
Using Processor A�nity in Loop Scheduling on Shared�Memory

Multiprocessors

Evangelos P� Markatos Thomas J� LeBlanc

markatos�cs�rochester�edu leblanc�cs�rochester�edu

Abstract

Loops are the single largest source of parallelism in many applications� One way to exploit this parallelism
is to execute loop iterations in parallel on di�erent processors� Previous approaches to loop scheduling attempt
to achieve the minimum completion time by distributing the workload as evenly as possible� while minimizing
the number of synchronization operations required� In this paper we consider a third dimension to the
problem of loop scheduling on shared�memory multiprocessors� communication overhead caused by accesses
to non�local data� We show that traditional algorithms for loop scheduling� which ignore the location of data
when assigning iterations to processors� incur a signi�cant performance penalty on modern shared�memory
multiprocessors� We propose a new loop scheduling algorithm that attempts to simultaneously balance the
workload� minimize synchronization� and co�locate loop iterations with the necessary data� We compare the
performance of this new algorithm to other known algorithms using �ve representative kernel programs on
a Silicon Graphics multiprocessor workstation� a BBN Butter�y� a Sequent Symmetry� and a KSR��� and
show that the new algorithm o�ers substantial performance improvements� up to a factor of � in some cases�
We conclude that loop scheduling algorithms for shared�memory multiprocessors cannot a�ord to ignore the
location of data� particularly in light of the increasing disparity between processor and memory speeds�

� Introduction

Loops are the largest source of parallelism in most applications� Executing the many iterations of a loop on
di�erent processors enables applications to take advantage of parallel processors� and thereby reduce their running
time� The problem of decomposing a loop into parallel tasks and executing those tasks on a multiprocessor
involves �nding the appropriate granularity of parallelism� so that the overhead of parallelism is kept small� while
the workload is evenly balanced among the available processors��

Both static and dynamic loop scheduling methods have been used to assign the iterations of a loop to processors�
Static methods assign iterations to processors statically� minimizing run�time synchronization overhead� Dynamic
methods defer the assignment of iterations to processors until run�time� and therefore can achieve better load
balancing in the presence of unpredictable transient loads and variable execution times� The major di�culty in
dynamic loop scheduling is to keep the run�time synchronization overhead small� while balancing the load�

The simple static scheduling algorithm divides the number of loop iterations among the available processors
as evenly as possible� in the hope that each processor receives about the same amount of work� This algorithm
minimizes run�time synchronization overhead� but does not balance the load dynamically� If all iterations do not
take the same amount of time� or if processors begin executing loop iterations at di�erent points in time� then
load imbalance may arise� which will cause some processors to be idle while other processors continue to execute
loop iterations�

The simplest dynamic algorithm for scheduling loop iterations is called self�scheduling ���� �	
� In this algo�
rithm� each processor repeatedly executes one iteration of the loop until all iterations are executed� The algorithm
relies on a central work queue of iterations� where each idle processor gets one iteration� executes it� and repeats

�In this paper we consider non�nested completely parallelizable loops only� The problem of transforming nested loops into non�
nested loops has been addressed previously �����
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the same cycle until there are no more iterations to execute� Self�scheduling achieves almost perfect load balanc�
ing� since all processors �nish within one iteration of each other� Unfortunately� this algorithm incurs signi�cant
synchronization overhead� each iteration requires atomic access to the central work queue� This synchronization
overhead can quickly become a bottleneck in large�scale systems� or even in small�scale systems if the time to
execute one iteration is small�

Uniform�sized chunking ��
 reduces synchronization overhead by having each processor take K iterations�
instead of one� This algorithm amortizes the cost of each synchronization operation over the execution time
of K iterations� resulting in less synchronization overhead� Uniform�sized chunking has a greater potential for
imbalance than self�scheduling however� as processors �nish within K iterations of each other in the worst case�
In addition� choosing an appropriate value for K is a di�cult problem� which has been solved for limited cases
only�

Guided self�scheduling ���
 is a dynamic algorithm that changes the size of chunks at run�time� allocating
large chunks of iterations at the beginning of a loop so as to reduce synchronization overhead� while allocating
small chunks towards the end of the loop to balance the workload� Under guided self�scheduling each processor
is allocated ��P

th
of the remaining loop iterations� where P is the number of processors� Assuming all loop

iterations take the same amount of time to complete� guided self�scheduling ensures that all processors �nish
within one iteration of each other and use the minimal number of synchronization operations�

Since processors take only a small number of iterations from the work queue at the end of each loop� guided
self�scheduling can su�er from excessive contention for the work queue� If each iteration takes a short time to
complete� then processors spend most of their time competing to take iterations from the work�queue� rather
than executing iterations� Adaptive guided self�scheduling ���
 addresses this problem by using a back�o� method
to reduce the number of processors competing for iterations during periods of contention� This algorithm also
avoids assigning all the time�consuming iterations to one processor by assigning consecutive iterations to di�erent
processors� which reduces the risk of load imbalance that arises when the execution times of consecutive iterations
vary widely but in a correlated fashion �e�g� if the execution time of iterations decreases linearly�� As a result of
these modi�cations� adaptive guided self�scheduling performs better than guided self�scheduling in many cases�

In some cases guided self�scheduling might assign too much work to the �rst few processors� so that the
remaining iterations are not su�ciently time�consuming to balance the workload� This situation arises when the
initial iterations of a loop are much more time�consuming than later iterations� The factoring algorithm ���

addresses this problem� Under factoring� allocation of loop iterations to processors proceeds in phases� During
each phase� only a subset of the remaining loop iterations �usually half� is divided equally among the available
processors� Because factoring allocates a subset of the remaining iterations in each phase� it balances load better
than guided self�scheduling when the computation times of loop iterations vary substantially� In addition� the
synchronization overhead of factoring is not signi�cantly greater than that of guided self�scheduling�

Like the factoring algorithm� the tapering algorithm ���
 is designed for loops where the execution time of
iterations varies in such a way as to cause load imbalance under guided self�scheduling� Tapering is used for
irregular loops� where the execution time of iterations varies widely and unpredictably� The tapering algorithm
uses execution pro�le information to estimate the average iteration time and the variance in iteration times�
These estimates are used to select a chunk size that� with high probability� limits the amount of load imbalance
that can occur to be within a given bound�

Although guided self�scheduling minimizes the number of synchronization operations needed to achieve perfect
load balancing� the overhead of synchronization can become signi�cant in large�scale systems with very expensive
synchronization primitives� Trapezoid self�scheduling ���
 tries to reduce the need for synchronization� while
still maintaining a reasonable balance in load� This algorithm allocates large chunks of iterations to the �rst few
processors� and successively smaller chunks to the last few processors� The �rst chunk is of size N

�P
� and consecutive

chunks di�er in size N

�P� iterations� The di�erence in the size of successive chunks is always a constant in trapezoid
self�scheduling� whereas it is a decreasing function both in guided self�scheduling and in factoring�

All of these loop scheduling algorithms attempt to balance the workload among the processors without incurring
substantial synchronization overhead� Each of the algorithms assumes that an individual iteration takes the same
amount of time to execute on every processor� This assumption is not valid however on many shared�memory
multiprocessors� The existence of memory that is not equidistant from all processors �such as local memory
or a processor cache� implies that some processors are closer to the data required by an iteration than others�
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Loop iterations frequently have an a�nity ��
 for a particular processor � the one whose local memory or cache
contains the required data� By exploiting processor a�nity� we can reduce the amount of communication required
to execute a parallel loop� and thereby improve performance�

In this paper we describe a new loop scheduling algorithm called a�nity scheduling� This algorithm attempts to
balance the workload� minimize the number of synchronization operations� and exploit processor a�nity� A�nity
scheduling uses a deterministic assignment policy to assign repeated executions of a loop iteration to the same
processor� thereby ensuring most data accesses will be to the local memory or cache� In contrast to most known
algorithms� a�nity scheduling employs per�processor work queues� which minimize the need for synchronization
across processors� As a result of the deterministic assignment policy and per�processor work queues� a�nity
scheduling introduces synchronization only when load imbalance occurs� If the initial assignment of iterations
to processors produces a balanced workload� all processors will �nish executing at about the same time without
incurring any synchronization overhead� If load imbalance occurs �i�e�� a processor is idle while there are iterations
to be executed�� iterations are reassigned from one processor to another�

The next section provides the rationale for a�nity scheduling� and describes the a�nity scheduling algorithm�
Section � presents an analytic evaluation of a�nity scheduling and a comparison with other known techniques�
Section � contains an experimental comparison of the known loop scheduling algorithms� based on �ve represen�
tative kernel programs running on a Silicon Graphics multiprocessor workstation and a BBN Butter�y� Section �
uses experiments on a Sequent Symmetry and Kendall Square Research KSR�� multiprocessor to examine how the
performance bene�ts of a�nity scheduling scale with an increase in communication costs� processors� or problem
size� Section  places our results in perspective� by discussing the broader issue of scheduling in shared�memory
multiprocessors� Finally section � summarizes our results and presents our conclusions�

