
ENEE 447: Operating Systems — Project 4 (4%)

Purpose
In this project you will implement context switching on the Raspberry Pi, using perhaps the simplest 
possible scheduling algorithm: on every timer tick you will round-robin between three processes (i.e., if 
thread 0 is running, change to thread 1; if thread 1 is running, change to thread 2; if thread 2 is running, 
change to thread 0). The three threads will be in the same address space, so we will not have to worry 
about saving and restoring anything other than the register file contents (for instance, once we have 
virtual memory running, you will have to save special control registers related to that). Context switching 
obviously represents the underpinning of all multitasking and multiprocessing and is thus one of the 
operating system’s most fundamental and powerful mechanisms. From this point, you will be able to 
implement much more sophisticated scheduling algorithms and juggle any number of simultaneous 
threads. 

Context Switch in ARM
Recall the register-file arrangement in the ARM architecture:

 
The IRQ vector shares a number of registers with code running in USR mode: r0–r12 and the program 
counter are common, while the IRQ vector runs in a mode that has its own stack pointer (r13) and link 
register (r14).  

Interrupt handling 11

ARM Processor

Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18 
registers in a privileged mode. Each mode has a set of extra registers called banked 
registers (see figure 1.7). Banked registers are swapped in, whenever a mode 
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into 
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into 
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked 
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ 
mode is shown as r13_irq. 

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the 
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.
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Among many other things, what this means is that, assuming you have a register-save area of sufficient 
size, located at threadSave, then the following code will save all of the registers visible in USR and SYS 
modes: 

save_r13_irq: .word 0 

irq_handler: 

    ldr     sp, =threadsave 
    stmia   sp,{r0-lr}^     @ Save all user registers r0-lr 
                        @ (the ^ means user registers) 

    str lr,[sp,#60]     @ store saved PC on stack 

    str     lr, save_lr_irq           @ save the SVC lr 
    mrs lr, SPSR        @ load SPSR (assume ip not a swi arg) 
    str lr,[sp,#64]     @ store on stack 
    ldr     lr, save_lr_irq           @ save the SVC lr 

    // regs saved, we can now destroy stuff 

    // 
    // clear timer interrupt (we get here from timer) 
    // 
    mov     sp, #SVCSTACK0 
    bl      clear_timer_interrupt 

    @ clobber the user stack - simulates effect of another thread running 
    @ clobber the user stack - simulates effect of another thread running 
    @ clobber the user stack - simulates effect of another thread running 

    mov     r2, # SYS_mode 
    msr     cpsr_c, r2 
    ldr     r0,badval 
    ldr     r1,badval 
    ldr     r2,badval 
    ldr     r3,badval 
    ldr     r4,badval 
    ldr     r5,badval 
    ldr     r6,badval 
    ldr     r7,badval 
    ldr     r8,badval 
    ldr     r9,badval 
    ldr     r10,badval 
    ldr     r11,badval 
    ldr     r12,badval 
    ldr     r13,badval 
    ldr     r14,badval 
    mov     r2, # IRQ_mode 
    msr     cpsr_c, r2 

    @ clobber the user stack - simulates effect of another thread running 
    @ clobber the user stack - simulates effect of another thread running 
    @ clobber the user stack - simulates effect of another thread running 

    // reset the timer 
    bl      set_timer 

    // restore the registers 
    ldr     sp, =threadsave 
    ldr r0,[sp,#64]     @ pop saved CPSR 
    msr SPSR_cxsf, r0       @ move it into place 

    ldr lr,[sp,#60]     @ restore address to return to 

    @ Restore saved values.  The ^ means to restore the userspace registers 
    ldmia   sp, {r0-lr}^ 
    subs    pc, lr, #4                  @ return from exception 

This code does several things. First, it saves the thread context on an array of words pointed to by 
threadSave. Once those values are saved, the code is free to destroy the register file contents (which 
simulates a context switch to another thread). The handler changes to SYS mode, which shares the same 
register file as USR mode, and it loads a garbage value into registers 0–14. Then it jumps back into the 
IRQ handler’s mode, restores the previously saved state, and exits. 
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This code is given to you in the project source directory for p4. The entire project, as presented to you, 
compiles and runs. With it, you will build a preemptive context switch. 
Here’s how it works. The code begins by performing the following save-register functions: 

• The address of the save location is loaded into the sp register, which does not destroy the USER 
mode’s copy of the sp register (see previous write-ups on the ARM register file).  

