
The Performance Implications of Thread Management Alternatives
for Shared-Memory Multiprocessors

Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy
Department of Computer Science

University of Washington
Seattle WA 98195

Abstract

Threads (“lightweight” processes) have become. a common element of new languages and operating systems. This paper examines the
performance implications of several data structure and algorithm alternatives for thread management in shared-memory multiprocessors.
Both experimental measurements and analytical model projections are presented

For applications with fine-grained parallelism, small differences in thread management are shown to have significant performance
impact, often posing a tradeoff between throughput and latency. Per-processor data structures can be used to improve throughput, and in
some circumstances to avoid locking, improving latency as well.

The method used by processors to queue for locks is also shown to affect performance significantly. Normal methods of critical resource
waiting can substantially degrade performance with moderate numbers of waiting processors. We present an Ethernet-style backoff algo
rithm that largely eliminates~tiis effect.

1. Introduction
The purpose of this paper is to study the performance implica-

tions of thread management alternatives for shared-memory mul-
tiprocessors.

In traditional operating systems, a process, consisting of a single
address space and a single thread of control within that address
space, is used to execute a program. Within the process, program
execution entails initializing and maintaining a great deal of state
information. Page tables, swap images, file descriptors, outstand-
ing I/O requests, and saved register values are all kept on a per-
program, and thus per-process, basis. The sheer volume of this
information makes processes expensive to create and maintain.

Threads, or “lightweight” processes, separate the notion of exe-
cution from the rest of the definition of a process. A single thread
executes a portion of a program, cooperating with other threads
concurrently executing within the same address space. Like
processes, every thread must have a separate program counter and
stack of activation records, describing the state of its execution.
However, much of what is normally kept on a per-process basis
can be maintained in common for all threads executing in a single
program, with dramatic reductions in overhead.

Thread packages have become a common element of new
languages and operating systems for both uniprocessor and mul-
tiprocessor architectures. Mach [Accetta et al. 19861, Topaz
Facker et al. 19881, Psyche [Scott et al. 19881, DYNIX
[Sequent 19881, and several extensions to UNIX [Bach & Bumff
1984; Edler et al. 19881 are examples of operating systems that
provide explicit support for concurrent or parallel execution of

This material is based on work supported by tbe National Science Foundation
@ant8 No. CCR-8619663, CCR-8703049, and CCR-8700106), the Naval
Ocean System Center, U S WEST Advanced Technologies, tbe Washington

Technology Center, and Digital Equipment Corporation (the Systems
Research Center and the External Research Program).

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1989 ACM O-89791-3iS-9/89/WO5/0049 $1.50

programs. Ada [Mundie & Fisher 19851, CSP [Hoare 19781,
PRESTO [Bershad et al. 1988a], Mesa [Lampson & Redell19801,
Concurrent Euclid [Halt 19821, and Emerald [Jul et al. 19881 evi-
dence equal interest within the language community.

On uniprocessors, threads are used as a program structuring aid
or to overlap I/O with processing. The metric of goodness for
these thread management implementations is simply processing
cost per thread creation or context switch. No locking is needed
inside thread routines, since only one routine can be executing at
any one time.

Programs on multiprocessors use threads to exploit parallelism.
The speedup achievable by any given application depends on the
availability of thread management routines that provide low cost
facilities that are not a serial bottleneck. In Sequent’s DYNIX
operating system, for example, applications must use normal
UNIX-like processes for parallelism [Sequent 19881. Since pro-
cess creation in DYNIX takes over 25 milliseconds, only very
coarse-grained parallelism can be exploited. As another example,
the Topaz kernel provides relatively inexpensive thread creation
and synchronization, but the routines are protected by a single
lock IThacker et al. 19881. While this may be appropriate for
architectures with small numbers of processors, as the number of
processors increases, the single lock could limit speedups for
applications with fine-grained parallelism.

Our initial experience in the area of high-performance thread
packages was with PRESTO, an application-level runtime library
that relies on the kernel only for processor allocation and memory
management [Bershad et al. 1988a]. This work showed that there
is an order of magnitude performance advantage to using threads
instead of DYNIX processes for exploiting parallelism Drawing
on this experience, we implemented a thread package that is, in
turn, an order of magnitude faster than PRESTO. This basic
package was then modified to implement each alternative we
wanted to explore.

One consequence of the speed of our basic thread package is
that small changes in the organization of data structures and locks
have a significant impact on performance. Often, the choice
involves a tradeoff between latency and throughput. Per-
processor data structures can sometimes be used to avoid locking,
however, improving latency and throughput at the same time.

49 Performance Evaluation Review Vol. 17 #l May1989

Another consequence of the speed of our thread package is that
its performance depends noticeably on the algorithm used to
queue for locks. Earlier, we studied the relative performance of
spinning and blocking locks [zahorjan et al. 19881. In general, a
thread that tries to acquire a lock that is already held can either
spin (“busy-wait”) until the lock is released, or relinquish the pro
cessor. However, within the thread management routines them-
selves, spinning is the only option. Thus, blocking at user level
may require spinning in thread management routines. Spinning
has a cost both to the processor awaiting the lock and to proces-
sors doing useful work. The degradation of other processors
becomes substantial for moderate numbers of waiting processors,
especially for small critical sections. We present an Ethemet-
style backoff algorithm that largely eliminates this effect.

The following sections describe these issues in more detail. In
Section 2 we present an abstraction of a thread package: its
objects, resources, and operations. Section 3 outlines the stra-
tegies for thread management that we examined and presents
measurements of their relative performance. Section 4 compares
methods of queueing for locks. Section 5 combines these results
in an analytical model. Section 6 summarizes our experiences.

2. An Abstract Thread Package

As noted in Section 1, threads gain efficiency by separating the
notion of execution from the rest of the definition of a process.
The data structures needed by each thread are a program counter,
a stack, and a control block (The control block contains state
information needed for thread management. Through the control
block, the thread can be put onto lists and other threads can syn-
chronize with it.) Another important data structure is the ready
queue, which lists threads that are ready to run. Lampson and
Redell[1980] provide a good description of the functionality of a
uniprocessor thread package.

Thread operations are shown in Table 2.1. Creating a thread
can be viewed as calling a procedure, except that the callee can
execute in parallel with the caller. In both cases, the caller
specifies a place to begin executing and some number of argu-
ments. In fact, thread creation and startup is semantically
equivalent to an asynchronous procedure call.

‘llmad Creation
Allocate and initialize a control block, saving the initial PC.
Allocate a stack and copy in the thread’s arguments.
Place new thread on the ready queue.

Thread Startup
Remove thread from ready queue and begin to execute it.

Thread Block (wait on blocking lock, condition variable, or message)
Save register values and PC on the thread’s stack.
Place thread on the condition queue for the event.
Lcok for a thread in the ready queue. and start or resume it.

Signal a Blocked ‘llnead
Remove thread from the condition queue.
Place the thread on tbe ready queue.

lluead Resume
Remove thread from the ready queue.
Restore registers.
Continue executing it from the saved PC.

‘lbread Finish
Deallocate the stack and control block.
Look for a thread in the ready queue, and start or resume it.

