
Appendix 1: Proofs and Derivations 
 
This appendix includes major derivations omitted from the main text. It is by no means a 
complete set of derivations for all the relationships used. It is a selection that the authors 
feel is most illustrative of the underlying physical concepts as they relate to the methods 
described.   
 

1. Derivation of the Density-of-States Expression. 
 
We know from quantum mechanics that particle energies are not continuously variable in 
constrained systems. The famous example is that of atomic energy levels. Simply 
confining an electron in a “box” also creates discrete, allowed energy states. Energy and 
momentum are related through some “dispersion relationship” – an E-k Diagram. Thus, 
the allowed states of a system can be “indexed” in terms of discrete energy, En, or an 
associated momentum, hkn. The constant h is the Planck constant. Note the vector nature 
of k as signified by the bold print.  
 
The individual kns represent quantized solutions to the Schrödinger equation. They may 
be displayed as a three-dimensional array of lattice points, as shown below (Fig.1A.1.1). 
This lattice is a kind of Fourier transformation of the array of crystal lattice points as they 
appear in real space. The spacing of points in “momentum-space” is reciprocal to that of 
the spacing of real-space lattice points. For this reason, the momentum-space 
representation is frequently called a “reciprocal Lattice.” 
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a. Real-space lattice representation 

Fig. A1. Real and momentum-space lattice representations of the crystal lattice. Note the 
Inverse relationship between lattice constants in each representation space.  



 
From this representation we may derive a “density of states.” The density of states (DOS) 
is defined as the number of allowed states in the crystal per unit of energy (at some 
energy) per unit volume of material. Consider a material with a cubic crystal structure. 
The reciprocal lattice of a cubic lattice is also a cubic lattice. Allowed momentum 
“solutions” of the Schrödinger equation are evenly spaced through momentum space such 
that: 
 
   kx = nx π/a  ky = ny π/b kz = nx π/c 
 
The n’s are integers and a,b and c are the real-space lattice constants. A unit volume of k-
space is just: 
 
     π3/abc 
 
A single cube in k-space contains 8 vertices.  Each k-space lattice point is shared between 
8 unit cells. This there is one-eighth of a state associated with each vertex or 1 state per 
unit cell of the cubic reciprocal lattice. The number of solutions per unit volume of k-
space is the reciprocal of this – one exception. Each discrete state can be occupied by two 
electrons (one spin up, the other spin down.) This doubles the electrons occupying these 
states. And so we have the fact that there are: 
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states per unit volume of k-space.  
 
As stated above, energy is related to momentum. In quantum mechanics, the relationship 
is: 
 
     p = h k. 
 
Note, that this relationship ties a wave property (wave-number, k) with a particle property 
(momentum, p). Just as in classical mechanics, we have: 
     E = p2/2m 
 
Or: 
 
     E = h2 k2/2m. 
 
E is energy and m is the effective mass of the particle as it moves through the solid. From 
this, we derive: 
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Here, k may be regarded as the magnitude of a vector from the origin to any lattice point 
in k-space. We can use this relationship to relate intervals of energy, dE, to intervals in k-
space, dk: 
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The volume of a spherical shell centered at the origin, with shell thickness dk is: 
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In this volume there are: 
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states. Of these states, only those in the “positive orthant” (the positive octant of the 3-
dimensional k-space) represent unique states. Thus, the above formula for dn over-counts 
the exact number by 8. Dividing through by 8 on the right hand side of the above 
formula, and dividing both sides by dE and the volume (abc) gives us the formula for the 
density of states for a cubic lattice: 
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The volume subscript “r” indicates that this is the volume of the real-space unit cell. Note 
that the density of states increases as the square root of E. this is known as a “parabolic” 
density of states. In semiconductor physics, the zero of energy is taken as the band edge. 
The DOS increases parabolically at energies higher than the band edge.  
 
 

2. Band Occupancy 
 
Consider allowed states in an energy interval dE. The number of occupied states in that 
interval is the number of states in that interval, DOS(E) dE, multiplied by the probability 
that those states are occupied, p(E) the probability that those states are occupied. We can 
write: 
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We are assuming, here, that dE is so small that p(E) and DOS(E) are effectively constant 
over that energy interval. The total number of occupied states in a band is: 
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. 
Eb is the energy at the “bottom” of the band and Et is the energy at the top. As discussed 
in the text, electrons are Fermi particles obeying Fermi occupancy statistics. Thus 
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where Ef is the Fermi level of the system, k is the Boltzmann constant and T is the 
temperature..  
 