• Registers r0–r14 are stored upwards starting at this address. These are the user registers, so the sp 
and lr registers are the user’s copies. 

• The return address is stored at the next address, which would correspond to the location for r15. 
This is because the return address is r15, as that is the Program Counter in the ARM32 
architecture. 

• Last, at the next location beyond that, we store the process’s saved SPSR. 
Therefore, one can think of the register set being saved as looking like the following in a data structure: 

    REG_r0, 
    REG_r1, 
    REG_r2, 
    REG_r3, 
    REG_r4, 
    REG_r5, 
    REG_r6, 
    REG_r7, 
    REG_r8, 
    REG_r9, 
    REG_r10, 
    REG_r11, 
    REG_r12, 
    REG_sp, 
    REG_lr, 
    REG_pc, 
    REG_spsr, 

That is exactly the data that is save and restored for a context switch. These values, in that order, are stored 
in the following structure, for which there is one for every process in the system: 

struct tcb { 
    char    name[NAMESIZE]; 
    long    threadid; 
    long    stack; 
    long    regs[17];   // 17th reg is the SPSR saved by context switch 
} tcbs[ NUM_THREADS ]; 

Note that we have a statically-declared set of thread structures, tcbs[NUM_THREADS]. The kernel in 
this project loads three apps into the first three TCBs for you. 
Note that the name, thread ID, and stack are static values: they should not change. When a thread runs, 
all of its context is stored in the regs portion of the TCB. For instance, the stack member of the struct is 
the statically assigned starting point for the threads stack: as will be discussed in the next section, user 
thread stacks begin at 0x30000, and each thread is given its own 4KB segment: thread 0 gets the first 
4KB; thread 1 gets the next; etc. This will change once we have virtual memory, but just remember not to 
modify this value, and when a new thread starts up, use that as its initial stack pointer (for instance, you 
could put the value in REG_sp). 
Back to the assembly code; once the registers are saved, the code calls C-language routines to do the work. 
Because the handlers cannot be interrupted by themselves, we simply assign the same static starting stack 
location for each handler invocation. This works because we are running single-core for the moment. 
After the C-language routines finish, we restore state from the thread control block: 

• The address of the save location is loaded into the sp register.  
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• First, from the topmost location (corresponding to what would be r16 in the TCB), we restore 
the process’s saved SPSR. 

• Next we retrieve the user process’s return address from the TCB location corresponding to r15. 
This is held temporarily in the lr link register, which is not the user link register. 

• Lastly, registers r0–r14 are restored upwards starting at the bottom address. These are the user 
registers, so the sp and lr registers are the user’s copies and do not overwrite the “sp” or “lr” 
registers being used by the handler code. 

What Address?
One important issue in this project is figuring out where to put things. Here is a basic structure for the 
kernel executable file. This is what is in kernel7.img and what is shown in human-readable form in 
kernel7.list. 

To find this information out, you must look through the file kernel7.list. This is extremely important, in 
general, because it is the easiest way to figure out your code size and code layout. Note that if you simply 
rely upon the listed file size for the kernel binary, you might be misled into thinking that its size is 
something that it is not. When you look at the compiled size of the kernel file, your laptop will report 
that the size of the file kernel7.img (or kernel7.bin) is roughly 23K.  

vector table and interrupt handlers

Kernel code

0x0000 0000

0x0000 5000
data: strings

data: regular data, initialized

data: regular data,
uninitialized (BSS)

0x0000 b000

0x0000 6000

Size of 
Compiled and 

Linked File 
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Why is this worth paying attention to?  
This is why: 

0xb000 ≠ 23,000 

The decimal value of 0xb000 is closer to 43K, not 23K. The amount of memory that the kernel uses is 
roughly double the size of the file as stored on disk. If you tried to put the various stacks and things right 
after the 23K mark, you would be interfering with the kernel’s heap.  