Table 2.1: Thread operations

As Table 2.1 shows, a program can create a thread even if there
is no idle processor available to run it. Because the parallelism
cannot be immediately exploited in this case, it might seem that
the overhead of thread creation should be avoided. The program

may run faster by creating the thread, however, if at some future
time there will be an idle processor that can be used to execute the
thread. This idea of creating parallelism for future use is very
powerful. Unfortunately, in the above framew& its space cost
is prohibitive. Each thread must be initially allocated a large
amount of space for its stack, since it is expensive to dynamically
expand the space if the thread later runs out of it. In Table 2.1,
the thread is allocated space for a stack when it is created, but the
space is largely wasted until the thread is actually started. Using
virtual memory could remove the need to allocate physical
memory to back the stack space until the thread begins to run;
however, allocating extra virtual memory also is expensive.

An important optimization to Table 2.1, therefore, is to copy a
thread’s arguments into its control block when the thread is
created. This way, the stack need not be allocated until thread
startup; the arguments can be copied from the control block to the
stack at that time. WorkCrews [Vandevoorde & Roberts 19881
and PRESTO [Bershad et al. 1988a] both take this approach.

Another important optimization is to store deallocated control
blocks and stacks in free lists [Bershad et al. 1988al. If these data
structures were individually allocated out of the heap, thread over-
head would include the cost of finding a free block of the correct
size as well as possibly coalescing the block when it is returned to
the heap. By using free lists, both allocation and deallocation can
normally be simple list operations.

We begin our study by assuming these optimizations. For sim-
plicity, we will focus on the effect of thread management altema-
tives on the performance of only a few thread operations: crea-
tion, startup, and finish. These operations manipulate each of the
three shared data structures: the ready queue, the stack free list,
and the control block free list. Most of the discussion applies as
well to threads that block and resume.

3. Thread Management Alternatives

In a parallel environment, access to shared data structures must
be serialized to ensure consistency and correctness. Our thread
package uses spin locks for this purpose: when a processor tries
to modify a data structure, it must first lock it to obtain exclusive
access; if some other processor already holds the lock, the proces-
sor loops until the lock is released.

Locking implies dual concerns of latency and throughput
[Kumar & Gonsalves 19771. Latency is the cost of thread
management under the best case assumption of no contention for
locks. Throughput, on the other hand, is the rate at which threads
can be created, started, and finished when there is contention. If
part of thread management must be done serially, then no matter
how many processors work on a problem, there will be some
maximum rate of thread creation.

There are several ways of defining latency, with different impli-
cations for different types of applications. If an application keeps
all of its processors continually busy, for instance by creating
threads before they are needed, then any time spent in creating,
starting, or finishing a thread is time that could have been spent
doing other useful work. When a thread finishes, however, if
there is no other work for the processor to do, the time spent deal-
locating the thread’s data structures is unimportant. Instead, the
relevant issues include how much a creating processor is delayed,
since it has a thread to run, and how much time it takes for the
created thread to begin running on a processor.

In the following subsections, we detine five alternative thread
management strategies, and describe some of the potential advan-
tages and disadvantages of each approach. We then provide
measurement and analytical comparisons of these alterntttive~.

50 Performance Evaluation Review Vol. 17 #I May1 989

3.1. Single lock: central data structures protected by one lock
The most obvious approach to thread management is to protect

all data structures under a single lock. Once the lock is acquired
by a processor, the processor is assured that it can modify any
stored state. To perform a thread operation, a processor must first
acquire the lock, then do what is needed to the shared data, and
finally release the lock when done. In this way, only a single lock
is needed per thread operation, but, since most of the thread
management path is serialized, throughput is limited. In the typi-
cal scheme, idle processors loop checking the ready queue for
work to do, causing useless contention for the ready queue lock;
however, this can be avoided if idle processors check that the
ready queue is not empty before acquiring the lock. (Ni and Wu
[1985] present a different approach.)

3.2. Multiple locks: central data structures protected by
separate locks

A somewhat more modular approach to locking is to separately
protect each data structure with its own lock [Lampson & Redell
19801. Each operation on the data structure can then be sur-
rounded by a lock acquisition and release. For thread manage-
ment, this involves separately locking each enqueue and dequeue
operation on the ready queue, stack free list, and control block
free list, the three shared data structures.

There is a basic tradeoff between latency and throughput in the
choice between using a single lock or multiple locks in protecting
shared data structures [Kumar & Gonsalves 19771. Since less of
the total thread activity is in a critical section, and since it is split
among several locks, the maximum rate of thread creation is
higher with multiple locks than with a single lock. There is a cost
to this increased throughput, however: mom lock accesses are
needed, increasing latency.

3.3. Local freelist: per-processor free lists without locks
One way of avoiding locking is to maintain as much state as

possible locally, with each processor. If each processor maintains
its own free lists of control blocks and stacks, these need not be
locked, since only one processor will access them As before,
there is a single shared ready queue whose accesses are locked.

The tradeoff between latency and throughput can be largely
avoided by using local free lists. Since fewer lock acquisitions
are needed per thread, latency is lower than with multiple locks,
yet since only accesses to the ready queue are serial&d,
throughput is better.

Local free lists need to be balanced. Control blocks and stacks
can migrate between free lists if the thread is created or started on
one processor and finished on another. Thus, one free list can be
empty, requiring the processor to obtain more space from the
heap, while another free list has many entries. In the worst case,
some processors only create and start threads (allocate structures),
while other processors only llnish them (deallocate structures).
Without balancing, the deallocated structures are never reused; a
separate stack and control block are needed for every thread. In
coutrast, with a centralized free list, only as many are needed as
there are active (created or started, but not finished) threads.

It is inexpensive, however, to balance free lists by using a glo-
bal pool and a threshold T on the maximum size of each list.
When the size of a free list reaches the threshold, half the list can
be returned to the global ?~l; when a free list empties, T/2
entries can be removed from the pool. The global pool must be
locked, of course. For efficiency, it can be organized as a list of
lists. The processing cost to balancing is thus one locked pool
access amortized across at least T/2 free list accesses. Let P be

the number of processors. An application using balanced local
free lists will use no more than 0 (PxT) more space than one
using a central list; the worst case occurs when one processor’s
fm list is empty while all other free lists are almost full.

Thus, local free lists trade space for time. This tradeoff is prac-
tical for control blocks. Utilixation of the pool lock is at most
0 (PR /T), where R is the rate of thread creation on a single pro-
cessor. To ensure that the pool lock is not a source of contention
(which would inflate the overhead per free list access), we can set
the threshold T to be equal to P . Control blocks are relatively
small objects (in our implementation, roughly 100 bytes); pro
vided P is not excessively large, using 1OOP bytes per processor
is not onerous. If P is large, then a tree of pools could be used to
limit the cost to balancing to 0 (P /log P) bytes per processor.

The tradeoff is not practical for stacks, however. Stacks are at
least two orders of magnitude larger than control blocks. Even if
sufficient memory were available, using that memory entails pro
cessing costs for initializing page tables and increased cache miss
rates that could easily overwhelm the advantage gained from
decreased locking. Instead, we use single element stack free lists.
In this way, stacks need be allocated from the global pool only
when a processor blocks a thread and then starts up a different
thread, and deallocated only when a processor finishes a thread
and then resumes another thread.

3A. Idle queue: a central queue of idle processors
None of the algorithms described so far exploit parallelism in

thread creation. The creating processor allocates and initializes
the control block; when it is done, the starting processor allocates
and initializes the stack. The cost of thread creation could be
reduced if some of the work was done by idle processors in paral-
lel with the creating processor.