� A�nity Scheduling

��� Rationale

Our motivation for exploiting processor a�nity in loop scheduling derives from the observation that� for many
parallel applications� the time spent bringing data into the local memory or cache is a signi�cant source of
overhead� ranging between ����� of the total execution time ��� ��� ��
� While data movement caused by true
sharing is unavoidable� it is possible to minimize data movement caused by a poor assignment of iterations to
processors� By scheduling a loop iteration on the processor whose local memory or cache already contains the
necessary data� we can signi�cantly reduce the execution time of the iteration�

A�nity scheduling is based on the assumption that� in many cases� loop iterations do in fact have an a�nity
for a particular processor� In order for this assumption to hold� it must be the case that� ��� the same data is
used over and over by an iteration� and ��� the data is not removed from the local memory �or cache� before it
can be reused�

Data reuse is common in many applications� particularly those that employ iterative algorithms wherein a
parallel loop is nested within a sequential loop� In such cases� each iteration of the parallel loop accesses the
same �or nearby� data on successive iterations of the enclosing sequential loop� During the �rst iteration of the
sequential loop� each iteration of the nested parallel loop loads the required data into the local memory or cache�
where it may remain during subsequent iterations of the enclosing sequential loop�

Data reuse may also occur in programs produced by a parallelizing compiler� Earlier work has suggested
that nested loops be interchanged in such a way as to reduce synchronization and communication overhead ���
�
The resulting loop structure nests a parallel loop within a sequential loop� again producing the desired form� If
necessary� several parallel loops can be coalesced into one ���
�

Whether data resides in local storage long enough to be reused is a more complicated question� Data may be
removed from local storage to make room for the data needed by other iterations of the same parallel loop� or
another application� If two applications share a single processor� then the data required by one application may be
forced out of local storage by the other application� We can minimize this e�ect under time sharing by increasing
the quantum� so that the time required to reload the cache is small relative to the quantum size� Even in this case�
a�nity scheduling will be of little help if the iterations of a parallel loop cannot be executed repeatedly within a
single quantum �a distinct possibility on small�scale multiprocessors with extremely large loops�� A better solution
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is to avoid time�sharing altogether� and employ space sharing instead� wherein each application gets some number
of processors for a relatively long period of time� Space sharing not only avoids cache �and memory� interference
between applications� it also has other attractive properties that result in improved performance over time sharing
���� 	� ��
�

Even if a set of processors are dedicated to a single application� the data needed by one iteration of a loop may
be evicted from local storage to make room for the data needed by another iteration of the same loop� � Although
eviction may have been a serious problem in the past� when local caches �or memory� were quite small� it is less
likely to occur in modern multiprocessors� The size of local caches and memory has grown substantially in the
last few years in order to bridge the ever�widening gap between processor speeds and communication speed� For
example� the BBN Butter�y o�ered � MB of local memory per node in the early ��	��s� and � MB of memory
per node in ����� With regards to cache�coherent machines� the Sequent Symmetry �introduced around ��	��
has � KB local caches� the Silicon Graphics �D��	�GTX �introduced around ����� has � MB �second�level�
local caches� and the Kendall Square Research multiprocessor �introduced in ����� has �� MB of coherent local
memory �or cache� per processor� Architecture trends suggest that the density in DRAM memory chips �and the
resulting memory size� doubles in size every ��� years ���
� Given this trend� the chances are good that the local
cache or memory will be large enough to hold the data for many iterations of a loop�

If eviction occurs even with very large local storage� then the program may not be suitable for execution on
a multiprocessor� E�cient execution requires that a processor�s working set �t in the local cache �or memory��
If the working set consists of multiple iterations� and the associated data doesn�t �t in local storage� then the
program will thrash� spending most of its time loading data from non�local storage� This type of program will
not execute e�ciently on modern multiprocessors regardless of the loop scheduling algorithm in use�

Finally� there are loops that can execute e�ciently on shared�memorymultiprocessors� but which do not exhibit
a�nity� For example� a large parallel loop might force an eviction on every iteration� but if each iteration is time�
consuming and makes e�cient use of the local cache� then the evictions will not dominate the execution cost�
Our work does not address this case� we exploit a�nity only where it exists� and thereby signi�cantly improve
the performance of a large class of programs�

��� A�nity Scheduling Algorithm

We consider the loop scheduling problem to have three dimensions� load imbalance� synchronization overhead�
and communication overhead due to non�local memory accesses� Our algorithm for a�nity scheduling builds on
previous work in loop scheduling� while also attempting to exploit processor a�nity� The main ideas underlying
our algorithm are�

� As with many known algorithms� we assign large chunks of iterations at the start of loop execution� so as
to reduce the need for synchronization� and assign progressively smaller chunks to balance the load�

� We use a deterministic assignment policy to ensure that an iteration is always assigned to the same processor�
After the �rst execution of the iteration� that processor will contain the required data� so subsequent
executions of the iteration will not need to load the data into local storage�

� We reassign a chunk to another processor �which also involves moving the required data� only if necessary
to balance the load� An idle processor removes chunks from another�s queue� and executes them indivisibly�
so an iteration is never reassigned more than once�

We will assume that the underlying hardware or software implements a coherent memory� so that data is
copied into local storage when �rst accessed� This copy is implemented in hardware on machines with coherent
caches� such as the Symmetry and Silicon Graphics machine� and may be implemented in the operating system
on machines lacking coherent caches� like the Butter�y �� �� ��
�

Our a�nity scheduling algorithm divides the iterations of a loop into chunks of size dN�P e� where N is the
number of iterations in the loop� and P is the number of available processors� The ith chunk of iterations is always

�We assume that the number of iterations is much larger than the number of available processors� and therefore each processor
must execute multiple iterations�
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loop�initialization�N�P�

�� N is the number of loop iterations� P is the number of processors

�

for�i � � � i 	 P � i

� �

�� assign iterations ceil�i�N�P� to min�N�ceil��i
���N�P��

�� to processor i

assign�iterations�i�





loop �� executed by each processor

�� get ��k of the local iterations to execute

range � get�iterations�from�local�queue���k� �

if �range �� empty�

max�load � find�most�loaded�processor�� �

if �max�load �� nil� break �

�� get ��P of the iterations from the most loaded processor

range � get�iterations�from�nonlocal�queue�max�load���P��

if �range �� nil� break �

execute�range� �

forever

Figure �� Pseudocode for A�nity Scheduling

placed on the local work queue of processor i� When a processor is idle� it removes ��k of the iterations in its
local work queue and executes them� � If a processor�s work queue is empty� it �nds the most loaded processor�
removes d��P e of the iterations in that processor�s work queue� and executes them� �

Note that we distinguish between assigning a loop iteration to a processor�s work queue� and executing the
iteration on that processor� Initially� loop iterations are assigned to a processor�s work queue in chunks of size ��P �
so as to balance the load statically� Processors execute ��k of the remaining iterations on their local work queue
at a time� which corresponds to at most N�kP iterations� Processors execute ��P of the remaining iterations
from a remote work queue� which corresponds to at most N�P � iterations�

A pseudocode description for a�nity scheduling can be found in Figure �� Although we implemented this
algorithm by hand for our experiments� it could easily be employed by a parallelizing compiler�

In our current implementation an idle processor examines the work queues of all the other processors and
removes work from the queue with the most iterations� Our experimental results suggest that this implementation
su�ces on small�scale machines like the Iris� and on medium�scale con�gurations� like the ��processor KSR�� we
used in our experiments� However� this implementation would not be e�cient on a large�scale machine� where a
scalable or randomized policy would be more appropriate ��
�

There are two important di�erences between a�nity scheduling and previous dynamic loop scheduling algo�
rithms� First� the initial assignment of chunks to processors in a�nity scheduling is deterministic� That is�
processor i is always assigned the ith chunk of iterations to execute� For many programs� this assignment ensures
that repeated executions of the loop will access data that is already stored in the local memory or cache� Second�
a�nity scheduling initially assumes that load imbalance will not occur� and therefore assigns the same number of
iterations to each processor�s work queue� Each processor gets iterations from its own local work queue� accesses
to di�erent work queues can proceed in parallel� and each access is local� and therefore cheap� If load imbalance
arises� the algorithmmigrates iterations from loaded processors to idle ones� Migrating iterations causes the asso�
ciated data to move twice in most cases� the data must �rst move to an idle processor to alleviate load imbalance�

�The constant k is a parameter of our algorithm� In most of our experiments we assume k equals P � We describe the e�ects of
changes in k in section ��

�Synchronization is required to remove iterations from a work queue� but not to check the load on a processor�
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and then move back to its original location to restore processor a�nity� However� under a�nity scheduling this
overhead is introduced only when load imbalance arises� whereas other algorithms incur this overhead on every
iteration�

Despite these di�erences� we will show that a�nity scheduling has all the advantages of the best dynamic loop
scheduling algorithms� That is� it balances the load dynamically� minimizes synchronization� and is immune to
the arrival and departure of processors in the system�

��� Modi�ed Factoring

The a�nity scheduling algorithm is intended to address all three dimensions of the loop scheduling problem� An
entirely new algorithm is not needed in order to deal with communication overhead however� previous methods
can be extended to deal with this new dimension� We will now describe how to reduce the need for communication
in the factoring algorithm�

During each phase of the factoring algorithm� iterations are grouped into P equal�sized chunks� Those chunks
are placed in the central work queue� and each processor removes the next available chunk� Our modi�cation
to this scheme is that during each phase� processor i always removes the ith chunk from the queue� rather than
the chunk at the front of the queue� If the ith chunk for this phase is no longer in the queue� an idle processor
removes the �rst chunk in the queue� � By selecting the same chunk each time a loop executes� the modi�ed
factoring algorithm ensures that an iteration has access to the data it referenced during an earlier execution�
However� each access to the central work queue is considerably more expensive than in the case of factoring or
guided self�scheduling� and the additional overhead may eliminate the bene�ts of scheduling iterations close to
their data� We will examine this issue in our experiments with the various loop scheduling algorithms�

� Analytic Evaluation

Under a�nity scheduling each iteration is initially assigned to a processor based on a�nity considerations� and
then reassigned to another processor if necessary to balance the load� Since an iteration is reassigned at most once�
the algorithm is stable under load imbalance conditions and avoids processor thrashing ���
� where processors
spend more time executing migrated work than executing their own assigned work�

The fact that each iteration is reassigned to another processor at most once by a�nity scheduling does not
imply that the number of synchronization operations associated with reassignment is linear in the number of
iterations� Since iterations are assigned �and reassigned� to processors in chunks� synchronization overhead is
amortized over the number of iterations in a chunk� Theorem ��� places a bound on the synchronization overhead
induced by a�nity scheduling�

Lemma ��� ���� If each processor takes ��k
th

of the iterations in a work queue� the worst�case number of accesses
is O�k log�N�k��� where N is the initial number of iterations in the work queue�

Theorem ��� A�nity scheduling will incur at most O�k log� N
Pk

� � P log� N
P� �� synchronization operations on

each work queue�

Proof� When a processor accesses its local work queue� it removes ��k
th

of the remaining iterations� Initially� each

local queue contains N�P iterations� From Lemma 	�� it follows that a processor will access its own work queue at most

O
k log
 N
Pk

�� times� When another processor accesses that work queue� it removes ��P
th

of the remaining iterations�

Again using Lemma 	�� we conclude that no more than O
P log
 N
P� �� accesses by other processors can occur� So the total

number of synchronization operations to each work queue is 
in the worst case� O
k log
 N
Pk

� � P log
 N
P� ���

By way of comparison� guided self�scheduling induces O�P log�N�P �� synchronization operations �worst case�
on the central work queue� factoring induces O�P log�N �� operations� and trapezoid self�scheduling induces �P
operations�

�As with a	nity scheduling� load imbalance may cause data to move twice�





One common assumption in loop scheduling is that all processors do not start executing loop iterations at
the same time� as there may have been delays due to previous load imbalance or synchronization operations�
Theorem ��� places a bound on the degree of imbalance that can result from using a�nity scheduling under this
assumption�

Lemma ��� ���� Assume that all iterations of a loop take the same amount of time to complete� If each processor
takes ��P

th
of the remaining iterations in a work queue� then all processors 	nish within one iteration of each

other�

Theorem ��� Assume that all iterations of a loop take the same amount of time to complete� and that not all
processors start executing loop iterations at the same time� Under a�nity scheduling� all processors will 	nish

within N�P�k�
P �P���k

� � iterations of each other�

Proof� Under anity scheduling the worst�case imbalance occurs when all processors except one �nish working on their

own iterations just as the remaining processor is ready to begin working on its iterations� In this case the late processor

will take N

Pk
iterations from its own work queue� leaving �k���N

Pk
iterations to be divided among the other P � � processors�

According to Lemma 	��� if each of the P � � processors removes ��P
th

of the remaining iterations� they will all �nish

within one iteration of each other� Under this scenario� one processor will have to execute N

Pk
iterations� while each of

the other processors has only �k���N
P �P���k iterations to execute� The resulting imbalance is N

Pk
�

�k���N
P �P���k � or

N�P�k�
P �P���k � Since

processors do not� in general� start executing iterations at exactly the same time� there could be an additional disparity of

one iteration� As a result� all processors will �nish within N

Pk
�

�k���N
P �P���k ��� or N�P�k�

P �P���k �� iterations from each other�

Under guided self�scheduling and factoring� all processors �nish within one iteration of each other� Theorem
��� implies that if the constant k is equal to the number of processors P � then all processors will �nish within one
iteration of each other under a�nity scheduling as well�

From these results� we see that k plays an important role in the overhead of a�nity scheduling� If k is a small
constant� then the number of synchronization operations per local work queue is small �proportional to log� N

kP
���

while the potential for load imbalance is high �proportional to N

P
�� As k approaches P � a�nity scheduling

approaches the same worst�case load imbalance as guided self�scheduling and factoring� while simultaneously
increasing the number of synchronization operations on the local work queue by a factor of P �

Selecting an optimal value for k is a di�cult task� since the best choice depends on a tradeo� between the
bene�ts of load balancing versus the costs of synchronization� This problem is not unique to a�nity scheduling
however� because most loop scheduling algorithms must make this same tradeo��

Under a�nity scheduling we have separated the synchronization costs associated with access to the local work
queue �as represented by k� the fraction of iterations removed from the local work queue� from the synchronization
costs associated with access to remote work queues �as represented by P � the fraction of iterations removed from a
remote work queue�� Since synchronization operations on local work queues are usually inexpensive� we use k � P
in our implementation� which results in small initial chunks �N�P �� and thus good load balancing properties�
Smaller values of k could be used to reduce the number of accesses to local queues� while increasing the potential
for load imbalance�

We next consider the size of chunks of iterations that should be used with parallel loops wherein the time each
iteration takes to execute is a decreasing function of the iteration index� These loops are among the most di�cult
to schedule because they often result in load imbalance� particularly when the scheduling algorithm assigns large
chunks of loop iterations to the �rst few processors and successively smaller chunks to other processors� Theorem
��� indicates how many iterations each chunk should contain so that no more than ��P

th
of the remaining work

is assigned to a processor at one time�

Theorem ��� Assume a parallel loop with N iterations� where the ith iteration takes time proportional to �N�i�k�
A chunk of size �

�k���P of the iterations corresponds to at most ��P
th

of the remaining work to be done�

Proof� Assume that there are R more iterations to be executed� The index of the �rst iteration is r� the index of
the last iteration is r � R� �� Assume also that the time iteration x takes to complete is c � 
r � R � x�k� This function
suggests that the iteration with index r takes time c �Rk � while the iteration with index r�R�� takes time c to complete�
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The total work remaining to be done in the loop is�

r�R��X
x�r

c � 
r �R� x�k

The time required by the �rst chunk of size R

�k���P
iterations is

r� R

�k���P
��X

x�r

c � 
r �R� x�k

In order not to create load imbalance� we want this work to be ��P
th

of the total work to be done� or

r� R

�k���P
��X

x�r

c � 
r �R� x�k �
�

P
�

r�R��X
x�r

c � 
r � R� x�k

Using integral approximation� we will prove the theorem by proving�

r� R

�k���P
��X

x�r

c � 
r �R� x�k

� c �Rk �

Z
r� R

�k���P ��

r

c � 
r� R� x�kdx

�
�

P

Z
r�R

r

c � 
r �R� x�kdx 
��

�
�

P

r�R��X
x�r

c � 
r �R� x�k

Because 
r �R � x�k is a decreasing function of x we know that for all b � r � ��

bX
x�r��


r �R� x�k �

Z
b

r


r �R� x�k �

b��X
x�r


r �R � x�k 
��

These inequalities represent an upper and lower bound on the numerical value of the integral� Using 
�� it is straight�
forward to prove the �rst and last inequality of the set of inequalities 
��� In order to complete the proof of 
�� we need
to show that

c �Rk �

Z
r� R

�k���P
��

r

c � 
r �R� x�kdx �
�

P

Z
r�R

r

c � 
r � R� x�kdx

or


k � ��Rk � 
R�k�� �

�
R � ��

R

P 
k � ��

�
k��

�
�

P
Rk��

or
k � �

R
� ��

�
� �

�

R
�

�

P 
k� ��

�
k��

�
�

P

	�

Because 
�� ��x�k � �� k�x� we have

k � �

R
� �� 
� �

�

R
�

�

P 
k� ��
�k�� �

k � �

R
� �� ��

k � �

R
�

�

P
�

�

P

which proves inequality 
	�� which in turn proves inequality 
���

Theorem ��� suggests that when all iterations take the same amount of time� ��P
th
of the iterations corresponds

