SOLUTIONS: ENEE 601 FINAL EXAM SPRING 2005

la. This was basically just warm-up:
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b. This is a bit of an arithmetic slog. First, remember:

Vs C_
Lop = 6sz(Na + Nd)(d)bz V) (4)
qNaNd
where:
kT NN,
=" n| P (5)
q n;

For the EB-Junction, in forward bias, the built-in voltage is .93V (' a bit higher than the
0.7V we normally quote, but not that far off!); and the unbiased space charge thickness
is: 0.1um. As we said in class, the rule of thumb is that in the forward biased diode,
the space charge shrinks to half the “equilibrium” value: 0.05um. As the emitter is very
heavily doped, you can take the space charge as all on the n-side. On the collector side
(the CB junction), the built-in voltage is 0.75V and the space charge thickness is 0.81um.
Note that in the forward active transistor the forward biased emitter potential sits at its
built-in voltage and the drop across the diode is the collector supply rail minus that built
in voltage. In this case, most of the space charge is in the lower-doped collector, and:

N,
Tsc,p = 7a‘rsc
’ Ny, + Ny

Thus, the total space charge encroachment into the neutral base is 0.05um + 0.081um =
0.13um. The metallurgical junctions must be spaced at least this far apart to avoid punch
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through. There should be some safety margin as well. but that would be a processing issue
beyond the scope of this course!

c¢. There are two sources of leakage in the collector-base diode: the diffusion currents
induced by the supression of minority charge at the space charge boundaries, and space-
charge generation current. The former is the saturation current, as high as 1071 A, as
given in the board notes, and the latter is gotten from the Shockley-Reed formula:
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As the mobile densities are about zero in the space charge, this reduces to:
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: note, this is about an order of magnitude lower than the diffusion current. BUT, in
low-doped diodes (like PIN diodes, used in radiation detection) the space charge thickness

is much larger, and the generation current can start to dominate.
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2.a The Fermi level of the p-type silicon is:
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This is 4.95 - 4.5 = .45 eV deeper than the metal Fermi Level. Thus, electrons will
stream from the metal into the semiconductor, enhancing the space charge thickness, low-
ering the threshold by 0.45 V.
b. Only the occupied interface states contribute to flat-band shift. These states are donor-
like. Thus, they must be above the Fermi-level to be occupied. For the p-type material,
bands bend down and the whole lower half of the interface gap is unoccupied, as is a portion
of the gap which is 1 — ¢, above that. For 10'6-doped material, 1 — Gpp is 0.35V. Thus,
only a stretch of 0.2eV in the gap can be occupied, and:
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This is a small but sensible shift. The donor states are positively charged. Positive interface
charge causes negative threshold shift.
3a. First, find the expected fluctuation in the dopant number under the gate:

AN = /N,V = \/1016 X .1 x107% x .03 x 1074 x x4 (14)

and, from eq. 4, we get x4, taking the bias to be a built in bias = 2 x 0.35 = 0.7V. This
yields x5, = 0.3um. Thus, the number of dopant atoms in the box is 9! and AN is 3.
Thus, one can expect 33% fluctuations in doping density. Plugging this into the “intrinsic”
threshold formula:
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gives the low-end threshold. Thus, the “20” spread is: 0.86 - 0.81V = 50 mV. Getting
significant!

b. Pinch-off occurs when the potential drop between the gate and the drain is just
slightly less than one turn-on voltage. Thus, the inversion on the drain side must disappear
- leaving only the fixed space-charge in the region. Thus, the drain bias can no longer exert
direct control over the channel electric field. Of course, as the drain bias increases, the
“pinch-off point” moves toward the source, and the effective channel length shrinks (giving
rise to an Early-like behavior). But this increases the channel field as the square-root of
drain bias (not like the linear effect you see in linear-triode. Thus, the I curves flatten
out as a function of drain voltage.

c. The drop across the pinched-off space charge is Vgs — V,,, where V), is V,, — Vi, where V;
is the threshold voltage. Thus, the physical extent of the pinched-off threshold is:
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The amount of charge-per-unit-area in this region is ¢N,xs.. We can assume the drain
is so heavily doped that it looks like a metal plug. Thus, this total sheet-charge is imaged
in the drain diffusion, and :
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