
ENEE 447: Operating Systems — Project 4 (4%)

Purpose
In this project you will implement context switching on the Raspberry Pi, using perhaps the simplest
possible scheduling algorithm: on every timer tick you will round-robin between three processes (i.e., if
thread 0 is running, change to thread 1; if thread 1 is running, change to thread 2; if thread 2 is running,
change to thread 0). The three threads will be in the same address space, so we will not have to worry
about saving and restoring anything other than the register file contents (for instance, once we have
virtual memory running, you will have to save special control registers related to that). Context switching
obviously represents the underpinning of all multitasking and multiprocessing and is thus one of the
operating system’s most fundamental and powerful mechanisms. From this point, you will be able to
implement much more sophisticated scheduling algorithms and juggle any number of simultaneous
threads.

Context Switch in ARM
Recall the register-file arrangement in the ARM architecture:

The IRQ vector shares a number of registers with code running in USR mode: r0–r12 and the program
counter are common, while the IRQ vector runs in a mode that has its own stack pointer (r13) and link
register (r14).

Interrupt handling 11

ARM Processor

Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18
registers in a privileged mode. Each mode has a set of extra registers called banked
registers (see figure 1.7). Banked registers are swapped in, whenever a mode
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ
mode is shown as r13_irq.

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14/LR

r12

r13/SP

r15/PC

cpsr

-

r0

r1

r9_fiq

r2

r3

r4

r5

r6

r7

r8_fiq

r10_fiq

r11_fiq

r14_fiq

r12_fiq

r13_fiq

r15/PC

-

spsr_fiq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_irq

r12

r13_irq

r15/PC

-

spsr_irq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_svc

r12

r13_svc

r15/PC

-

spsr_svc

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_undef

r12

r13_undef

r15/PC

-

spsr_undef

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_abort

r12

r13_abort

r15/PC

-

spsr_abort

User/System FIQ IRQ SVC Undef Abort

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 1

Project 4: Preemptive Context Switch (4%)
ENEE 447: Operating Systems — Spring 2021
Assigned: Tuesday, Mar 9; Due: Sunday, Mar 28

ENEE 447: Operating Systems — Project 4 (4%)

Among many other things, what this means is that, assuming you have a register-save area of sufficient
size, located at threadSave, then the following code will save all of the registers visible in USR and SYS
modes:

save_r13_irq: .word 0

irq_handler:

 ldr sp, =threadsave
 stmia sp,{r0-lr}^ @ Save all user registers r0-lr
 @ (the ^ means user registers)

 str lr,[sp,#60] @ store saved PC on stack

 str lr, save_lr_irq @ save the SVC lr
 mrs lr, SPSR @ load SPSR (assume ip not a swi arg)
 str lr,[sp,#64] @ store on stack
 ldr lr, save_lr_irq @ save the SVC lr

 // regs saved, we can now destroy stuff

 //
 // clear timer interrupt (we get here from timer)
 //
 mov sp, #SVCSTACK0
 bl clear_timer_interrupt

 @ clobber the user stack - simulates effect of another thread running
 @ clobber the user stack - simulates effect of another thread running
 @ clobber the user stack - simulates effect of another thread running

 mov r2, # SYS_mode
 msr cpsr_c, r2
 ldr r0,badval
 ldr r1,badval
 ldr r2,badval
 ldr r3,badval
 ldr r4,badval
 ldr r5,badval
 ldr r6,badval
 ldr r7,badval
 ldr r8,badval
 ldr r9,badval
 ldr r10,badval
 ldr r11,badval
 ldr r12,badval
 ldr r13,badval
 ldr r14,badval
 mov r2, # IRQ_mode
 msr cpsr_c, r2

 @ clobber the user stack - simulates effect of another thread running
 @ clobber the user stack - simulates effect of another thread running
 @ clobber the user stack - simulates effect of another thread running

 // reset the timer
 bl set_timer

 // restore the registers
 ldr sp, =threadsave
 ldr r0,[sp,#64] @ pop saved CPSR
 msr SPSR_cxsf, r0 @ move it into place

 ldr lr,[sp,#60] @ restore address to return to

 @ Restore saved values. The ^ means to restore the userspace registers
 ldmia sp, {r0-lr}^
 subs pc, lr, #4 @ return from exception