In addition to a central queue of threads, we can maintain a cen-
tral queue of idle processors. When there is a backlog of ready
threads, there is no point to attempting parallel thread creation
since all processors are already doing useful work. When a pro
cessor becomes idle and there is no backlog, it pre-allocates a
control block and stack, puts itself on the idle queue, and spins on
a local flag waiting for work. Thread creation then dequeues the
idle processor, initializea the pm-allocated control block and
stack, and sets that processor’s flag, indicating that it now has a
thread that is ready to run. Instead of processors searching for
work, work searches for processors.

In fact, this approach does not alter the essentially sequential
nature of thread creation. The idle processor must llrst queue
itself before the creating processor can dequeue it, which in turn
must set the flag before the idle processor can start running the
thresd. The critical path between the beginning of thread creation
and when the thread starts running is reduced by doing some of
the work (allocating structures, acquiring a lock enqueueing)
before the critical path begins. Since this adds complexity, and
there is no benefit in the absence of idle processors, the effect is to
trade off reduced latency when there are idle processors for
increased latency when all processors are busy. Maximum
throughput should be unchanged since two locked queue opera-
tions are still needed per thread life cycle. Wagner et al. [1988]
describe a different way of using of idle processors to avoid work
during blocking and resuming.

3.5. Local readyq: per-processo r ready queues
Once free lists are made local, the resdy or idle queue lock can

become a serial bottleneck as the rate of thread creatitbuor the
number of processors increases [Dritz & Boyle 19871. One way

51 Performance Evaluation Review Vol. 17 #l May1989

of increasing throughput is to divide the load on a single lock
among several locks. An application of this idea is to keep a
ready queue per processor. In this way, enqueueing and dequeue-
ing threads can occur in parallel, with each processor using a dif-
ferent queue. There is again a tradeoff between latency and
throughput in the choice between using one or more ready queues.

Unlike the case of control block free lists, unlocked local ready
queues are inefficient even if balanced through a global pool.
Runnable threads are a scarce resource. An idle processor might
have an empty queue, yet a ready thread that the processor could
run is in some other processor’s queue, while the global pool is
empty. Performance can be arbitrarily bad in any scheme where a
processor can be idle indefinitely while there is even one ready
thread in some other queue. In the worst case, P identical threads
are created, but due to an imbalance, only P - 1 are start4 while
one processor idles. The runtime would then be twice as long as
with any of the centralized queueing strategies.

One simple way of avoiding indehnite idling is to lock each
ready queue; each idle processor can then scan the ready queues
for work, beginning with its own [Dritx & Boyle 19871. If there is
a ready thread, an idle processor will eventually find it. Proces-
sors can queue created threads locally, since balancing is achieved
by idle processors. The worst case for this approach is when a
single processor creates every thread, since that processor’s queue
would operate much as a central ready queue would, except that
idle processors would have to waste time scanning for it. A sim-
ple way of avoiding this situation is for each processor to ran-
domly choose a queue for each thread creation.

If each queue is equally likely to get a new ready thread, latency
is bad when the number of runnable threads is near to the number
of processors. There are two cases. Consider the cost of schedul-
ing a thread onto a newly idle processor. If there are no ready
threads, there is effectively no cost until a new thread is created.
If there are ready but not running threads, any time spent finding a
thread to run could have been spent running that thread. This time
is small when there are many ready threads, because the idle pro
cessor will find the thread a&r scanning only a few queues; when
there is only a single ready but not yet running thread, the proces-
sor will have to examine on average half of the queues in order to
find it. The cost of scheduling a newly created thread onto an idle
processor is similar: the thread will be found quickly if there are
many idle processors and more slowly if there are only a few.

One reason to have a one-to-one correspondence between pro-
cessors and ready queues is to maintain locality. Presumably,
migrating a newly active or resumed thread has a cost, due to
increased cache misses. On the other hand, threads can only be
maintained locally if there is a large backlog of ready threads
[Eager et al. 19863. While there are some message passing appli-
cations where this holds, there is little reason to create a new
thread if it will simply run on the same processor that created it.
In any case, the cost of migration is certainly application-specific.

If maintaining locality is unimportant there is a tradeoff
between latency and throughput in choosing the number of queues
[Ni & Wu 19851. Up to some point, throughput is higher with
more queues, but the number of queues that must be scanned to
find work, and thus the latency, is also higher. We set the number
of queues equal to the number of processors for all measurements.

3.6. Measurement results
To validate our intuitions about the relative merits of the alter-

native approaches, we implemented each on a Sequent Symmetry
Model A shared-memory multiprocessor. All code was written in
C and compiled with Sequent’s standard compiler, with the

exception of the locking and context switching code, which was
programmed in assembler. Our Symmetry has twenty Intel 386
processors, a shared bus, and a write-through cache coherency
protocol [Lovett & Thakkar 19881. The Symmetry has a timer
with microsecond resolution that was used for all measurements.
Table 3.1 contains times for sample Symmetry operations.

Table 3.1: Runtimes for Symmetry operations (measured)
For all measurements, free lists were “warm started? sufficient

control blocks and stacks were preallocated for use by the bench-
mark. Our purpose was to measure the relative merits of each
alternative, rather than the efficiency of the underlying memory
management. The cache was not warm-started, but we ran each
benchmark long enough for this effect to become insigni6cant

Figure 3.1 is the principal performance comparison: it shows
the elapsed time in seconds for each thread management alterna-
tive to create, start, and finish one million “null” threads, for vary-
ing numbers of processors. Initially, P threads are created; each
recursively creates a thread then finishes, allowing that processor
to start up one of the waiting threads. The test terminates when
each processor has executed 1MIP threads. For the multiple
ready queue alternative, each newly created thread was added to a
random queue to avoid biasing the results with the effect of local-
ity. This test is not intended to be representative of a real parallel
program, but it does expose the tradeoffs among the alternatives.
(The one processor case shows the latency for a single thread in
microseconds when there is no contention for locks.)

Figure 3.2 shows the inverse graph: the rate of thread creation
(throughput) for each alternative, in units of 1000s per second.

Before examining the relative performanc e of the five alterna-
tives, we note that each of them has quite good performance.
Threads are only an order of magnitude more expensive than a
procedure call, and 500 times less expensive than normal DYNIX
process creation. Threads in PRESTO Betshad et al. 1988a] cost
600 l.tsec. on the same Symmetry hardware, an or&r of magnitude
worse than our threads although an order of magnitude better than
DYMX processes.

While PRESTO’s speedup relative to DYNIX is due to using
threads instead of processes, our speedup relative to PRESTO is
due to attention to implementation details. We implemented
PRESTO in C++; while this enhanced its ability to be modified
[Bershad et al. 1988b], its C++ was tlrst pm-processed into C,
then compiled. This resulted in much less efficient code than
could be achieved by direct coding in C. Another factor is that we
stripped thread control blocks of all nonessential state, reducing
the cost of initialization dramatically. We did not remove func-
tionality: our thread package could be given PRESTO’s user
interface without sacriticing its performance.

Because our threads am inexpensive, the choice of alternatives
has a large relative impact on both latency and throughput for
applications with fine-grained parallelism Specifically:
l Adding even a single lock acquisition into the thread manage

ment path can increase latency significantly. Locking each of
the data structures separately results in a much higher latency
than locking all data structures under the same lock Using
per-processor data structures to avoid locking is thus crucial to
decreasing latency without sacrificing throughput.