	



to ��P
th

of the workload� When the iterations have a decreasing triangular form� that is iteration i takes time
proportional to �N � i�� then the �rst ����P �

th
of the iterations corresponds to ��P

th
of the workload� When

the iterations have a decreasing parabolic form� that is iteration i takes time proportional to �N � i��� then the
�rst ����P �

th
of the iterations corresponds to ��P

th
of the workload�

Loops with decreasing workloads� such as those described above� are among the most di�cult loops to schedule�
The scheduling algorithmmust be careful to avoid assigning so many iterations to one processor that the remaining
iterations are insu�cient to balance the workload� Our experiments indicate that the factoring and trapezoid
algorithms have better load balancing properties than guided self�scheduling for this type of loop� This result
can be traced to the fact that both factoring and trapezoid start with a chunk that contains ����P �

th
of the

iterations to be scheduled� while guided self�scheduling starts with a chunk that contains ��P
th

of the iterations�
According to theorem ���� the �rst chunk will be the bottleneck in guided self�scheduling� while it will not be a
bottleneck for factoring or trapezoid�

In general� if a loop scheduling algorithm assigns less than ��P
th

of the remaining workload to each idle
processor� then the minimum imbalance will result� Theorem ��� states how many iterations correspond to
this fraction of the remaining workload for loops wherein successive iterations require a polynomially decreasing
amount of work� If the amount of work per iteration increases polynomially� then the loop is easy to schedule�
���kP �

th
of the remaining iterations always corresponds to less than ��P

th
of the remaining work�

Summarizing our results� a�nity scheduling �with k � P � o�ers worst�case load imbalance guarantees that are
the same as �or in some cases better than� those of guided self�scheduling and factoring� but can� in the worst
case� introduce about P times more synchronization operations� Fortunately� these synchronization operations are
directed to P di�erent work queues� and so the number of serializable synchronization operations under a�nity
scheduling is somewhat smaller than the number of serializable synchronization operations under guided self�
scheduling or factoring� Since a�nity scheduling can also dramatically reduce communication overhead� a�nity
scheduling should perform much better than either guided self�scheduling or factoring� We will now examine the
relative performance of these loop scheduling algorithms experimentally�

� Experimental Evaluation

In order to evaluate the performance bene�ts of a�nity scheduling� we implemented many of the known loop
scheduling methods by hand on a Silicon Graphics �D��	�GTX Iris workstation� a bus�based� cache�coherent
machine with 	 processors� a BBN Butter�y I shared�memory multiprocessor with � processors� and a KSR��
large�scale cache�coherent multiprocessor with � processors� We then measured the performance of each of the
scheduling algorithms on a suite of applications�

��� Scheduling Algorithms

We implemented the following loop scheduling algorithms by hand on the Iris� static scheduling �STATIC��
self�scheduling �SS�� guided self�scheduling �GSS�� factoring �FACTORING�� trapezoid self�scheduling �TRAPE�
ZOID�� a�nity scheduling with k � P �AFS�� modi�ed factoring �MOD�FACTORING�� and a hand�optimized
algorithm �BEST�STATIC�� BEST�STATIC represents our attempt at the best static assignment possible� given
complete knowledge of the application and its input� We implemented this assignment by hand� after examining
the application and the input� so as to maximize locality of reference and minimize load imbalance� While not
generally realizable� since it requires programmer intervention and assumes knowledge of the application�s input�
BEST�STATIC is a useful base�line for evaluating other loop scheduling algorithms�

��� Applications

We carefully selected �ve application programs that present loop scheduling algorithms a range of opportunities
for addressing load imbalance� synchronization overhead� and communication overhead� Our application suite
contains the following programs�

� Successive Over�Relaxation �SOR��

�



DO SEQUENTIAL �� I � ��MAXITERATIONS

DO PARALLEL �� J � ��N

DO SEQUENTIAL �� K � ��N

A�J�K� � UPDATE�A�J�K�

�� CONTINUE

�� CONTINUE

�� CONTINUE

All iterations of the parallel loop take about the same time to execute� so better load balancing algorithms
are not likely to produce much better performance� However� the ith iteration of the parallel loop always
accesses the ith row of the matrix� so scheduling algorithms that exploit processor a�nity are likely to
produce much better performance�

� Gaussian Elimination�

DO SEQUENTIAL �� K � ��N

DO PARALLEL �� I � K�N

DO SEQUENTIAL �� J � K���N
�

A�I��J� � A�I��J� � A�K����J� � A�i��K����A�K����K���

�� CONTINUE

�� CONTINUE

�� CONTINUE

This application exhibits some load imbalance across iterations� and o�ers some opportunities for exploiting
processor a�nity� Although successive executions of an iteration of the parallel loop do not access exactly
the same matrix elements each time� there is signi�cant overlap in the elements referenced by successive
executions of an iteration� We expect scheduling algorithms that exploit a�nity to improve performance�
but not as much as in the previous case�

� Transitive Closure�

DO SEQUENTIAL �� K � ��N

DO PARALLEL �� J � ��N

IF �A�J�K� �EQ� TRUE� THEN

DO SEQUENTIAL �� I � ��N

IF �A�K�I� �EQ� TRUE� A�J�I� � TRUE

�� CONTINUE

�� CONTINUE

�� CONTINUE

The distinguishing characteristic of this application is that each iteration of the parallel loop may take time
O��� or O�N � �where the input matrix is of size N�N �� depending on the input data� Since the input values
determine the variation in iteration execution time� this application will serve to evaluate the e�ectiveness
of load balancing for each scheduling algorithm� This application will also bene�t from some form of a�nity
scheduling� since the ith iteration of the parallel loop always accesses the ith row of the matrix�

� Adjoint Convolution�

DO PARALLEL �� I � ��N�N

DO SEQUENTIAL �� K � I�N�N

A�I� � A�I� 
 X�B�K��C�I�K�

�� CONTINUE

�� CONTINUE

This application exhibits signi�cant load imbalance� the ith iteration of the parallel loop takes time pro�
portional to O�n� � i�� There is no a�nity to exploit however� so this application serves to evaluate the
e�ectiveness of load balancing in the absence of a�nity�

��



DO SEQUENTIAL � I� � ����

DO PARALLEL � I� � ����

DO PARALLEL � I� � ����

DO PARALLEL � I� � ����

���

�if C then ����

� CONTINUE

� CONTINUE

� CONTINUE

DO PARALLEL � I� � �����

���

DO PARALLEL � I� � ���

����

�if C then ����

� CONTINUE

� CONTINUE

DO PARALLEL � I� � ����

DO PARALLEL � I� � ���

���

� CONTINUE

� CONTINUE

� CONTINUE

Figure �� Structure of the L� application

Application Load imbalance A�nity
SOR none yes

Gauss elimination little yes
Transitive closure input dependent yes
Adjoint convolution large no

L� little no

Table �� Load imbalance and a�nity characteristics of the application suite�

� L�� This application was used as a benchmark in ���
� we include it in our study for comparison with
previously published results� The structure of L� can be found in Figure �� L� is an example of a hybrid
application with non�perfectly nested and multi�way nested parallel loops� In our experiments� all if state�
ments are true with probability ���� Because this application does not perform any memory accesses� there
is no a�nity to be exploited�

Table � summarizes the properties of our application suite with respect to load imbalance and a�nity� If an
application exhibits load imbalance� the iterations of the loop may take varying amounts of computation time�
so a static scheduling algorithm may not be appropriate� If an application exhibits a�nity� we can improve
performance by scheduling iterations appropriately�

��� Comparison of Loop Scheduling Algorithms

In this section we compare the performance of the various loop scheduling algorithms using the application suite�
Due to the large number of scheduling algorithms we consider� we will represent algorithms with comparable
performance with a single line in the performance graphs�
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Figure �� Performance of loop scheduling algorithms for Gaussian elimination�

Figure � presents the completion time �in seconds� of the SOR program �N � ���� running on � to 	 processors�
As can be seen in the �gure� SS performs the worst of all� due to its high synchronization overhead� Other
algorithms with lower synchronization overhead� such as GSS� FACTORING� and TRAPEZOID� perform much
better than SS � since there is no signi�cant di�erence in the execution time of iterations� sophisticated load
balancing schemes aren�t necessary for this application� All of these algorithms perform worse than the algorithms
that exploit a�nity� Both STATIC and AFS are comparable to the best possible static algorithm� MOD�
FACTORING lies between AFS and FACTORING� since it requires less communication than FACTORING� but
requires more expensive access to the work queue than AFS� These results con�rm that a�nity scheduling can
improve the performance of loop scheduling algorithms�

Figure � plots the completion time of the Gaussian elimination program �N � �	� under the di�erent schedul�
ing algorithms� It is surprising to see that none of the scheduling algorithms that ignore processor a�nity can
e�ectively utilize more than two processors� There is simply too much contention for the shared bus under these
algorithms� since every iteration must load data into the local cache� SS performs worst of all� because of its
high synchronization overhead� but the performance di�erence narrows quickly as the communication costs of
GSS� FACTORING� and TRAPEZOID start to dominate synchronization costs� Once again� AFS and STATIC
perform the best� they very close to BEST�STATIC in the worst case� and a factor of � better than the tradi�
tional dynamic loop scheduling algorithms� MOD�FACTORING is also much better than GSS� FACTORING
and TRAPEZOID� but not as good as AFS� Although MOD�FACTORING preserves some a�nity� slight load
imbalances in the workload may easily result in iteration reassignment� and thus loss of a�nity� AFS� STATIC
can e�ectively use all 	 processors� while MOD�FACTORING can e�ectively use about  processors�

This application is a perfect example of the fact that the dominant source of overhead in many applications
is communication �caused by cache misses�� not synchronization� Loop scheduling algorithms that focus on
synchronization overhead alone perform poorly when compared to algorithms that reduce communication overhead
by exploiting processor a�nity�
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Figure �� Performance of loop scheduling algorithms for transitive closure �random input��
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Figure � Performance of loop scheduling algorithms for transitive closure �skewed input��

Figure � presents the completion time of the transitive closure program when given a random input graph of
��� nodes� with about 	� of the edges present� Because the load is averaged over all iterations� preserving a�nity
takes precedence over load balancing� As a result� AFS� STATIC� and MOD�FACTORING perform better than
GSS� FACTORING� SS� and TRAPEZOID�

Figure  presents the completion time of the transitive closure application when given a skewed input graph of
�� nodes containing a clique of ��� nodes� and no other edges� This is the �rst example where there is signi�cant
imbalance in the computation across iterations� which explains why STATIC performs poorly� Although SS
manages to balance the load� it still su�ers from high synchronization overhead� The surprising result in Figure
 is that GSS performs worst of all� Although GSS assigns only ��P of the iterations to the �rst processor�
those iterations contain ��Pth of the total work� the remaining iterations do not have enough work to balance
the load� Both FACTORING and TRAPEZOID start with a smaller initial chunk of iterations� and therefore
balance the load better� AFS and MOD�FACTORING have the same load balancing properties as FACTORING
and TRAPEZOID� but exploit a�nity as well�

Although AFS and MOD�FACTORING perform the best� the improvement over FACTORING and TRAPE�
ZOID is not greater than ���� The existence of signi�cant load imbalance forces an a�nity scheduler to override
the initial assignment of iterations to processors and instead execute iterations on any available idle processor�
Each time an iteration moves to another processor� the data must be loaded into a di�erent cache� This is also
why AFS does not perform as well as BEST�STATIC� which has knowledge of the input� and is therefore able to
distribute the clique nodes evenly among the processors� while maintaining processor a�nity�

A modi�cation to the AFS algorithm that might reduce the need to reassign iterations for load balancing
purposes is to execute an iteration on the processor on which it last executed� rather than assigning an iteration
to the same processor every time it executes� and reassigning as necessary to balance the load� This modi�cation
would be particularly e�ective in many simulations of physical systems� where the conditions that produce load
imbalance do not vary wildly from one simulation step to the next� If we assign an iteration to the same processor
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Figure �� Performance of loop scheduling algorithms for adjoint convolution�

every phase �as in the AFS algorithm�� then any load imbalance that exists in one phase is likely to exist in the
next� and the iteration will be reassigned each phase� If we assign each iteration to the processor where it last
executed� then reassignments performed in one phase to balance the load will likely be unnecessary in the next
phase� Assuming that the distribution of work does not change rapidly from phase to phase� this heuristic may
result in fewer reassignments of iterations� and therefore less communication� Unfortunately� it may also lead to
fragmentation of iterations� where each processor must execute several chunks of a few iterations each� rather
than one large chunk iterations� As a result� the costs and bene�ts of this approach depend on the volatility of
load imbalance in the application�

Figure � presents the performance of the scheduling algorithms for the adjoint convolution program with
N � ��� In this application� iterations have no a�nity for a particular processor� since the parallel loop is
not embedded within a sequential loop� There is signi�cant load imbalance across iterations however� since
the �rst iteration takes time proportional to O�N��� while the last iteration takes time proportional to O���� As
expected� loop scheduling algorithms that emphasize load balancing� such as FACTORING� MOD�FACTORING�
TRAPEZOID and AFS� perform the best� GSS and the static methods assign too much work to the �rst few
processors� and su�er load imbalance as a result� SS again su�ers from high synchronization overhead� These
results are consistent with those of ���
�

We should note that a trivial change to our implementation of GSS would improve its performance to be
comparable to FACTORING� although not as good as AFS for these examples� Instead of taking dN�P e iterations�
each processor could take dN��kP �e iterations� where k is an appropriate constant� With this change� GSS
could start with smaller chunks� leaving more opportunities to balance the load� without introducing signi�cant
synchronization overhead� Eager and Zahorjan ���
 argue that decreasing the chunk size is not enough to balance
the load if the execution time of iterations decreases at a fast enough rate� Theorem ��� quanti�es this relationship
between the variance in iteration execution times and the resulting load imbalance� and suggests that if the rate of
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Figure 	� Performance of loop scheduling algorithms for adjoint convolution �reverse index scheduling��

decrease is polynomial with exponent k� and each processor takes no more than �
�k���P of the remaining iterations�

no imbalance will occur� Thus� a simple decrease in the chunk size is probably enough to balance the load for
nearly all programs�

Load imbalance is particularly important in the adjoint convolution problem because the computation times
of the iterations decrease linearly� the �rst few chunks could become a bottleneck� Rather than decrease the
chunk size at the beginning of the loop� we could schedule the loop backwards� so that the last iterations execute
�rst� �Reverse execution works in this case because there are no dependencies among the iterations�� Figure
	 presents the performance of several loop schedulers on the adjoint convolution problem� when scheduling the
iterations in reverse order� We see that all scheduling algorithms �apart from SS� perform reasonably well� and
are comparable in performance to the best scheduling algorithms that execute the loop iterations in index order�
Although executing the iterations in reverse order may increase the potential load imbalance �since the last
iterations to be executed are the most time�consuming�� the potential imbalance is a negligible percentage of the
total completion time of the application� If there are N iterations� and the ith iteration takes O�N � i� time to
execute� the last iteration to be executed under reverse ordering takes about O�N � time� while the total completion
time of the application is about O�N��P �� Thus� the potential imbalance �time O�N �� is asymptotically small
when compared to the total completion time �O�N��P ��� unless the number of processors is on the order of the
number of loop iterations�

Finally� �gure � plots the performance of the loop scheduling algorithms for the L� application� Since there are
no memory references in L�� we would not expect an a�nity scheduler to perform any better than a scheduler that
ignores a�nity� In fact� all loop schedulers perform about the same� although the dynamic schedulers perform a
bit better than the static scheduler� and self�scheduling is clearly the worst� These results for L� are consistent
with those reported in ���
�
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Figure �� Performance of loop scheduling algorithms for application L��
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Figure ��� Performance of loop scheduling algorithms on the Butter�y under triangular workload�

��� E�ects of Load Imbalance

In order to explore the e�ect of load imbalance in isolation� we implemented three dynamic loop scheduling
algorithms �AFS� GSS� and TRAPEZOID� by hand on the BBN Butter�y� The Butter�y is a large�scale NUMA
�NonUniform Memory Access� multiprocessor� None of our loop scheduling algorithms on the Butter�y preserve
a�nity� and even the distributed work queues require non�local access� so any performance di�erences can be
attributed to the load balancing properties of the various algorithms�

We executed three applications on the Butter�y� while progressively introducing more imbalance in the com�
putation� The �rst application has the following form�

DO PARALLEL �� I � �� N

DO SEQUENTIAL �� J � �� N�I

COMPUTE

�� CONTINUE

�� CONTINUE

This application is similar to adjoint convolution� in that the �rst few iterations of the parallel loop have
much more work to do than the last few iterations� Figure �� plots the performance of the three loop scheduling
algorithms for this application� where N � ����� AFS and TRAPEZOID have comparable performance� and
both perform better than GSS� The reason for this is given by theorem ���� which states that the workload of
this application is evenly balanced when processors take ����P � of the remaining iterations� TRAPEZOID starts
with chunks of exactly that size� while AFS uses smaller chunks� which results in slightly greater synchronization
overhead�

Our second application has even greater load imbalance� iteration i takes time proportional to �N � i���

DO PARALLEL �� I � �� N

DO SEQUENTIAL �� J � �� �N�I����

COMPUTE

�� CONTINUE

�� CONTINUE
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Figure ��� Performance of loop scheduling algorithms on the Butter�y under decreasing parabolic workload�

According to theorem ���� each processor should take ����P � of the remaining iterations to balance the load
evenly� TRAPEZOID allocates chunks larger than that� but smaller than the chunks used by GSS� Therefore�
we would expect TRAPEZOID to behave worse than AFS� but better than GSS� Figure �� plots the results
for this program� with N � ���� As expected� AFS performs better than TRAPEZOID� which performs better
than GSS� Note however that TRAPEZOID is very close to AFS when the number of processors is close to ��
and N � ���� Theorem ��� explains why� given �� processors� the �rst chunk allocated by TRAPEZOID is of
size ������ � ��� � � iterations� while the maximum number of iterations that can be allocated without creating
imbalance according to theorem ��� is ������ � ��� � ��� iterations� Thus� TRAPEZOID is within one iteration
of the optimal allocation� which in practice gives performance comparable to AFS�

Our �nal application has imbalance comparable to that of transitive closure� That is� the �rst ��� of the
iterations take ��� time units to complete� while the remaining ��� of the iterations take one time unit to
complete� The code for the application is�

DO PARALLEL �� I � ��N

IF �I�LT��N����� THEN

COMPUTE�����

ELSE

COMPUTE���

ENDIF

�� CONTINUE

If the �rst processor takes more than �����P � of the iterations� it will get more than ���P �th of the work� and
will therefore be the last processor to �nish� Figure �� plots the results of executing this program on the Butter�y
with N � ������ In this �gure� AFS is clearly superior to TRAPEZOID and GSS� Both GSS and TRAPEZOID
can be improved� at the expense of synchronization overhead� by starting with smaller chunks of iterations� AFS
can a�ord to start with small chunks of iterations because it uses a distributed work queue� which results in either
smaller synchronization overhead for the same load balancing properties� or comparable synchronization overhead
for superior load balancing properties�
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Figure ��� Performance of loop scheduling algorithms on the Butter�y when load is in �rst ��� of iterations�

��� E�ect of Processor Arrival Time

In our previous examples� we assumed that all processors begin executing iterations at about the same time�
We now focus on the case where not all processors start executing loop iterations at the same time� Static loop
scheduling algorithms are clearly inappropriate for this situation� robust dynamic loop scheduling algorithms
should be able to distribute the load evenly independent of the starting time of processors�

According to the analysis in section �� if all iterations take the same time to complete� then under guided
self�scheduling� factoring� and a�nity scheduling �with k � P �� all processors �nish within one iteration of each
other� regardless of the starting time of processors� To con�rm this fact experimentally� we implemented a simple�
balanced parallel loop with ��� million iterations and no memory accesses on the Iris� Since our loop has no
a�nity to exploit� the performance di�erences among the algorithms can be attributed to any load imbalance
caused by the non�uniform starting time of processors�

In this set of experiments� all processors start executing loop iterations at the same time� except for one
processor� which is delayed for time t�� We varied the delay and measured the execution time of our simple loop
under the di�erent scheduling algorithms� The results appear in table �� In the table� the delay column represents
the number of iterations one processor was delayed� For example� in the �rst experiment� a processor is delayed
for the amount of time it takes one processor to execute one�sixteenth of the iterations� Within this time� the
other seven processors can execute ��� � ���� of the iterations�

The measured results show that all algorithms perform about the same in the presence of non�uniform starting
times for all processors� These results are as expected for GSS� FACTORING and AFS �with k � P �� because
each of these scheduling algorithms guarantees that all processors �nish within one iteration of each other�
TRAPEZOID also performs close to the best algorithm in each case� Not surprisingly� AFS with k � � performs
worst of all� but even this algorithm is within ��� of the best algorithm�

These experiments suggest that having processors with di�erent arrival times does not a�ect the performance
of good loop scheduling algorithms� The maximum imbalance introduced depends on the size of allocations of
iterations relative to the number of remaining iterations� If the remaining iterations are enough to balance the
work evenly �as is the case in most loop scheduling algorithms�� then di�erent arrival times do not impose any
noticeable overhead� The two factors that distinguish the performance of the various loop scheduling algorithms
in our experiments are the load imbalance inherent in the computation� and the ability to preserve a�nity in the
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Delay GSS TRAPEZOID FACTORING AFS
k � � k � P

�����N ���� ���� ���� ���� ����
�����N ���� ���� ���� ���� ����
���	��N ���� ���� ���� ��	� ����
������N ���� ���� ���� ��	 ����
����	�N ���	 �� ���	 ���	 ���	
����N ��� ��� ��� ��� ���

Table �� Execution time �in seconds� of simple� balanced loop program with non�uniform start times�

scheduler�

��	 Synchronization Overhead

In this section we focus on the synchronization overhead imposed by each scheduling algorithm� so as to verify
experimentally our analytic results� and to quantify the synchronization overhead incurred by our application
suite� Our metric for synchronization overhead is the number of times a processor removes iterations from a
work queue� The time required to remove iterations from a work queue might be a more accurate metric� but
we are primarily interested in the number of synchronization operations required by each algorithm� and not the
implementation details of a particular algorithm on a particular machine�

Every algorithm except a�nity scheduling uses a central work queue� wherein each access to the work queue
is a global synchronization operation� For a�nity scheduling� we identify separately the number of operations
performed on local work queues from the operations performed on remote work queues� We note however that
on many architectures� operations on remote queues under a�nity scheduling would be cheaper than global
synchronization operations on a central work queue� since there is less contention for access to each distributed
work queue under a�nity scheduling�

We should also note that load imbalance does not a�ect the number of synchronization operations performed by
SS� GSS� FACTORING and TRAPEZOID� Load imbalance does a�ect the number of synchronization operations
performed by AFS however� because AFS responds to imbalance dynamically by migrating iterations� Thus� the
number of remote synchronization operations performed by AFS will give us insight into the migration overhead
incurred by the algorithm�

We will use SOR as an example of a well�balanced application� and adjoint�convolution and transitive closure
�with a skewed input� as examples of applications with considerable variance in computation times across itera�
tions� In the transitive closure example� all the work is contained in the �rst half of the iterations� while in the
adjoint convolution example� the computation times of the iterations are linearly decreasing�

Table � shows the number of synchronization operations per loop incurred by SOR under the various schedul�
ing algorithms� In our example� there are ��� iterations per loop� so self�scheduling �SS� induces exactly ���
synchronization operations� regardless of the number of processors� TRAPEZOID requires the smallest number
of synchronization operations� followed by GSS and FACTORING� As expected� AFS requires a very small num�
ber of costly remote synchronization operations� and induces about as many local synchronization operations per
queue as TRAPEZOID�

Note that all of the entries in table � represent an integer number of synchronization operations� except the
entries for a�nity scheduling� There are two reasons for this� First� the individual entries in the table for a�nity
scheduling represent an average across all processors for local and remote synchronization operations� Second�
repeated executions of the same parallel loop under a�nity scheduling do not always require the same number of
local and remote synchronization operations�

Table � shows the number of synchronization operations per loop incurred by transitive closure �with a skewed
input matrix� under the various scheduling algorithms� Once again� SS induces a large number of synchroniza�
tion operations independently of the number of processors� TRAPEZOID requires the fewest synchronization
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Processors SS GSS FACTORING TRAPEZOID AFS �per work queue�
remote local

� ��� � �� � � �
� ��� �� �	 � ��� ���
� ��� �� �� �� ��� ��	
 ��� �� �� � ��� ���	
	 ��� �� � �� ��� ��

Table �� Number of synchronization operations for SOR �N� �����

Processors SS GSS FACTORING TRAPEZOID AFS �per work queue�
remote local

� �� � �� � � �
� �� �� �� � ��� 	��
� �� �� � �� ��� ��	
 �� �� �� �	 ��� ���	
	 �� �� � �� ��� �	��

Table �� Number of synchronization operations for transitive closure on a skewed ���node graph�

Processors SS GSS FACTORING TRAPEZOID AFS �per work queue�
remote local

� ��� � �� � � �
� ��� �� �� � � ��
� ��� �� �� �� ��� ����
 ��� � � �� 	�� ����
	 ��� � 	� �	 ��	� ���

Table �� Number of synchronization operations for adjoint convolution N � ���
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Figure ��� Performance of loop scheduling algorithms on the BBN Butter�y�

operations� but is only slightly better than AFS� which requires very few operations on remote queues�
Even though the input matrix causes a large load imbalance in this application� AFS requires only one or

two remote synchronization operations per work queue to balance the load� Each processor accesses a local work
queue ����� times on average� but rarely accesses a remote work queue� Whereas traditional loop scheduling
algorithms always access non�local work queues� AFS accesses a non�local work queue only ����� of the time�
and yet balances the load just as well� On machines where access to a local work queue is much cheaper than
access to a remote work queue �either due to the cost of non�local access or the cost of non�local synchronization
primitives�� this property of a�nity scheduling could have enormous performance advantages�

Table � presents the total number of synchronization operations for the adjoint convolution application under
the various scheduling algorithms� TRAPEZOID again has the smallest number of synchronization operations�
Although AFS does more synchronization operations than TRAPEZOID� the additional overhead is not notice�
able� because synchronization is relatively inexpensive on the Iris multiprocessor� and because the number of
processors we used in our experiments was rather small� In both cases synchronization was less than �� of the
execution time� so any small savings in the number of synchronization operations would have almost no impact
on total execution time�

To con�rm that synchronization overhead is not an important factor in the comparative performance of loop
scheduling algorithms on shared�memory multiprocessors� we implemented a simple� balanced parallel loop on the
Butter�y� In our implementation of a�nity scheduling on the Butter�y� all work queues require non�local access�
Since our loop has no a�nity to exploit� the performance di�erences among the algorithms can be attributed to
synchronization overhead� The results appear in Figure ��� As can be seen from the �gure� GSS� TRAPEZOID�
and AFS have comparable performance when the e�ects of a�nity scheduling� distributed work queues� and load
imbalance are factored out�

��
 Summary of Results

Our experimental results demonstrate that the a�nity scheduling algorithm has load balancing properties com�
parable to those of the best known loop scheduling algorithms �i�e�� guided self�scheduling� trapezoid� factoring��
while maintaining processor a�nity� and thereby signi�cantly reducing communication overhead� The number
of synchronization operations per queue required by a�nity scheduling is not much larger than the number of
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operations required by the trapezoid algorithm� which induces the least amount of synchronization overhead
of the dynamic algorithms� Moreover� the number of serialized synchronization operations induced by a�nity
scheduling is always less than the number of serialized synchronization operations required by the other dynamic
methods� As a result� in most cases a�nity scheduling performs better than any other known algorithm on
modern shared�memory multiprocessors�

� Scaling Communication Costs� Processors� and Problem Size

In this section we consider the performance e�ects of a�nity scheduling as we increase the relative cost of
communication� the number of processors� or the problem size�

��� Increasing the Cost of Communication

Our experiments on the Iris con�rm that communication overhead is a dominant factor in application performance
on modern shared�memory multiprocessors� Why then do so many of the known loop scheduling algorithms ignore
communication overhead� The answer lies in the changes in hardware that have occurred over the last few years�
RISC technology and �oating point co�processors have increased the speed of computation dramatically� while
memory and interconnection network speeds have improved only modestly� To quantify this trend more lets
examine the communication and computation costs in the BBN Butter�y family of large scale multiprocessors�
The �rst member of the family� the BBN Butter�y I was introduced in ��	�� BBN I runs at 	 MHz� Its processors
communicate via a butter�y switch that delivers up to �MBytes per second to each processor� The non�local
access cost on BBN I is � �s� Five years later� the second member of the family was introduced� BBN Butter�y
Plus� The Plus runs at �MHz� and is equipped with a �oating�point coprocessor� Our experiments indicate
that the BBN Plus is about 	 times faster than the BBN I ���
� The bandwidth and latency of the switch
remained the same as the BBN I� In ��	� the latest member of the family was introduced� The BBN TC�����
It is equipped with a RISC �		���� processor that runs at ��MHz� Our experiments indicate that the TC����
is about � times faster than the BBN I� TC����� processors are connected via a Butter�y switch that delivers
up to �� Mbytes�sec to each processor� The cost of a non�local memory access ranges from ��� �s to ��� �s ��
�
When we compare the computation and communication improvement from BBN I to BBN TC����� we see that
computation improves at a much faster rate than communication� Computation on the TC���� has improved by
a factor of � when compared to BBN I� while non�local memory access latency has improved by at most a factor
of ����� � ��� and switch bandwidth has improved by at most a factor of ���� � ���� Similar trends also hold
for other multiprocessors ���
 as well�

This trend in multiprocessor architecture shifts the emphasis from computation costs to communication costs�
since an ever�increasing percentage of an application�s execution time is devoted to communication�

In order to demonstrate this trend� we executed our Gaussian elimination program on a Sequent Symmetry
S	� multiprocessor� a bus�based� cache�coherent machine that predates the Iris� The processors on the Iris are
about �� times faster than the processors on the Symmetry� but the peak bandwidth of the Symmetry bus is
	� MB�sec� while the peak bandwidth of the Iris bus is only � MB�sec� Figure �� plots the execution time of
Gaussian elimination on a �� by �� matrix under three dynamic loop scheduling algorithms on the Symmetry�
From this �gure we can see that AFS and GSS are comparable in performance on the Symmetry� while our earlier
results showed that AFS clearly dominates GSS on the Iris� We can conclude that the ability of AFS to exploit
processor a�nity in Gaussian elimination is of little value on the Symmetry� since communication is cheap relative
to computation�

We also see in �gure �� that TRAPEZOID performs ������ worse than both AFS and GSS on this application�
The cause of this disparity can be traced to the load balancing properties of TRAPEZOID� When all iterations
take the same time to execute� processors �nish within one iteration of each other under guided self�scheduling
���
� Under TRAPEZOID� processors �nish within several iterations of each other ���
� When an iteration takes
a long time to complete� the imbalance introduced by the trapezoid algorithm can be noticeable� Although the
trapezoid algorithm requires fewer accesses to the work queue� the Sequent does not employ a large number of
processors� and therefore the low synchronization overhead of TRAPEZOID does not outweigh the load imbalance
it causes�
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These results suggest that communication was a relatively minor issue on the previous generation of shared�
memory multiprocessors� and that both load imbalance and synchronization overhead were dominant� Our results
on the Iris argue that the situation has changed dramatically� so much so that communication is now the dominant
factor in performance� The following architectural trends suggest that the situation will not change in the near
future�

� As processor speeds continue to improve at a higher rate than either memory or interconnection network
speeds� the overhead of communication will increase even more�

� The discrepancy in processor and memory speeds is already high enough that a breakthrough in memory
and interconnection network technology without a corresponding breakthrough in processor technology would
be required to reduce the signi�cance of communication in parallel applications�

� The ratio of communication costs to processor speeds are likely to increase given the trend towards scalable
multiprocessors consisting of many small�scale� bus�based nodes connected by a scalable interconnection
network�

In short� communication is a dominant factor in modern multiprocessors and there is no indication that the
situation will change in the foreseeable future� Any scheme designed to reduce communication overhead� such as
a�nity scheduling� will produce ever�greater returns as long as current trends continue�

��� Scaling the Number of Processors

To demonstrate the importance of a�nity scheduling on recent large�scale multiprocessors� we performed several
experiments on the KSR��� a large�scale� cache�coherent multiprocessor released in ����� These experiments
used those applications that have locality worth preserving� including Gaussian elimination� SOR� and transitive
closure�

Figure �� presents the completion time of Gaussian elimination �using a ���� by ���� matrix� under various
loop scheduling algorithms on the KSR��� In this �gure we see that� once again� AFS performs best� It improves
the completion time of the application by a factor of ��� when compared to FACTORING and GSS� and by a
factor of ��	 compared to TRAPEZOID� The reason that TRAPEZOID performs better than FACTORING and
GSS is that TRAPEZOID has the fewest number of synchronization operations� and synchronization is relatively
expensive on the KSR�

MOD�FACTORING exhibits interesting behavior in �gure ��� It performs reasonably well on a small number of
processors� falling somewhere between AFS and TRAPEZOID� As the number of processors grows beyond �� to ���
the performance of MOD�FACTORING approaches that of FACTORING� The reason that MOD�FACTORING
performs so poorly with an increase in processors is that a large number of processors can easily introduce small
amounts of load imbalance� These short term �uctuations cause processors to execute the iterations of other
processors� destroying almost all a�nity�

Figure � shows the completion time of transitive closure ����� node graph� where ��� of the nodes form
a clique� under the di�erent loop scheduling algorithms on the KSR��� From this �gure we can easily see the
importance of a�nity scheduling� the other dynamic scheduling algorithms cannot exploit more than �� processors�
After AFS� the next best algorithm is TRAPEZOID� which has the smallest number of synchronization operations�
and therefore manages to degrade more gracefully than the other algorithms� Although AFS performs the best�
the improvement over the other algorithms is not as great as it was for Gaussian elimination� There is almost
no load imbalance in Gaussian elimination� and hence no need to destroy any a�nity� whereas transitive closure
does have load imbalance and therefore a�nity scheduling must reassign iterations fairly frequently�

Figure �� presents the completion time of SOR ����� by ���� matrix and ��	 iterations� on the KSR���
Although AFS� STATIC� and MOD�FACTORING perform the best in this case� they are not much better than
the other algorithms� even though SOR has a lot of a�nity to preserve� and there is almost no load imbalance
to hinder a�nity� So why isn�t AFS much better than the other algorithms� The reason for this anomaly is that
SOR performs a few �oating point additions and one �oating point division within the inner loop� and �oating
point division is implemented in software on the KSR��� Thus� computation in SOR is expensive on the KSR���
and the bene�ts of preserving a�nity are not signi�cant in comparison�
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��� Scaling the Problem Size

A�nity scheduling performs best when the working set of an application remains in the caches �or local memories�
of the multiprocessor� Historically� both caches and local memories were rather small� and could not hold the
input for large� scienti�c problems� The situation has improved dramatically in recent years however� with the
size of local memories quadrupling every three years ���
� For example� the SGI Iris has a � MB second�level
cache� and the KSR�� has an all�cache memory of �� MB per processor�

To verify that a�nity scheduling results in signi�cant performance improvements even for long�running ap�
plications� we ran Gaussian elimination on a ���� ��� matrix on � processors on the KSR��� This problem
needs more than twenty minutes to complete using � processors on the KSR��� about �ve hours to complete on
one KSR�� processor� and about �� days to complete on one Butter�y I processor� The completion time of this
problem on the KSR�� under various loop scheduling algorithms is in the following table� We can see that even
for a problem of this size� a�nity scheduling results in signi�cant performance improvements over FACTORING�
TRAPEZOID� and GSS�

scheduling algorithm completion time �minutes�
AFS ���

STATIC ����
MODIFIED�FACTORING ����

FACTORING ����
TRAPEZOID ����

GSS ����

Of course� not all problems will �t in the caches or memories of the machine� and not all machines have �� MB
of local storage for each processor� However� in those cases where a�nity exists� the loop scheduling algorithm
should exploit this fact�

� Related Issues

Loop scheduling can be viewed as part of the general problem of scheduling tasks in multiprocessor systems so
as to minimize the completion time of parallel applications� In this context� loop scheduling is analogous to
process scheduling� which has also been studied extensively� Process scheduling is concerned with many of the
same issues involved in loop scheduling� including concerns about load imbalance� synchronization overhead� and
communication overhead�

In many shared�memory multiprocessor systems� a single ready queue is the primary mechanism for process
scheduling ���� ��� ��� �
� The attractive load balancing properties of a central ready queue address an important
concern in these systems that a processor not remain idle while there is work to be performed� Recent work ��

has shown that a central ready queue can become a bottleneck in these systems� and that local per�processor
ready queues can eliminate contention for the queue� thereby reducing synchronization overhead�

Other recent work in process scheduling has considered the overhead associated with reloading the cache on
each context switch when a multiprocessor is multiprogrammed� Squillante and Lazowska ��
 showed that a
process develops an a�nity for a particular processor during execution based on the contents of the local cache�
They argued that if a process suspends execution for any reason� it should be resumed on the same processor�
avoiding migration whenever possible� They showed that ignoring a�nity can result in signi�cant performance
degradation�

In subsequent work� both Gupta et al ���
 and Vaswani and Zahorjan ���
 argued that ignoring a�nity does
not signi�cantly degrade performance� Gupta et al showed that cache a�nity scheduling produces no more
than a ���� improvement in application performance when the scheduling quantum is reasonably large and
applications perform I�O at normal rates� Vaswani and Zahorjan reached a similar conclusion by showing that
the time to reload the cache is small relative to the frequency of context switching� The reason for this apparent
contradiction is that Squillante and Lazowska assume a time�sharing kernel policy� where both the time between
processor reallocations and the amount of cache corruption between allocations is small� whereas both Gupta et
al and Vaswani and Zahorjan assume a space�sharing policy with relatively infrequent reallocation of processors�
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In an earlier paper ���
 we considered the role of cache a�nity scheduling for threads within an application�
rather than in the context of multiprogramming� We showed that using threads to represent �ne�grain parallelism
can introduce excessive communication overhead� because each thread spends a large percentage of its lifetime
bringing the data it needs into the local memory or cache� To reduce the overhead associated with �ne�grain
threads� we proposed a scheduling policy �memory�conscious scheduling� that places threads close to their data�
This policy improves performance signi�cantly on the Butter�y� and more dramatically on the SGI Iris� which is
consistent with the results presented here�

While some of the results regarding process scheduling apply to loop scheduling� there is an important distinc�
tion between the two problem domains� a loop scheduling algorithm must choose an appropriate decomposition
�i�e�� chunks�� while the process scheduling algorithm is given the decomposition selected by the programmer as
input� Thus� loop scheduling considers an additional dimension � loop decomposition so as to minimize load
imbalance � and therefore must make tradeo�s in three dimensions �synchronization overhead� communication
overhead� load imbalance�� It is this third dimension that distinguishes work in loop scheduling� and that has
dominated loop scheduling research�

When the decomposition is straightforward� the loop scheduling problem reduces to the process scheduling
problem� However� communication has been largely ignored as a signi�cant source of overhead in the process
scheduling problem� In those cases where the cost of communication has been considered� the scheduler needs
detailed information about the application� like the call graph� communication patterns� and exact communication
costs ���� �
� This knowledge is not generally available� as it may depend on unpredictable run�time factors� such
as the input values�

Finally� there is an important aspect to loop scheduling we have not considered� scheduling loops that have
dependencies within the statements of a single iteration� across iterations� or both ���� �	
� The di�culties in
scheduling this type of loop lead to challenging graph�theoretic problems� whose general form is intractable and
requires heuristic solutions� Previous approaches to this problem are based on static scheduling� and therefore
inherently exploit a�nity� unlike dynamic scheduling algorithms�

� Conclusions

In this paper we argued that the non�uniform access time to data in a shared�memory multiprocessor �due to local
caches or memory� introduces a new dimension to the loop scheduling problem� communication overhead� We
showed that traditional loop scheduling algorithms�which emphasize load imbalance and synchronization overhead
while ignoring communication overhead� impose a signi�cant performance penalty on parallel applications� We
described a new loop scheduling algorithm� called a�nity scheduling� which reduces communication overhead
by exploiting processor a�nity� This new algorithm performed better than all other known algorithms in our
experiments� The main reasons for this are�

� When a parallel loop is embedded within a sequential loop �a common case�� a�nity scheduling assigns an
iteration of the parallel loop to the same processor each time it is executed� If the iteration accesses the
same data each time� then the data will already be in the local memory or cache� reducing communication
overhead�

� A�nity scheduling uses per�processor work queues� instead of a central work queue� Accesses to several
work queues may proceed in parallel� and most accesses to work queues are local accesses that do not su�er
from contention� Synchronization across processor occurs only if load imbalance arises�

Based on our experiments with a�nity scheduling and other loop scheduling algorithms on three di�erent
multiprocessors� we conclude�

� Central work queues are an inappropriate scheduling mechanism even for small�scale multiprocessors� Cen�
tral work queues �or ready queues� have been criticized for serializing access to work� which can produce
a bottleneck in large�scale systems� E�cient synchronization primitives �e�g�� fetch and �� and e�cient
chunking algorithms can help with synchronization overhead� but the problem of communication overhead
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remains� Central work queues require the frequent movement of data among processors� since every pro�
cess must load the data it needs into the local cache� The resulting communication overhead degrades
performance even for a very small number of processors�

� Loop scheduling algorithms must consider communication as an important source of overhead� Algorithms
that ignore communication incur a signi�cant performance penalty in current multiprocessors� If processor
speeds continue to improve more quickly than memory or interconnection speeds� communication will be
an increasing percentage of an application�s execution time� scheduling methods that reduce both commu�
nication and synchronization overhead are going to have an even greater impact in the future�

� A�nity scheduling simultaneously balances overhead due to synchronization� communication� and load im�
balance� A�nity scheduling has the load balancing properties of the best dynamic scheduling algorithms�
reduces synchronization costs by employing per�processor work queues� and exploits processor a�nity when
it exists�

� A�nity scheduling is robust� Our experiments cover a range of applications with widely varying character�
istics� For applications that create a�nity between iterations and processors� a�nity scheduling is by far
the best algorithm� For applications with a lot of input�dependent load imbalance �e�g�� transitive closure��
a�nity scheduling was again the best scheduling algorithm� Even for applications that had no a�nity to
exploit� but exhibited signi�cant potential for load imbalance �e�g�� adjoint convolution and L��� a�nity
scheduling was among the best algorithms�

In summary� our theoretical and experimental evaluation shows that a�nity scheduling has the attractive load
balancing properties of the best known loop scheduling algorithms� but also reduces communication overhead
substantially� This overhead is quite high on current multiprocessors� and is likely to increase in the future� We
conclude that loop scheduling techniques� such as a�nity scheduling� that minimize communication overhead will
be increasingly important in the future�
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