This code does several things. First, it saves the thread context on an array of words pointed to by
threadSave. Once those values are saved, the code is free to destroy the register file contents (which
simulates a context switch to another thread). The handler changes to SYS mode, which shares the same
register file as USR mode, and it loads a garbage value into registers 0–14. Then it jumps back into the
IRQ handler’s mode, restores the previously saved state, and exits.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 2

ENEE 447: Operating Systems — Project 4 (4%)

This code is given to you in the project source directory for p4. The entire project, as presented to you,
compiles and runs. With it, you will build a preemptive context switch.
Here’s how it works. The code begins by performing the following save-register functions:

• The address of the save location is loaded into the sp register, which does not destroy the USER
mode’s copy of the sp register (see previous write-ups on the ARM register file).

• Registers r0–r14 are stored upwards starting at this address. These are the user registers, so the sp
and lr registers are the user’s copies.

• The return address is stored at the next address, which would correspond to the location for r15.
This is because the return address is r15, as that is the Program Counter in the ARM32
architecture.

• Last, at the next location beyond that, we store the process’s saved SPSR.
Therefore, one can think of the register set being saved as looking like the following in a data structure:

 REG_r0,
 REG_r1,
 REG_r2,
 REG_r3,
 REG_r4,
 REG_r5,
 REG_r6,
 REG_r7,
 REG_r8,
 REG_r9,
 REG_r10,
 REG_r11,
 REG_r12,
 REG_sp,
 REG_lr,
 REG_pc,
 REG_spsr,

That is exactly the data that is save and restored for a context switch. These values, in that order, are stored
in the following structure, for which there is one for every process in the system:

struct tcb {
 char name[NAMESIZE];
 long threadid;
 long stack;
 long regs[17]; // 17th reg is the SPSR saved by context switch
} tcbs[NUM_THREADS];

Note that we have a statically-declared set of thread structures, tcbs[NUM_THREADS]. The kernel in
this project loads three apps into the first three TCBs for you.
Note that the name, thread ID, and stack are static values: they should not change. When a thread runs,
all of its context is stored in the regs portion of the TCB. For instance, the stack member of the struct is
the statically assigned starting point for the threads stack: as will be discussed in the next section, user
thread stacks begin at 0x30000, and each thread is given its own 4KB segment: thread 0 gets the first
4KB; thread 1 gets the next; etc. This will change once we have virtual memory, but just remember not to
modify this value, and when a new thread starts up, use that as its initial stack pointer (for instance, you
could put the value in REG_sp).
Back to the assembly code; once the registers are saved, the code calls C-language routines to do the work.
Because the handlers cannot be interrupted by themselves, we simply assign the same static starting stack
location for each handler invocation. This works because we are running single-core for the moment.
After the C-language routines finish, we restore state from the thread control block:

• The address of the save location is loaded into the sp register.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 3

ENEE 447: Operating Systems — Project 4 (4%)

• First, from the topmost location (corresponding to what would be r16 in the TCB), we restore
the process’s saved SPSR.

• Next we retrieve the user process’s return address from the TCB location corresponding to r15.
This is held temporarily in the lr link register, which is not the user link register.

• Lastly, registers r0–r14 are restored upwards starting at the bottom address. These are the user
registers, so the sp and lr registers are the user’s copies and do not overwrite the “sp” or “lr”
registers being used by the handler code.

What Address?
One important issue in this project is figuring out where to put things. Here is a basic structure for the
kernel executable file. This is what is in kernel7.img and what is shown in human-readable form in
kernel7.list.

To find this information out, you must look through the file kernel7.list. This is extremely important, in
general, because it is the easiest way to figure out your code size and code layout. Note that if you simply
rely upon the listed file size for the kernel binary, you might be misled into thinking that its size is
something that it is not. When you look at the compiled size of the kernel file, your laptop will report
that the size of the file kernel7.img (or kernel7.bin) is roughly 23K.

vector table and interrupt handlers

Kernel code

0x0000 0000

0x0000 5000
data: strings

data: regular data, initialized

data: regular data,
uninitialized (BSS)

0x0000 b000

0x0000 6000

Size of
Compiled and

Linked File

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 4

ENEE 447: Operating Systems — Project 4 (4%)

Why is this worth paying attention to?
This is why:

0xb000 ≠ 23,000

The decimal value of 0xb000 is closer to 43K, not 23K. The amount of memory that the kernel uses is
roughly double the size of the file as stored on disk. If you tried to put the various stacks and things right
after the 23K mark, you would be interfering with the kernel’s heap.