52 Performance Evaluation Review Vol. 17 #l May1 989

+ single lock
+ multiDIe lxks
-w local freelist
0 idle queue
-I+ local readyq

0-l . , , . , , .
1 3 5 7 9

number of pmc.sson

Figure 3.1: Principal results for thread management - elapsed
time to create, start and finish 1M null threads (measured)

+ single lock
* multiple lo&s
* local freelist
0 idle queue
-it local readyq

-,
1 i.;-;-i 1’1

number of processors

Figure 33: Rate of thread creation, 1000s of threads per
second (inverse of Figure 3.1)

l Additional complexity results in a noticeable increase in
latency. There are on the order of 100 instructions in the thread
management path; adding even a few extra instructions impacts
performance. For example, the idle queue strategy checks for
idle processors on thread creation. If the idle queue is always
empty, as in the measurements in Figure 3.1, it defaults to a nor-
mal ready queue. Even this simple a check markedly increase-s
the cost of Wads. This implies that thread management rou-
tines must be kept simple; enhancements that would otherwise.
seem plausible but add complexity are unlikely to work, since
there is little computation to save, and it is easy to swamp the
savings with increased overhead.

l A large portion of the thread management path is locked, since
little work is required beyond manipulation of shared data.
When all data is kept under a single lock, throughput is limited
by contention for this lock. However, even with local free lists,
the lock on the ready queue limits throughput to only a few con-
current thread operations. Only local ready queues can support
high rates of thread creation.
When lock contention is not a problem, the bandwidth of the

bus limits the thread creation rate. The throughput in Figure 3.2
levels out for the local ready queue alternative, even though there
is no significant contention for locks. While the heavy bus
demand per thread may be specific to the write-through cache pro-

tocol on the Symmetry, bus contention is likely to be a problem
on any bus-structured shared-memory system.

In Figures 3.1 and 3.2, threads do no work except to create other
threads. It is natural to ask whether the performance implications
of the thread management alternatives would still be significant in
the presence of user-mode computing. Figure 3.3 graphs thread
creation rate as a function of the number of processors, when the
amount of user work per thread averages 300 psec, taken from a
uniform distribution. This is representative of applications with
fine-grained parallelism. Differences appear as the number of
processors increases.

+ single lock
+ multiple locks
* local freelist
0 idle queue
* local readyq

i
.
5 9 1; r;

number of processon

Figure 3.3: Rate of thread creation, 1000s of threads per
second, user work = 300 psec. (measured)

Figure 3.4 graphs thread cost in psec. as a function of the
number of runnable threads (parallelism). When there are fewer
threads than processors, thread cost is taken to be the time to
creak and start running a new thread. The time to finish a thread
is unimportant if the idling processor has no work to do. When
there are as many or more ruxmable threads as processors, the cQSt
isthesumofthetimetocreateathreadplusthetimetolinishit
snd start a new thread. This difference in the definition of cost
results in the jump in Figure 3.4 when the number of runnable
threads reaches the number of processors. Note that the thread
latency reported in Figure 3.1 with one processor conesponds
closely to the latency reported in Figure 3.4 when there are more
runnable threads than processors.

Tbread cost was directly measured by taking timestamps before
and after each thread was created and whenever a thread started or
finished. Multiple creations were measured and averaged to
improve accuracy. Creations and completions were synchronized
to avoid measuring lock contention.

As expected, an idle queue is faster when there are idle proces-
sors, but slower when there are more runnable threads than prc+
cessors. Thread creation is faster if an idle processor can be used
to do work before the thread is created, but checking the idle
queue incurs overhead even if it is not used. Whether a particular
application will run faster with an idle queue depends on how
much time it spends in each case.

The spike in the curve when using per-processor ready queues
shows that finding a ready thread among many queues is expen-
sive when the parallelism of the application is near to the number
of processors, but the expense fades when more ready threads or
more idle processors are available.

One area of further research is to examine hybrid thread
management strategies to combine the advantages of some of the

53 Performance Evaluation Review Vol. 17 #1 May1 989

alternatives we have presented. For example, both central and
per-processor ready queues could be used, by placing created
threads in a local queue if the lock on the central queue is busy.
As another example, a creating processor could probe randomly to
find an idle processor, and if none were found, place the thread in
a central queue. The drawback to any such approach is that com-
plexity adds cost which may outweigh any benefits.

20.
number of runnabfa threads

Figure 3.4~ Latency @sec.) vs. number of runnable threads,
18 processors (measured)

3.7. Analytical explanation of Figure 3.4
We now derive a formula that explains in detail the spike for the

per-prccessor ready queue alternative in Figure 3.4. When them
are idle processors, we need to know the time between the queue
ing of a ready thread and the dequeueing of that thread by an idle
processor; when there is a backlog of ready threads, we need to
know how long it takes a newly idle processor to find one.

Let E (r ,q) be the expected number of queues examined by a
newly idle processor to find one of t ready threads, which are ran-
domly distributed among q queues. Without loss of generality,
let the queues be numbered from 1 to q , let threads be numbered
from 1 to t , let ii be the queue containing the j th thread, and let
the idle processor begin searching with queue 1. The idle proces-
sor must examine the number of queues equal to the lowest num-
bered non-empty queue. The number of ways of putting r threads
intoq queuesisq’.

E(r,q)=I 5
4’

minimwn of (iI, iz, * * * i,)
i,j*.*.i=l

We can separately sum when each ij is the minimum. When
more than one thread is at the minimum, we count the value once
in the sum for the least numbered thread. Thus, the value of ij is

countedonlyifforallk<~,i~>ij,andforallR>~,i&i>.
I %

EV,q)= + I
r q-l

q + C, xi(q-i+l)‘+(q-i)j-l (3.1)
j=l i=l I

By symmetry, Equation 3.1 also holds when there are more pro-
cessors than runnable threads. Let r be the number of idle pro-
cessors, let ij be the queue currently scanned by the j th idle pro-
cessor, and let the newly created thread be put into queue 1. Then
the processor that -actually dequeues the thread will have to look
through E (r ,q) queues, after the thread is queued, to find it.

Figure 3.5 graphs Equation 3.1 for 18 processors. To compare
to Figure 3.4, the x-axis is the number of runnable threads, rather
than the number of ready but not running threads or the number of

idle processors. Noting that part of the spike in Figure 3.4 is due
to the difference in the measurements when there are idle proces-
sors or not, Figures 3.4 and 3.5 correspond well.

o- . , . , . , . , . , . , .
1 6 11 16 21 26 31

number of runnable threads

it local readyq

Figure 3.5: Queues examined vs. number of runnable threads,
18 processors (Equation 3.1)

The above analysis assumes that events occur one at a time.
Since finding a ready thread among a number of queues can take a
non-trivial amount of time, it is reasonable to consider what hap
pens when another thread is created or another processor becomes
idle during the interim. Suppose another thread is created before
an idle processor finds one of the r ready threads. Let C be the
cost of finding a thread in this situation. If the new thread is the
one that is found, then C is no better than if the new thread had
been there all along. If a different thread is found, then C is no
worse than if the new thread is ignored. In other words,
E(r+l,q) I c lE(r,q). Similarly, if another processor
becomes idle in the interim, provided r 2 2, the combined cost
for both prccessors to find threads is E(r,q) + E(r-l,q),
assuming the processors do not contend for the same queue,
independent of which processor finds a ready thread first.

