timing.
The function is intended to run at time start microseconds from now. The function assumes
that the calling function has already brought the timeout queue’s internal notion of time to
be current [through the function bring_timeoutq_current()…] If the repeat value is non-
zero, then when the event is handled (by the function handle_timeoutq_event), it will be re-
inserted into the timeout queue instead of being put back onto the free list.

int handle_timeoutq_event(void);

This function looks at the front of the timeout queue and, if the timeout has expired, or is
about to expire within the next microsecond or so, then the event’s function is executed,
and the corresponding data value is passed to it. If this happens, then the corresponding
event structure is removed from the list. It is either placed back onto the free list, or it is re-
inserted into the timeout queue, depending on the value of the event’s repeat variable,
which was initialized in the create_timeoutq_event function. The function returns a Boolean
value representing whether or not an event was handled. The outer loop will use this to
decide whether or not to keep checking the queue for expired events. We will return
control to the outer loop in this example (as opposed to having the handle_timeoutq_event
function walk the list, handling every single event that has reached its timeout, and only
stopping once it reaches the end of the list or an event with a still-positive timeout value),
because we want to handle not only timed events but asynchronous events, and we do not
want to have to write reentrant list-handling code.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 4

ENEE 447: Operating Systems — Project 2 (4%)

Your functions should work together in the following code (this is taken from kernel.c):

init_timeoutq();	 // given to you

// create some timeout events 
namenum_t data;

data.num = 3; 
bring_timeoutq_current(); 
create_timeoutq_event(2 * ONE_SEC, 4 * ONE_SEC, do_hex, data);

data.num = 10; 
bring_timeoutq_current(); 
create_timeoutq_event(3 * ONE_SEC, 4 * ONE_SEC, do_blink, data);

data.num = 0xabcde0123456789; 
bring_timeoutq_current(); 
create_timeoutq_event(4 * ONE_SEC, 4 * ONE_SEC, do_hex, data);

data.name[0] = 'H'; 
data.name[1] = 'e'; 
data.name[2] = 'l'; 
data.name[3] = 'l'; 
data.name[4] = 'o'; 
data.name[5] = '.'; 
data.name[6] = 0; 
data.name[7] = 0; 
bring_timeoutq_current(); 
create_timeoutq_event(5 * ONE_SEC, 4 * ONE_SEC, do_string, data);

while (1) {

	 if (handle_timeoutq_event()) { 
	 	 continue; 
	 }

	 timeout = bring_timeoutq_current(); 
	 wait(timeout);

}

As with a number of the projects to come, the timeout queue is programmed in C and does not interact
with the ARM peripherals directly, so you can first build and test the facility on your laptop, before trying
to run it on the Raspberry Pi board. If you do so, you will have to “fake” the time-related facilities such as
wait() and get_time() … but it will allow you to debug your code.

Optional Extra Credit

When you look at the code, you may notice that the blink_led() function has been renamed to
blink_led_stall() to indicate that it performs its operation by stalling between turning the LED on and off.
Through this implementation, which is simple but effective, it also effectively blocks the CPU from doing
anything useful in the mean time until it’s done blinking the LED—which is important because it means
that it also blocks the kernel from doing anything useful in the mean time until it’s done. Therefore there
are two versions of the do_blink() function called in the code above. The first version looks like one would
expect:

void do_blink(namenum_t data) 
{ 
 blink_led_stall(data.num); 
}

The second version is quite a bit more involved:

void do_blink(namenum_t data) 
{ 
 int i; 
 namenum_t foo; 
 foo.num = 0;

 bring_timeoutq_current(); 
 for (i=0; i<(data.num*2); i++) { 
 if (i & 0x1) { 

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 5

ENEE 447: Operating Systems — Project 2 (4%)

 create_timeoutq_event(50 * i * ONE_MSEC, 0, led_off, foo); 
 } else { 
 create_timeoutq_event(50 * i * ONE_MSEC, 0, led_on, foo); 
 } 
 } 
}

The two versions of the code are enabled/disabled by setting the #if statement in the code to either 0 or 1.

Among other things, the second example shows why the function create_timeoutq_event() does not need
to bring the time current itself—if it is desired to create a string of events, all relative to now(), then you
should only update the time once at the beginning. If instead you bring the timeout queue current each
time, you are effectively compacting time for those events.

What this second version accomplishes is a way to do a string of events that will not block the kernel from
doing other things. By using the timeout queue instead of just spin-waiting, the kernel is free to interleave
various things together to achieve a globally consistent timing of events. For example, what do you think
would happen if the do_blink() function were given an input value of more than 10? Note that it works
by blinking on and off every 10th of a second.

Getting your timeout queue implementation working with the first version is a bit easier than getting it to
work with the second version, which is running things at 0.05sec (50ms) time granularities instead of
time granularities of 1 second. Also, the blinking should be regular, and the on/off time periods should be
the same—if not, it will be noticeable. And, lastly, using the timeout queue implementation would allow
you to have blinking times in excess of one second, without weirdness happening.

There is also a do_butter() function for you to try in place of do_blink(), if you are interested. This causes
significant overlap between the various tasks, and it does the age-old musical timing of putting a 4-beat
on top of a 3-beat.

So, the Extra Credit Part?

To get extra credit, run your code with the more complex version of do_blink(), which turns the LED on
and off through your timeout queue, and set the number of blinks in the kernel to be 20 instead of 10
(replace data.num = 10; with data.num = 20; in the kernel.c code above). If you make this attempt, you’ll
get a maximum of 5pts on the project, instead of a maximum of 4pts (an additional 25%).

Build It, Load It, Run It

Once you have it working, show us.

One question: why does the software sometimes start working just fine, and then all of a sudden stop working?

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 6

	Project 2: Timeout Queue (4%)
	ENEE 447: Operating Systems — Spring 2021
	Assigned: Tuesday, Feb 9; Due: Sunday, Feb 21

	Purpose
	On Timers and Access to System Registers
	Build a Timeout Queue
	Optional Extra Credit
	Build It, Load It, Run It

