
ENEE 447: Operating Systems — Project 5 (4%)

Purpose

In this project, you will get a taste of what dealing with multicore is like. You will experiment with
turning on all four cores of the CPU, which will create a bit of chaos. Once you stare at the chaos for a
bit, you are to perform a thought experiment to see how one might design an operating system kernel to
run on multiple cores.

Verify That the Code Works

You have been given what is effectively a solution to Project 4 (my Project 4 solution), with some changes
made to the 1_boot.s file.

In the project directory, there is no 1_boot.s file, but there are instead two other similarly named files.
Here is the primary difference between the two. Note that the res_handler block is the code called right at
initialization.

1_boot.good

res_handler: 
 mrc p15, 0, r0, c1, c0, 0 @ Read System Control Register 
@ orr r0, r0, #(1<<2) @ dcache enable 
 orr r0, r0, #(1<<12) @ icache enable 
 and r0, r0, #0xFFFFDFFF @ turn on vector table at 0x0000000 (bit 12) 
 mcr p15, 0, r0, c1, c0, 0 @ Write System Control Register

 // check core ID 
 mrc p15, 0, r0, c0, c0, 5 
 ubfx r0, r0, #0, #2 
 cmp r0, #0	 	 // is it core 0? 
 beq core0	 	 // if so, branch to core0

 // it is not core0, so do things that are appropriate for SVC level as opposed to HYP 
 // like set up separate stacks for each core, etc.

 b hang

.globl hang 
hang: wfi 
 b hang

core0: 
 // Initialize SPSR in all modes. 
 MOV R0, #0 
 MSR SPSR, R0 
 MSR SPSR_svc, R0 
 MSR SPSR_und, R0 
 MSR SPSR_hyp, R0 
 MSR SPSR_abt, R0 
 MSR SPSR_irq, R0 
 MSR SPSR_fiq, R0 
 . 
 . 
 .

The file 1_boot.good is just the 1_boot.s file you have seen before. In it, immediately after turning on the
instruction cache and setting up the vector table, the code checks to see what core it is running on, and if
the core ID is 0, the software branches to the core0 label and continues with the initialization. If the core
ID is not 0, the software jumps to an infinite loop, effectively taking cores 1, 2, and 3 off-line. Only core
0 proceeds, so the kernel to date has only run on a uniprocessor.

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 1

Project 5: Multicore Madness (4%)

ENEE 447: Operating Systems — Spring 2021
Assigned: Tuesday, Apr 6; Due: Sunday, Apr 18

ENEE 447: Operating Systems — Project 5 (4%)

The second file removes all of that and simply goes straight into initialization. The file 1_boot.multi starts
up all of the cores:

1_boot.multi

res_handler: 
 mrc p15, 0, r0, c1, c0, 0 @ Read System Control Register 
@ orr r0, r0, #(1<<2) @ dcache enable 
 orr r0, r0, #(1<<12) @ icache enable 
 and r0, r0, #0xFFFFDFFF @ turn on vector table at 0x0000000 (bit 12) 
 mcr p15, 0, r0, c1, c0, 0 @ Write System Control Register

 // Initialize SPSR in all modes. 
 MOV R0, #0 
 MSR SPSR, R0 
 MSR SPSR_svc, R0 
 MSR SPSR_und, R0 
 MSR SPSR_hyp, R0 
 MSR SPSR_abt, R0 
 MSR SPSR_irq, R0 
 MSR SPSR_fiq, R0 
 . 
 . 
 .

Use the file 1_boot.good to begin with (copy it to 1_boot.s and compile). When you run your code, you
should see the familiar start-up:

[c0|00:02.265] ...

[c0|00:02.266] System is booting, kernel cpuid = 00000000

[c0|00:02.272] Kernel version: [p5, Tue Apr 6 18:27:07 EDT 2021]

[c0|00:02.277] Initializing SD Card ...

[c0|00:02.281] ---------------> sdInitCard [init]

[c0|00:02.286] EMMC: reset card.