Moral of the story: don’t ever use the binary size as an indication of memory footprint.
Anyway, we have to address the following questions:

• Where should the kernel stacks go?

• Where should the thread stacks go?

• Where should the user application binaries go?
We have placed the kernel stacks in the 0x0002xxxx range (there are sixteen, but only a few are used at the
moment), and we have placed the thread stacks (there are only 16 of them, for now) in the 0x0003xxxx
range. This is shown below:

Kernel code & data
0x0000 0000

Kernel heap

0x0000 b000

0x0000 6000

unused
(for future kernel

expansion)

0x0002 0000

0x0003 0000

0x0004 0000

16 User Thread Stacks
(0x31000, 0x32000,

0x33000, … 0x40000)

16 Kernel Stacks
(0x21000, 0x22000,

0x23000, … 0x30000)

Size of
Compiled and

Linked File

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 5

ENEE 447: Operating Systems — Project 4 (4%)

The kernel stacks are assigned statically in the 1_boot.s module, and the user-thread stacks are assigned
statically in the threads.c module.
One thing that you will have to do is tell the compiler where the apps are; for now, and until we
implement virtual memory, this needs to be a static decision. So, for example, if you decide that an app
should be loaded at location 0x40000, then you need to edit the shell’s memmap file to reflect this. This
has been done for you, for all three applications (at 0x40000, 0x60000, and 0x80000, which is where
kernel.c loads them at init time).
The memmap files have the following format:

MEMORY
{
 ram : ORIGIN = 0x0000, LENGTH = 0x400000
}

SECTIONS
{
 .text : { *(.text*) } > ram
 .bss : { *(.bss*) } > ram
}

This is an extremely simple linker file (do a little research, and you will see … this is wonderfully simple,
all thanks to David Welch). The main thing you should work with is the ORIGIN variable in the top
part. This tells the linker where the application will start. Because all of the addresses will be different for
each application (we are not yet implementing virtual memory), each will have to be loaded into a region
that does not overlap with anything, and you will need to modify each application’s memmap file to
reflect the location into which it will be loaded. Yes, this is a pain in the butt, and it is one of the reasons
that virtual memory is so awesome. But, again, it’s already been done for you.

Implement Context Switch
There are three “user applications” to switch between:

• app1 — This blinks the LED on and off at roughly 1-second intervals.

• app2 — This repeatedly gets the time of day and then sends that value to the kernel log, at
roughly 1-second intervals.

• app3 — This repeatedly writes a string to the kernel log at roughly 2/3-second intervals.
The code you are given loads the three binaries into thee different sections of the memory system, turns
on the system timer to wake up periodically (roughly 1/10-second intervals) and then starts up the first
application, which is thread 0. You should see the LED blinking on and off regularly, and the periodic
timer will wake up and print a dot to the screen every 16th invocation, so you should see a line of dots
forming across your screen as the LED blinks. When you see this happening, it indicates to you that
everything is working correctly: your RPi is running the first thread regularly; the SVC interrupt is
working correctly; the timer is running correctly; and the timer and SVC interrupts do not interfere with
each other.
Your task is to write code that will swap between all three apps. Knowing that the code above works, this
should be straightforward, as the code above is a context-switch code. If your code is implemented
correctly, it should look like all threads are running “simultaneously.” If you slow the timer interrupt
down in time.c, for instance once every second or even every ten seconds, you should see only one app
working at a time. If you speed the timer up, you should see problems as the cost of handling the
interrupts grows significant.

Build It, Load It, Run It
Once you have it working, show us.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 6

	Project 4: Preemptive Context Switch (4%)
	ENEE 447: Operating Systems — Spring 2021
	Assigned: Tuesday, Mar 9; Due: Sunday, Mar 28

	Purpose
	Context Switch in ARM
	What Address?
	Implement Context Switch
	Build It, Load It, Run It