4. Spinlock Management Alternatives
If a processor finds a thread management lock busy, it must spin

wait for the lock to be released. Since any other work the proces-
sor might do instead is also controlled by a lock, the processor
does not have the option of doing other work while it is waiting.

At the user level, a thread does have a choice between spinning
for a busy lock or blocking, relinquishing the processor to do use-
ful work while the lock is busy. Since finding that work requires
access to thread management data structures, however, blocking
at the user level may result in spimring in a thread routine.

Spin-waiting has a hidden cost. Processors doing useful work
may be slowed by processors that are merely waiting for a lock,
due to bus contention. As a result, adding to the number of pro
cessors executing an application may in fact slow it down by
increasing the average number of spinning processors. Worse, the
more spinning processors, the more the processor holding the lock
is slowed, increasing the effective size of the critical section,
resulting in even more waiting processors.

Here we evaluate three different approaches to spin-waiting.

4.1. Hardware description
On the Symmetry Model A, each processor has its own cache;

provided all of its memory references can be satisfied out of that
cahe, a processor’s progress is independent of the activity of

54 Performance Evaluation Review Vol. 17 #I May1989

other processors. Whenever a processor reads data that is not in its
cache, it must wait for the data to come Born memory via the bus;
with a write-through protocol, a processor may also have to wait
for writes to be sent to memory. 10 both cases, the processor’s
progress can be slowed by bus contention.

The Symmetry has a basic test-and-set instruction, xchgb
(exchange byte), that atomically reads a memory location and
writes in a new value. The atomicity of the xchgb operation is
enforced by the bus: a copy of the memory location is brought
into the processor’s cache, modified there, and then written back
to memory. Any requests for that memory location in the interim
are delayed until the processor is done modifying it [Lovett &
Thakkar 19881.

The Sequent locking protocol is as follows: To lock, a proces-
sor exchanges in a 1. If the old value was a 0, it got the lock; if
the value was a 1, the lock was already held by someone else, and
the processor must try again. In either case, the value is 1 after-
wards. The lock is released by exchanging in a 0, this allows
some other processor to get a 0 back in exchange for a 1. There
are several potential protocols for spin-waiting, which am
described below.

4.2. Spin on xchgb
The simplest way to implement spin-waiting is for each proces-

sor to loop on the xchgb instruction until it succeeds. The draw-
back to this approach is that every xchgb instruction consumes
bus resources, whether or not it succeeds [Sequent 19881. A copy
of the lock must be brought into the processor’s cache; since the
lock is written whether or not it is acquired, any copy of the lock
in another cache is invalidated. As additional processors spin on
the lock, the holder of the lock is slowed both because the bus is
busier and because to free the lock it must contend with atomic
operations of processors uselessly trying to acquire the lock

4.3. Spin on memory read
An alternative would be for each processor to try to acquire the

lock once; if this fails, the processor can spin reading the lock
memory location. As long as the value is 1, the lock is still held.
Looping on a read is done in the cache, avoiding bus trtic.
When the lock is released, the cache copy will be invalidated; the
spinning processor will see the value change to 0, and can then try
to acquire the lock using an xchgb operation. Sequent’s runtime
library uses this implementation [Sequent 19881.

A problem arises when there are a number of processors waiting
for a small critical section. When the lock is freed, every spinning
processor’s copy is invalidated, causing each processor to miss in
turn. The !I& to try to acquire the lock succeeds. Any processor
that reads the value before this occurs will see a 0 and will attempt
to acquire the lock (and fail); any processor that reads the value
afterwards will see a 1 and will return to looping in its cache.
Unfortunately, each processor that does an unsuccessful xchgb
operation invalidates all cache copies, forcing all processors that
had seen a 1 to read miss again. After each such operation, virtu-
ally every spinning processor must contend for the bus, some still
waiting to do an xchgb and some waiting for a read miss. Eventu-
ally, the last processor to have seen a 0 will attempt to acquire the
lock and fail; each spinning processor can then read miss and
quiesce, looping in its cache.

The performance of this algorithm, therefore, improves as the
critical section gets longer, assuming that contention does not
increase. After the lock is released and before quiescence, each
spinning processor spends most of its time with a pending bus
request; any normal bus request during this time will be

correspondingly delayed. After quiescence, the spinning proces-
sors place no load on the bus, allowing the processor holding the
lock to progress unhindered. With longer critical sections, the ini-
tial degradation is less signitlcanf By contrast, spinning on the
xchgb instruction degrades bus performance evenly throughout
the critical section.

44. Ethernet-style backoff
The source of the difficulty is that them is a cost to attempting

to acquire the lock A generic solution to problems of this sort is
to have each processor estimate its likelihood of success, and only
try the lock when the probability is high. The estimate can be
made from experience. The more times a processor has tried and
fail& the mom likely it is that many processors are spinning for
the lock When the lock is released, then, instead of every proces-
sor rushing to try to get it, each waits a period of time dependent
on the number of past failures. If the lock is still Bee after this
period, then the probability of success is high enough to try the
lock. We used this algorithm for our measurements in Section 3.

The analogy with Ethernet is revealing. In the Ethernet proto-
col, a processor can start a network transmission in any time slot
that the network is free [Metcalfe & Boggs 19761. If two try to
start transmitting in the same slot, both fail and must be retried
later. To avoid further collisions, the length of time before retry-
ing depends on the number of collisions encountered so far. In
our case, when a number of processors simultaneously try to
acquire a lock, one will succeed, but ita progress will be slower
than if there were 00 collisions.

The downside to Ethernet-style protocols is that they are unfair.
A processor that has just arrived is more likely to acquire the lock
(or network) than one who has been waiting, and failing, for some
time. Spinning on a test-and-set instruction and spinning on a
copy of the lock location am both probabilistically fair, each spin-
ning processor has an equal likelihood of getting the lock, even
though the possibility of indefinite starvation exists. Lock fair-
ness is sometimes important to an application.

Another drawback of the backoff algorithm is that it takes
longer for a spinning processor to acquire a newly free lock. The
processor must check the lock value, delay, and check it again
before trying the lock. Once the lock is acquired, however, the
processor will proceed faster, relatively unimpaired by other spin-
ning processors.

Even using this algorithm, there will be processor degradation
when there are large numbers of spinning processors. When the
lock is released, every spnming processor encounters a cache
miss. After this initial miss, most processors delay locally until
some other processor has acquired the lock, and then miss again
to see that the lock has been acquired. With enough spinning pro-
cessors, the bus can be saturated with these misses, slowing down
the processor executing in the critical section.

These cache misses can be avoided. A processor can delay
whenever it reads the lock value aa busy. If the lock is not busy,
the processor can immediately try to acquire it. Thus, spinning
processors miss their cache every time the delay period expires,
rather than every time the lock is released. This is analogous to
the Ethernet notion of persistence metcalfe & Boggs 19761. A
result of this variation is an even greater &lay between when a
lock is released and when a spinning processor will acquire the
lock. Nevetieless, this type of spin-waiting may be appropriate
for systems without hardware-coherent private caches. In this
case, spinning on a memory read until the lock is released is
impractical since each read consumes bus resources; backoff
adapts the fmquency of reads to the number of waiting processors.

55 Performance Evaluation Review Vol. 17 #1 May1 989

While most practical applications will not waste large numbers
of processors, this can be a problem with idle processors polling a
central or distributed ready queue. When a ready thread is
queued, if each idle processor rushes to acquire the lock, bus
saturation will result. Even if each idle processor delays after
observing that a thread is queued, then makes sure that it is still
queued, each idle processor will still perform a cache miss, hurt-
ing performanc e for large numbers of idle processors.