Moral of the story: don’t ever use the binary size as an indication of memory footprint. 
Anyway, we have to address the following questions: 

• Where should the kernel stacks go? 

• Where should the thread stacks go? 

• Where should the user application binaries go? 
We have placed the kernel stacks in the 0x0002xxxx range (there are sixteen, but only a few are used at the 
moment), and we have placed the thread stacks (there are only 16 of them, for now) in the 0x0003xxxx 
range. This is shown below: 

Kernel code & data
0x0000 0000

Kernel heap

0x0000 b000

0x0000 6000

unused
(for future kernel 

expansion)

0x0002 0000

0x0003 0000

0x0004 0000

16 User Thread Stacks 
(0x31000, 0x32000, 

0x33000, … 0x40000)

16 Kernel Stacks 
(0x21000, 0x22000, 

0x23000, … 0x30000)

Size of 
Compiled and 

Linked File 
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The kernel stacks are assigned statically in the 1_boot.s module, and the user-thread stacks are assigned 
statically in the threads.c module.  
One thing that you will have to do is tell the compiler where the apps are; for now, and until we 
implement virtual memory, this needs to be a static decision. So, for example, if you decide that an app 
should be loaded at location 0x40000, then you need to edit the shell’s memmap file to reflect this. This 
has been done for you, for all three applications (at 0x40000, 0x60000, and 0x80000, which is where 
kernel.c loads them at init time).  
The memmap files have the following format: 

MEMORY 
{ 
    ram : ORIGIN = 0x0000, LENGTH = 0x400000 
} 

SECTIONS 
{ 
    .text : { *(.text*) } > ram 
    .bss : { *(.bss*) } > ram 
} 

This is an extremely simple linker file (do a little research, and you will see … this is wonderfully simple, 
all thanks to David Welch). The main thing you should work with is the ORIGIN variable in the top 
part. This tells the linker where the application will start. Because all of the addresses will be different for 
each application (we are not yet implementing virtual memory), each will have to be loaded into a region 
that does not overlap with anything, and you will need to modify each application’s memmap file to 
reflect the location into which it will be loaded. Yes, this is a pain in the butt, and it is one of the reasons 
that virtual memory is so awesome. But, again, it’s already been done for you. 

Implement Context Switch
There are three “user applications” to switch between: 

• app1 — This blinks the LED on and off at roughly 1-second intervals. 

• app2 — This repeatedly gets the time of day and then sends that value to the kernel log, at 
roughly 1-second intervals. 

• app3 — This repeatedly writes a string to the kernel log at roughly 2/3-second intervals. 
The code you are given loads the three binaries into thee different sections of the memory system, turns 
on the system timer to wake up periodically (roughly 1/10-second intervals) and then starts up the first 
application, which is thread 0. You should see the LED blinking on and off regularly, and the periodic 
timer will wake up and print a dot to the screen every 16th invocation, so you should see a line of dots 
forming across your screen as the LED blinks. When you see this happening, it indicates to you that 
everything is working correctly: your RPi is running the first thread regularly; the SVC interrupt is 
working correctly; the timer is running correctly; and the timer and SVC interrupts do not interfere with 
each other.   
Your task is to write code that will swap between all three apps. Knowing that the code above works, this 
should be straightforward, as the code above is a context-switch code. If your code is implemented 
correctly, it should look like all threads are running “simultaneously.” If you slow the timer interrupt 
down in time.c, for instance once every second or even every ten seconds, you should see only one app 
working at a time. If you speed the timer up, you should see problems as the cost of handling the 
interrupts grows significant. 

Build It, Load It, Run It
Once you have it working, show us.
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