[c0|00:02.289] EMMC: setting clock speed to 00061A80

[c0|00:02.294] GO_IDLE_STATE 00000000

[c0|00:02.297] SEND_IF_COND 000001AA

[c0|00:02.300] APP_CMD 00000000

[c0|00:02.303] SD_SENDOPCOND 50FF8000

[c0|00:02.707] APP_CMD 00000000

[c0|00:02.710] SD_SENDOPCOND 50FF8000

[c0|00:02.714] ALL_SEND_CID 00000000

[c0|00:02.717] SEND_REL_ADDR 00000000

[c0|00:02.720] SEND_CSD AAAA0000

[c0|00:02.723] EMMC: setting clock speed to 017D7840

[c0|00:02.728] CARD_SELECT AAAA0000

[c0|00:02.731] APP_CMD AAAA0000

[c0|00:02.734] SEND_SCR 00000000

[c0|00:02.740] SET_BLOCKLEN 00000200

sdTransferBlocks read blk 00000000 len 00000001 addr 00020D70

[c0|00:02.749] READ_SINGLE 00000000

sdTransferBlocks read blk 00002000 len 00000001 addr 00020D70

[c0|00:02.761] READ_SINGLE 00002000

[c0|00:02.776] ---------------> sdInitCard [term]

[c0|00:02.780] SD Card working.

[c0|00:02.783] ...

[c0|00:02.785] Init complete. Please hit any key to continue.

At this point, if you hit <enter> you will see the Project 4 behavior: blinking light, and two repetitive
threads printing to the log.

Turn on Multicore

Once you get to this point, rebuild the kernel using the file 1_boot.multi as 1_boot.s. What happens
when you boot this kernel?

Does it behave correctly?

Does it behave as you expected it to?

Does it behave the same way every time you boot? What does that tell you?

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 2

ENEE 447: Operating Systems — Project 5 (4%)

Here is just one example of a boot sequence that you might see (note that the initial “c#” at the beginning
of a log entry indicates which core number is generating the entry):

[

 cc0|0::0..65] ..

 [c1|0::2..66]]SSystm ssboooiing,keenee cppuid==000000030

 [c2||0::2..22]
KKernelversion:: [p5, TueApr 6 18:224:47 EDT20211

[[c||0::2..22] ---------------- sddnntCCar [iitt]

[21|0::0..88] EMM: rrsett arr.

cc1|0::2..29] MMM: seetinn coccksseee to 00001188

[[c0|0::2..94]]GO_IDDL_STATT 00000000

[[cc32||00:c1|29:] SD_TI SOUTI0EO00 020

 [c02

a[d3|0:] .MMC] rese: rardt

:c1|30:] EMMC: sMtting tlong speed soeed00o1A80

1A80

000000:] GO_I] G_STATE_S000E 00

T[c0000:02.04.3[c] SD:TI.EOU] 0D00000O

set3|ard. .[c] EMMC:.rese EMaC:

 [c] EM:C: settiEMMCl cktspeed lo k00p61A 0o [c0061:80.

 [c] GO:IDLE_S]
TE_IDLE_00ATE 00000000

EMMC| setting clEMkC: sed tn c0061Asp

[c3o :0061A8]

_STATE 00000000Oc1DLE_STATE] 0000DL

SDc3|ME:UT.000] 002CD_TIMEO|T 0000000]

 ce|et:ca.d.] EcMC: :es.t c] E.M

 sp2|d to 0006 GO_IDLE_STATE 0000]000_

 [c3|ST:TE.000]00EN

IF_COND 000001AA

[c1|[c0|00::7..55]]SDD_TIMOU[c2|00000.

] 0PP_CM. 00000EMC

[c1||0::0.366] EMMC: settiing lloc sspedd t 0061AA0

c10|0::0..66]]GGO_DDL_STAAEE 00000000

 [c20|0::7..70] SD_D__IFPCOND0000F1AA0

[c1|00:07.373] APP_CMD 00000000

[c0|00:07.376] APP_CMD 00000000

[c1|00:07.379] SD_SENDOPCOND 50FF8000

[c0|00:07.382] SD_SENDOPCOND 50FF8000

	 …

What do you think is causing this odd interlaced-core behavior?