If idle processors am kept on a queue, this problem does not
occur. Each idle processor spins on a local flag. When a thread is
created, only one processor’s flag is modified, every other proces-
sor continues spinning without even a cache miss. The perfor-
mance advantage of having work look for processors instead of
processors looking for work will therefore be more important in
systems with large numbers of processors. This effect can be seen
in Figure 3.4; the cost of the central ready queue is higher when
there are only a few NMable threads, since there are more idle
processors spin-waiting for work to appear in the ready queue.

45. Measurement results
Figure 4.1 shows the elapsed time to increment and test a shared

counter in a critical section 1 million times, for each method of
spin-waiting. Each processor executed a loop: wait for the lock,
increment the counter, and release the lock. If spin-waiting did
not slow the processor holding the lock, the elapsed time for
twenty processors would be no mom than for one.

The magnitude of this effect is striking. Both spinning on the
xchgb instruction and spinning on the copy of the lock degrade
processor performance badly for even a moderate number of spin-
ning processors. For small critical sections, in either alternative,
every spinning processor spends all of its time doing cache read
misses or atomic xchgb operations, consuming bus resources as
fast as possible. By contrast, the backoff algorithm results in only
slight degradation for less than ten spin-waiting processors.

Figure 4.2 shows the effect of increasing the size of the critical
section for each algorithm. In addition to incrementing a counter,
the critical section contained varying amounts of other work. We
then normalized the time for the counter to be cooperatively incre-
mented by eight processors by the time for one processor. This
measures relative processor speed. Again, if spin-waiting did not
slow the processor holding the lock, one processor would not be
faster than eight, and the relative processor speed would always
be equal to 1. As expected, spinning on memory read degrades
performance less as the size of the critical section grows, while
spinning on the xchgb instruction degrades performance evenly
throughout the critical section.

To test the tradeoff between processor degradation and the
delay in acquiring a newly released lock, we measured the elapsed
time for a number of processors to each increment a shared
counter within a critical section. Once a processor acquired the
lock and bumped the counter once, it was set to loop until all pro-
cessors were done. This test is indicative of the cost of using a
lock for barrier synchronization. Figure 4.3 shows the elapsixed
time divided by the number of processors. If there is no processor
degradation or delay in acquiring the lock, the elapsed time to
achieve the barrier should increase linearly with each additional
processor; the normalized curve in Figure 4.3 should be flat.

Figure 4.3 shows that for small numbers of processors, spinning
on the xchgb instruction is fastest, since a processor immediately
acquires the lock when it is released. As more processors are
added, however, this benefit is outweighed by the degradation of
the processor holding the lock. The backoff algorithm shows a
similar curve to spianing on a memory read, but for a different

reason. Initially, many processors are queued for the lock; this
leads spinning processors to guess large &lay times. As more
processors acquire the lock, them are fewer queued processors,
and the delays become inappropriate.

+ spin xchgb
+ spin read
+ backoff

0: .,.,.,.,.,-,I
1 3 5 7 9 11 13

number of procauon

Figure 4.1: Principal results for spin-waiting: elapsed time
to increment a shared counter to l,OOO,OOO (measured)

0.2! . , . I . I . I
10 60 110 160 210

“*cIo*. In crltlul saotlon

Figure 4.2: Relative processor speed (8 processors to 1
processor) vs. critical section size (measured)

40

30

20

10
1 3 5 7 9 11 13

* spin xchgb
+ spin read
+- backoff

number of pmceason

Figure 4.3: Normalized time @sec. per processor) to achieve
barrier (measured)

56 Performance Evaluation Review Vol. 17 #1 May1 989

Processors doing work are slowed proportional to the number of
times they access the bus. Thus, the results of these tests depend
somewhat on the content of the critical section. However, since
the purpose of a critical section is to serial& modifications to
shared data, its code is likely to be bus intensive. Our measure
ments indicate that almost half of the bus service demand of
thread management is due to the critical section. Further, thread
management critical sections also tend to be small. For example,
enqueueing or dequeueing a ready thread in a critical section both
take less than 10 w., roughly the same as for Figure 4.1.

4.6. Implications for other systems
The Symmetry Model A has a write-through protocol: when a

processor modifies a location, the value is written to memory and
all old copies of the location in other caches are invalidated.
There is a cost to spin-waiting, even in architectures with a write
back cache coherency protocol. In a write-back protocol, the
value is stored in the cache and later written to memory when the
cache block is replaced. There are two major approaches to keep-
ing other caches consistent with the new value: all old copies in
other caches can either be invalidated or updated with tbe new
value (distributed-write) [Archibald & Baer 19861.

In the case of an invalidation-based write-back protocol, the
spin-waiting alternatives have much the same effect as with
write-through. If processors spin on the atomic test-and-set
operation, the valid copy of the lock bounces from cache to cache,
consuming bus resources. Provided more than one processor is
spin-waiting, when one processor tries the lock, it invalidates
every other cache copy, requiring the lock value to be copied to
the cache of the next processor to try the lock. Spinning on a
memory read does not solve this problem, since the cache copy of
a looping processor is still invalidated, resulting in a cache miss,
by each successive processor trying to acquti the lock. The
Sequent Symmetry Model B, the successor to the architecture we
used for our measurements, uses such a protocol.

The pelfornlanc e with distributed write-back is better, but it
does not eliminate the problem. When a processor performs an
atomic operation, every cache with an old copy is updated with
the new value. If processors spin on the atomic operation, the bus
can be saturated doing these updates. If processors spin on the
memory read, however, each cache is kept up-to-date, eliminating
the cascade of cache misses as each spinning processor tries to
acquire the lock. The rush of processors to try the lock when it is
first released still results in some bus traffic for dislributing each
update, but quiescence will occur faster. Since the backoff algo-
rithm reduces the number of lock attempts, it reduces the bus load
due to spinning even further.

A hardware mechanism for queueing processors without con-
suming bus resources would also solve this problem. In fact, the
Symmetry has such a mechanism, but it is less than completely
useful. While one processor is performing an atomic operation,
any other processor attempting to access that memory location is
delayed before using the bus [Sequent 19881. Unfortunately, only
single instructions can be made atomic; it is rare in practice to be
able to complete a critical section in one instruction.

5. Analytical Results
We developed a queueing network model of our thread package

to demonstrate that the combination of processor degradation due
to bus contention and the effect of lock contention can account for
our measurements. We used the validated model to project the
performance of our package under varying conditions.

Our model is hierarchical. The low level model represents the
effect of bus contention on processor speed. The high level model
represents the effect of lock contention on throughput and
response time. Since processor speed affects the amount of lock
contention and the number of spinning processors affects bus con-
tention and thus processor speed, we iterate between levels to con-
vergence. We describe the two sub-models in more detail below.

5.1. ModeWng bus contention
In the low level model, we represent each processor as a custo-

mer in a closed queueing network. The network has two service
centers: a queueing center for the bus and a delay center for non-
bus activity. Each processor spends some of its time referencing
memory through the bus and thus contending with other proces-
sors also using the bus, and some of its time processing out of its
cache, independent of the activity of other processors. Processor
speed is degraded by the percentage of time spent queueing, but
not in service, at the bus.

local processing

pq cllstor”ers = l~roccssors

Lx-D-1
Diagram 5.1: Low level model of bus contention

This model is an approximation of the real bus mechanism,
which is considerably more complex [Lovett & Thakkar 19881.
At moderate loads, our model will be pessimistic by predicting
more contention than is actually experienced. Because of the
regularity of the time each processor spends computing between
accesses to the bus, if two processors collide at the bus, they are
unlikely to collide at their next visit. Our model assumes that
arrivals are more nearly independent.