The resulting integral can be evaluated numerically. However, analytic results can be 
obtained in approximation. The basis of the most common approximation, the Boltzmann 
approximation, holds that the Fermi level is relatively “deep” in the bandgap and at room 
temperature, the Fermi-Dirac function, p(E) varies steeply around the Fermi level. Thus, 
we need only concern ourselves with the “tail” of the distribution function, for which the 
exponential in its denominator is much less than 1. For this case, the distribution is about 
equal to: 
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and the occupancy integral is: 
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The Ec is the bottom of the conduction band energy and we take the integral to infinity, 
assuming the probability of high-energy occupancy of the band is zero. The integral 
evaluates to: 
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where me* is the effective mass of the electron in the lattice. 
 
 
The pre-factor to the exponential has the units “number per unit energy” and is frequently 
called the “effective density of conduction states”, Nc., giving: 
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In order to calculate the valence-band occupancy, we must realize that a “hole” is the 
absence of an electron. We handle this in the occupancy statistics. Rather than asking 
“what is the probability a state is occupied,” we ask, “what is the probability it is 
unoccupied.” This is just: 1-p(E): 
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Proceeding as above, we find: 
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or: 
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Again, mp* is the effective mass of the hole.  
 
Hand calculations can be greatly simplified as follows. In undoped material, there are as 
many electrons in the conduction band as there are holes in the valence band. This 
number, ni, is the intrinsic carrier concentration (1.45 x 1010/cm3 in room-temperature 
silicon). Thus, the Fermi level lies midway between the bands at energy, Ei, known as the 
“intrinsic” or “mid-band” level.  From out derivations above: 
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and: 
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If we take Nc and Nv as approximately equal, we can re-write the mobile electron and 
hole occupancy expressions as: 
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Frequently, the “occ” subscripts are dropped, and we use n and p as the mobile electron 
and hole occupancies of the bands. The separation of the Fermi level from the intrinsic 
level is known as the “bulk potential), φb. For electrons and for holes, we have: 
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As an example, consider an n-type semiconductor. We assume that the background 
doping “overwhelms” the intrinsic carriers. This would imply: 
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And we can calculate the position of the Fermi level: 
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(kT/q) is just 0.026 volts at room temperature. Thus, if Nd is 1015/cm3, the bulk electron 
potential is 0.34V.  

 
3. The Depletion Approximation 

 
The most straightforward path to hand calculation of relevant component parameters is 
through the depletion approximation. This approach allows us to rapidly compute the 
physical extent of space charge layers in bulk silicon. Here’s how it works. 
 
First, consider two separate blocks of semiconductor (Fig 1A.3.1) of different doping  
polarity (one p-type the other n-type). When the blocks are brought together, the mobile 
carriers intermingle by diffusion – holes migrate to the n-type block, electrons to the p-
type block. What stops this process? Why don’t the carriers just keep diffusion until a 
homogeneous mixture of electrons and holes is achieved? These questions are answered 
through electrostatic arguments. When a mobile carrier diffuses it leaves a fixes charge of 
opposite sign behind. For example, when an electron diffuses from the n-region to the p, 
a positively charged donor core is left behind. This gives rise to an electric field that 
“bucks out” this tendency to diffuse.  
 
The overall tendency toward charge migration can be quantified through a “chemical 
potential drop.”  Chemical potential drops are specified in terms of Fermi-level 
differences encountered on moving through the solid semiconductor. More will be said 
on this when we deal with semiconductor transport. But for now, suffice it to say that in 
equilibrium, the affect of chemical potential drops nullified by electrostatic drops. 



Another way of saying this is that in equilibrium, electrostatic forces cancel diffusive 
tendencies for mobile charges to migrate. This cancellation is purely local, and one does 
not have to resort to Kirchoff’s circuit laws (or any factors extending through the whole 
system) to see how it occurs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1A.3.1. Junction formation by diffusive transport between dissimilarly doped 
materials. 
 