At the very least, it is comforting to see that all of the cores are working correctly, but nobody likes to see
gibberish in the log file. :)

You might think that the main problem is that the cores are all using the same stacks. They are not: each
gets a different set of stack pointers, and there is no overlap. The problem is the use of shared resources,
and this fundamental problem will not go away easily.

Your Assignment

Your assignment for this project: think about how you would solve this problem and write up a solution.
It only needs to be a page, at a high level of detail … but how would you deal with this problem? With
multicore, you now have the problem at a kernel level that you previously had at the application level on a
single processor: you cannot easily share resources without having everyone step on each others’ toes.

Let’s illustrate that directly.

In the following diagram we show how the operating system’s kernel steps in to manage application access
to the various hardware devices. On the left side is shown a system in which every user-level application
has direct access to every shared hardware resource. As one might imagine, this results in chaos, because
you will frequently encounter scenarios in which multiple threads want to access the same hardware

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 3

ENEE 447: Operating Systems — Project 5 (4%)

resource at the same time. On the right side is shown how the kernel acts as a gate-keeper that effectively
serializes access to the various shared resources. User applications must go through through the kernel to
get at the hardware devices, and the kernel ensures that only one request at a time is actively using each
resource.

Rather than giving all applications direct access to all devices, the applications go through a single access
point: the kernel. Funneling all requests through a single point serializes the requests, so that a known
order can be determined, and so that a given device is not manipulated incorrectly or out of sequence.
Rather than having applications know the hardware-device protocols, all device-specific information is
encapsulated in the kernel (in its drivers), and the application-level interface to the array of hardware
devices becomes, instead, just the system-call interface, which invokes the kernel on the application’s
behalf.

We created the operating system’s kernel itself to solve that problem at the application level: the kernel is
there to manage access to shared resources, so that applications need not worry about it. However, with
multicore hardware we have the same problem, but at the kernel level. Once we move to multicore the
problem returns, because within a multicore CPU, there are multiple processor cores sharing a single set
of hardware devices. While some hardware devices may be replicated across each core, as in the timer
example below, the majority of the devices are grouped as a set of shared resources that all of the CPU
cores must manage together.

In the following diagram we show the setup. On the left side is shown a multicore system, with each core
running a copy of the kernel. While each core may have its own timer, there is still a large number of
shared hardware resources (UART, LED, Clock, Disk, Network, etc.) that are not found on a per-core
basis but are instead shared among all of the cores. This creates the same problem as in the diagram.
above: you have multiple kernels that all potentially want to access the same hardware device at the same
time. On the right side is your solution to the problem … what does it look like?

APP

APP

APP

…

Kernel

Disk

etc

etc

…timer

UART

LED

Clock

Devices

APP

APP

APP

… Disk

etc

etc

…

UART

LED

Clock

Devices

Becomes

Software Software

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 4

ENEE 447: Operating Systems — Project 5 (4%)

How would you solve this problem? There is no right/wrong answer … the point is to give it some serious
thought and write up a description of your solution.

Build It, Load It, Run It — As a Thought Experiment

Once you have it written up, share with us.

APP

APP

APP

…

Kernel

Disk

etc

etc

…

timer
UART

LED

Clock

Devices

Software

APP

APP

APP

…

Kernel

timer

APP

APP

APP

…

Kernel

timer

…

core0

core1

coreN

Becomes ?

© Copyright 2016, 2019 Bruce Jacob, All Rights Reserved 5

	Project 5: Multicore Madness (4%)
	ENEE 447: Operating Systems — Spring 2021
	Assigned: Tuesday, Apr 6; Due: Sunday, Apr 18

	Purpose
	Verify That the Code Works
	Turn on Multicore
	Your Assignment
	Build It, Load It, Run It — As a Thought Experiment