There are three components to bus utilization. A processor can
be executing user code, thread management code, or spin-waiting,
each with different service demands on the bus. Given these ser-
vice demands and the ratio of time each processor spends in each
type of activity, we determine the aggregate service demands at
the bus and at the delay center and use these aggregate demands
to solve the model.

Since it is difficult to analytically~determine the bus demand of
a section of code, we determine a portion of it inductively from
measurements. We provide each processor with its own copy of
all data structures; we then run the code in parallel on each pro-
cessor. Since there is no shared data, there can be no contention
for software ~sources; any delay experienced by a processor rela-
tive to when it is running the code by itself must be due to conten-
tion for hardware resources, such as for memory or the bus. We
then match a curve from our model of the bus to the measured
curve and use the result as the service demand for that section of
code. The curves matched well in practice, deviating only at
moderate loads, as expected.

Since bus contention may disproportionately impact the critical
section execution time, affecting lock contention in the high level
model, we used this approach separately for the critical section
and non-critical section code within thread management. The
critical section code turns out to account for much of the bus
demand of thread management.

57 Performance Evaluation Review Vol. 17 #l May1989

Even though it could affect bus usage, we did not include in our
model the effect of different numbers of processors on cache hit
ratios. When a processor writes a location, the Symmetry updates
both memory and that processor’s cache. As a result, on a single
processor, data that is both written and read will tend to stay in the
cache, avoiding cache misses. When multiple processors read and
write shared data, the cache copies of the data will be repeatedly
invalidated as different processors update it, resulting in mom
cache misses than in the single processor case. Our model there
fore underestimates bus demand, making it optimistic, especially
as the bus nears saturation.

The bus demand of spinning processors was also determined
inductively. P processors were set to run the critical section with
separate copies of the data structures; by the experiment described
above, we know the bus service demand of these processors. Q
processors were set to run a shared copy of the critical section;
one of these processors has the normal bus service demand, and
Q - 1 spin-wait. By measuring the processor degradation of the
P copies, we can determine the aggregate bus demand of the
Q - 1 spinning processors. A two class model was used, one
class representing processors executing critical sections and one
representing spinning processors. Only the response time of the
processors executing the critical section is important.

The bus demand, at least for the backoff algorithm, is linear
with the number of processors. While there is no u priori reason
for this, it intuitively makes sense. The effect of adding a spin-
ning processor with the backoff algorithm is to add two cache
misses per execution of the critical section. The bus demand of
other processors is relatively unaffected. While this invariance
would also hold for the spin on xchgb algorithm, it is less true
when processors spin on memory reads, because the cascade of
cache misses is longer for every processor when more processors
are spinning. Note that the graphs in Section 4 could be used to
infer the bus demand of spinning processors. We did not choose
this approach because there is a correlation between when the pro-
cessor holding the lock and when the processors spinning on the
lock use the bus. The curve for the backoff algorithm in Figure
4.1, e.g., is similar to that of an optimistic asymptotic bound.

5.2. ModelUng lock contention
In the high level model, we represent each lock in the thread

management path by a separate queueing center. Processing time
spent not holding a lock is modelled as a delay center. Service
demands were directly measured, then the part of each service
demand due to bus accesses was intlated by the bus response time
of the low level model. As in the low level model, each processor
is represented as a single customer in a closed class. By solving
this model, we can determine the average amount of time each
processor spends spin-waiting for a lock versus executing thread
operations or user code. This ratio is then used as an input to the
low level model. (Note that it is a simple matter to add queueing
centers if the application-level code does further locking.)

If the time between thread operations is deterministic, our
model is pessimistic at moderate loads. As for the bus, if two pro-
ceasors collide at a lock, the effect of deterministic processing
times is to reduce the likelihood that they will collide at the next
visit. Figure 3.2 shows this effect. The curves are similar in
shape to asymptotic optimistic bounds, since the processing time
to do each thread operation is deterministic. Figure 3.3 does not
show this effect, since the user computation for each thread was
randomly chosen from a uniform distribution.

Our model does not explicitly represent an application’s distri-
bution of parallelism, although Figure 3.4 shows that this affects
performance. We chose not to include this in our model since the

uon-locked processing

CllS~fJIlM!~S = prOCCSSOrS

Diagram 5.2: High level model of lock contention for the
local freelist alternative

distribution and the effect of lock queue& &lay on that distribu-
tion are almost always application-dependent.

Given the distribution, the model could be evaluated separately
for each population of threads; these separate evaluations could
then be averaged, weighted by the proportion of time for that
population. The population of the high level model should be the
minimum between the number of processors and the number of
threads, reflecting the number of active processors. The popula-
tion of the low level model should be set similarly, except that
since idle processors consume bus resources, a second class
should be added to represent them.

This method of separate evaluations ignores the fact that lock
contention can only occur when the parallelism is being incre-
mented or decremented; we believe that any distortion introduced
by the adaptive nature of the mechanism will be outweighed by
the effects of lock and bus contention. Ni and Wu [1985] also
discuss this issue.

5.3. Comparison with measured results, and projections
Figure 5.1 compares our model results with our measurement

results previously reported in Figure 3.3. We modelled two alter-
natives: per-processor ready queues (local readyq) and per-
processor free lists with a central ready queue (local freelist). Our
model agrees well with the measurements, within 5% except for
the central ready queue with 18 processors. The model predicts
the shape of the curve, but is somewhat optimistic; this appears to
be due to underestimating the bus demand, which is important in
determining the effective size of the critical section. The model
does capture the difference between the alternatives.

5 40 =
t 30
1 20

‘ii

t 10

* ICC flist meas
-+ 0 lot locrdyqmeas flist model

+ lccrdyqmcdel

1 5 9 13 17

number of pmc”ron

Figure 5.1: Comparison of analytic and measured results
from Figure 33

58 Performance Evaluation Review Vol. 17 #I May1 989

Having validated our model, we used it to investigate the effect
of varying key parameters. Figure 5.2 shows throughput with 20
processors as a function of the amount of user computation per
thread. As we would expect, as an application uses finer-grained
parallelism (smaller amounts of computation per thread), the cen-
tral lock on the ready queue becomes a bottleneck. For
sufficiently coarse-grained parallelism, the performance of the
thread package ceases to matter. In the limit, even DYNIX
processes could be used.

+ local fmelist
* local readyq

0! . , . , . , , . 1
0 200 400 600 600 1000

useca. of user mode computing

Figure 5.2: Thread creation rate vs. psec. of user computation
per thread, 20 processors, bus load = 5 9% (analytic)

Contention for the bus can also reduce the difference between
the alternatives. Figure 5.3 shows throughput as a function of the
percentage usage of the bus by each thread. As the bus usage
increases, the bus limits the throughput with local ready queues,
but it also limits the throughput with the central ready queue,
since bus contention inflates the critical section time.

II

* local treelist
* local readyq

-I I . I . a .