The result is a “space charge,” a region of space over which the charge is not net neutral. 
Actually, for the case shown above, the space charge comes in two parts: one positive 
one negative. Both parts are “fixed” (immobile) charge distributions made up of charged 
dopant atom cores. As a result of the cancellation process discussed above, the total drop 
across both space charges is just the sum of the magnitudes of the bulk potentials of the p 
and n sides. Usually, we assume that the dopant-related charge is constant just up to the 
metallurgical junction. This is called the “abrupt junction” approximation. Furthermore, 
we assume that the space charge terminates abruptly at its edges and that only the fixed 
space charge plays a role in determining the electrostatic potential and fields. As the 
space charge is “depleted or mobile (or “majority”) charge, this is called the depletion 
approximation, and the fixed-charge space charge is called the depletion region. 
 
As we know the total drop across the space charge: 
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Negative fixed space charge Positive fixed space charge 
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we can use the Poisson equation to find the physical dimensions of the space charge. The 
1-D Poisson equation is: 
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Of course, since the negative of the positional derivative of potential is electric field, we 
also have: 
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The “first integral” of the Poisson equation (the solution to the above equation) can be 
obtained from physical considerations alone (with some help from Gauss’ Law). 
Consider Fig.1A.3.2. In particular, consider the force on a positive test charge located at  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1A.3.2. A test charge in a depletion region. 
 
position x. It feels an attractive force from the sheet of charge extending to the left of the 
metallurgical junction. The Force this slab exerts is, by Gauss’ Law, independent of the 
distance, x, and is given by: 
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where q is the charge on the electron and σ is the charge-per-unit-area in the sheet. Note 
that the sign of the force is negative: it points to the negative half-space. For a constant 
doping, abrupt junction model: 
 

! = qNaxp  
 
where xp is the extent of the space charge into the p-region. And so: 
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The magnitude of this force is reduced by the positive charge sheet extending a distance x 
into the n-type silicon. The force reduction is given by: 
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Finally, the third slab, extending to the right of x, has thickness xn-x, and it exerts a 
negative force on the test charge: 
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The total force is the sum of the three forces: 
 

   
Ftot = !

qNa

2"si

# 

$ 
% % 

& 

' 
( ( xp !

qNd

2"si

# 

$ 
% % 

& 

' 
( ( xn ! 2x( )

 
 
where xsc is the full thickness of the space charge layer. Clearly, when x is zero, the force 
is greatest. Thus, the maximum field is found at the metallurgical junction. It should be 
noted that a similar equation works for negative x as well. Using the same logic as that 
which produced the equation above, we have: 
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In this case, the force still pulls the test charge to the left, and still, the force decreases as 
the charge approaches the space charge boundary. At the space charge boundary, the 
force goes to zero, and remains zero throughout the undepleted region. Field lines 
originating in the space charge terminate in the space charge. In this one-dimensional 
model, no field lines extend outside of the depletion. Since: 
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We can perform the “second integral” to get potential as a function of position. Take The 
metallurgical junction to be the zero of potential. First, let us integrate to the right (into 
the) donor doped side: 
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If we carry the integration out to the space charge edge, we have the potential drop across 
the positively charged depletion: 
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The negative sign is correct, since work is don on the test charge when it is moved in the 
positive x direction. Similarly, an integral on the acceptor-doped side yields: 
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The total potential drop across the space charge is the magnitude of the sum of these two 
terms: 
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This can be re-expressed in terms of the total extent of the space charge, xsc. To see this, 
we must realize that: 
 
     xsc = xn + xp  
 
and: 
 
               xnNd = xpNa . 
 
There is some physics to the last relationship. It states that every positive charge in the 
donor space charge throws out a field line that terminates on a charged acceptor in the p-
region. That is implies that during the initial diffusion process, which set up the space 



charge to begin with, a mobile electron migrated to the p-side where it was trapped by an 
acceptor becoming a fixed charge. Similarly, just as many holes drifted to the n-side to 
become charged donors and the sum of all the charges on both sides of the metallurgical 
junction was zero. 
 
From these last two relationships, we have: 
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and: 
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From this we deduce the total width of the space charge, for a given space charge drop, 
Vsc: 
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