0.0 0.1 0.2 0.3 oI4 015

bus load as K ot user computation

Figure 5.3: Thread creation rate vs. bus load,
user work = 200 pet., 20 processors (analytic)

On the other hand, the central ready queue lock can again limit
throughput even for more coarsely-grained parallelism, given a
sufficient number of processors. Figure 5.4 shows the throughput
as a function of the number of processors when threads each com-
pute for 2 milliseconds. The sharp dropoff for the central ready
queue alternative shows the inherent instability of a system where
spinning processors consume resources.

10 20 30 40 5C

number ot ptuo~sors

+ localfreelist
* localreadyq

Figure 5.4~ Thread creation rate vs. number of processors,
user work = 2 msec. (analytic)

6. Conclusions
Threads have become a common element of new languages and

operating systems. Efficient thread management is critical to
achieving good performance from parallel applications. We have
studied the performance implications of several thread manage-
ment and locking alternatives. We showed that:
l It is possible to implement a fast thread package. Simplicity is

crucial for this.
l For fine-grained parallelism, small changes in data structures

and locking have a large effect on both latency and throughput
l Per-processor data structures can be used to improve

throughput; if a resource is not scarce, localizing data can avoid
locking, improving latency as well.

l Spin-waiting can delay not only the processor waiting for a
lock, but other processors doing work. This appears to be
independent of the cache coherency protocol.

l An Ethernet-style backoff algorithm can reduce the cost of
spin-waiting.

l A simple queueing model can accurately predict the effect of a
combination of factors on the performance of shared-memory
multiprocessors.

An area of future research is to determine the extent to which
our results, developed in the context of thread management sys-
tems, also apply to application programs that exploit fine-grained
parallelism on shared-memory multiprocessors.

Acknowledgements
We would like to thank Dave Wagner for suggesting that an

Ethernet-style algorithm might solve the spin-waiting problem.

References
[Accetta et al. 19861

M. Accetta, R Baron, W. Bolosb. D. Golub, R. Rashid, A Tevaoian,
and M. Yam
ment. Proc. B

Mach: A New Kernel Foundation For UNIX Develop
wnmer 1986 USEtVlX Technical Conference and Exhibi-

don, June 1986, pp. 93-112.
[Archibald L Baer 19861

J. Archibald and J.L.. Baer. Cache coherence Protoc&: Evahaition
Using a Multiprocessor Simulation Model. ACM Transactions OR Com-
puter Systetns. vol. 4, no. 4, Nov. 1986.

path & Bumff 19841
M.J. Bach and S.J. Buroff. Multiprocessor UNIX operating Systems.
AT&T Bell Laboratoriee Technical Journal. vol. 63, no. 8, Oct. 1984,
pp. 17331749.

59 Performance Evaluation Review Vol. 17 #l May1 989

[Bershad et al. 1988a]
Brian Bershad, Edward Lazowska, and Henry Levy. PRESTO: A Sys-
tem for Object-Oriented Parallel Programming. Su@.vare: Praaice and
Experience, vol. 18, no. 8, Aug. 1988, pp.713732

[Bershad et al. 1988b]
Brian Bet&ad, Edward Lazowska, Henry Levy, and David Wagner. An
0 n Environment for Building Parallel programming Systems. Proc.
ArM1SIGPL.W PPEALS 1988. pp. l-9.

[Fritz & Boyle 19871
Kenneth W. Dritz and James M. Boyle. Beyond “Speedup”: Perfor-
mance Analysis of Parallel Programs. Technical Report ANL-87-7,
Mathematics and Computer Science Division, Argonne National
Laboratory, Feb. 1987.

[Eageret al. 19861
Derek Eager, Edward Lazowska, and John Zahorjan. Adaptive Load
Sharing in Homogeneous Distributed Systems. IEEE Transactions on
Sofrware Engineering, vol. 12, no. 5, May 1986, pp. 662-675.

[Edler et al. 19881
Jan Edler, Jim Lipkis, and Edith Schonberg. Process Management for
Highly Parallel UNIK Systems. UltracomputerNote #136, April 1988.

[Hoare 19781
CAR. Hoare. Communicating Sequential Processes. Commuru ‘cations
of the ACM, vol. 21, no. 8, Aug. 1978, pp. 666677.

[Holt 19821
R. Hoh. A Short Introduction to Concurrent Euclid. SIGPLAN Notices,
vol. 17, May 1982, pp. 60-79.

[Jul et al. 19881
Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black Fine-
Grained Mobility in the Emerald System. ACM Transactions on Com-
puter System, vol. 6, no. 1, Feb. 1988, pp. 109-133.

@mar & Gonsalves 19771
B. Kumar and Timothy Gonsalves. Modelling and Analysis of Distri-
buted Software Systems. Proc. 7th ACM Symposium on Operating Sys-
tear Principles, Dec. 1977, pp. 2-8.

%%son & Redell19801
. Lampson and D.D. Redell. Experiences with Processes and Moni-

tors in Mesa. Communications of the ACM, vol. 23, no. 2, Feb. 1980,
pp. 104-117.

[Lazowska et al. 19841
Edward Lazowska, John Zahorjan, G. Scott Graham, and Kenneth
Sevcit Quantitative System Performance. Prentice-Hall, 1984.

[Lovett & ‘lhakkar 19881
Tom Lovett and Shreekant Thakkar. The Symmetry Multiprocessor
System. Proc. 1988 International Conference on Parallel Processing,
pp. 303-310.

[Metcalfe & Boggs 19761
Robert Metcalfe and David Boggs. Ethernet: Distributed Packet
Switching for Local Computer Networks.
vol. 19, no. 7, July 1976. pp. 395-404.

Corrununications of the ACM.

IMundie & Fisher 19851
D.A. Mundie and D.A. Fisher. Parallel Processing in Ada. IEEE Com-
puter, Aug. 1985, pp. 2@25.

[Ni & Wu 19851
Lionel Ni and Ching-Fern Wu. Design Trade-offs for Process Schedul-
ing in Tightly Coupled Multi
tional Conference on Parallel %

rooxsor Systems. Proc. 1985 Intema-
recessing, pp. 63-70.

[Scott et al. 19881
Michael Scott, Thomas LeBlanc, and Brian Marsh. Design Rationale
for Psyche, a General Purpose Multiprocessor Operating System. Proc.
1988 International Conference on Parallel Processing. August, 1988.

[Sequent 19881
Sequent Computer Systems, Inc. Symmetry Technical Summary.

[‘Ihacker et al. 19881
Charles lhacker, Lawrence Stewart, and Edward Satterthwaite Jr.
Firefly: A Multi
ers, vol. 37, no. H

mcessor Workstation. IEEE Transactions on Comput-
, Aug. 1988, pp. 909-920.

[Vandevoorde & Roberts 19881
Mark Vandevoorde and Eric Roberts. WorkCrews: An Abstraction for
Controlling Parallelism Digital Equipment Corporation Systems
Research Center, 1988.

[Wagner et al. 19891
David Wagner, Edward Lazowska, and Brian &r&ad. Techniques for
Efficient Shared-Memory Parallel Simulation. Proc. Performance ‘89 I
ACM SIGMETRICS 1989.

[zahorjan et al. 19881
John Zshojan, Edward Lazowska, and Derek Eager. Spinning Versus
Blocking in Parallel Systems with Uncertainty. Proc. Intematiawf
Seminar on the Performance ofD&tributed and Parallel Systems, Noah
Holland, Dec. 1988.

60 Performance Evaluation Review Vol. 17 #1 May1 989

