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1 Quantum Theory and Wave Particle Duality

What is quantum mechanics? The two-word moniker for the field is remarkably unenlight-
ening as a definition. The quantum part seems to have something to do with “quantization”
or rigid enumeration. And the mechanics part would indicate that it has something to do
with the “mechanism” of motion of a physical system. While these elements may be the
outcome of what quantum mechanics does, it really has nothing to do with what the field
is.

I would define the field of quantum mechanics this way:

Quantum mechanics is a logical discipline aimed at forming consistent argu-
ments based on apparently contradictory premises.

I italicize the adjective “apparently” because the contradictory premises referred to “really”
aren’t contradictory (whatever really really means!) Usually the premises referred to are
part of the wave/particle (WP)paradox.

Normally, we like to think of particles and waves as separate physical “objects.” Par-
ticles are locallized and have mass. Waves are “spread out” spatially, have no mass and
can “interfere” with one another to form diffraction patterns. At the turn of the last cen-
tury, a series of major experiments showed that sometimes waves acted like particles, and
visa versa. That’s where the “paradox” came in. Let’s look at two of these experiments.
We start with the photoelectron experiment (explained by Einstein - it got him the nobel
prize!)

If you shine a light on a surface, you can get electrons to leave the solid through the
illuminated surface. This is called photoemission. The interesting thing about photoe-
mission is that there is a critical light wavelength1 at which the emission begins. Longer
wavelengths produce no photoemission. Shorter wavelengths give more photoemission. If
the emission process required some critical amount of energy incident, as you’d think “clas-
sically,” just upping the intensity of the longer wavelengths should get electrons out of the
surface. But this is not true. Upping intensity doesn’t get electrons out.

1or frequency, since λν = c where λ = wavelength, ν = frequency and c is the speed of light
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Einstein “explained” this effect by saying that light has particle-like properties. That is,
it was composed of the old, pre-Newtonian “corpuscles,” which Einstein (I think) renamed
“photons.” Each photon had a certain amount of “oomph” (energy) which it could transfer
to individual atoms to knock their electrons out. The energy of the photon was proportional
to the frequency:

E = hν = !ω (1)

To summarize, the picture Einstein painted was this. A “particle” of light (a photon)
acts on a single atom, imparting an amount of energy, !ω to it. The photoms interacted
with the electrons in the atom. If the photon energy exceeded the “binding energy” of
the electron, the electron would be ejected from the atom and leave the solid through the
illuminated surface. Longer wavelength light could interact with the solid in different ways,
either passing through the solid (transparency) or heating the solid. So it seems that what
we generally thing of as an electromagnetic wave (light) has some particle properties.

The next of these “blockbuster” experiments was conducted by Davidson and Germer
at Bell Laboratories. Quite by accident, they discovered that electrons incident on a crystal
could, apparently, diffract (interfere with on another constructively or destructively). The
experiment they performed was remarkably like the experiments Bragg and Von Laue
conducted by shining an x-ray beam on a crystal solid surface (see fig.1).

In this figure, I show reflection of a collimated (parallel-ray) x-ray beam from two
successive planes of crystal. For the two reflections to form a coherent, constructively
interfering emerging wavefront, the total path-length difference 2∆l must be an integral
number of wavelengths. this yields the following formula for a constructively interfering
emerging wave:

nλ = 2d sin(θ) (2)

Figure 1: X-ray reflection from the top two crystallographic planes of a crystal.

Here, d is the interplanar spacing.
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Think about the following experiment. Shine a collimated x-ray beam, filtered to
provide 1 wavelength, on a solid. Think about the crystal as composed of planes, such as
those shown in fig.1. Rotate the crystal about an axis normal to the page in fig. 1. There
is a series of unique angles (as defined by integer n) where the crystal “flashes out” with
reflected radiation. It doesn’t reflect at all angles, only those dictated by eq. 1.

What Davidson and Germer did was to show that when a beam of electrons was incident
on a solid, the resulting “reflection” obeyed eq. 1 as well. But they did more than that.
They verified the De Broglie equation:

p = !k (3)

as well. Here, p is the momentum of the “particle,” ! is the planck constant and k is a
wave number given as:

k =
2π

λ
(4)

Note: This equation mixes wave and particle properties. Momentum is usually associated
with a particle of some mass and velocity. Of course, wavelength is a pure wave property.

To see how they did this, consider that a classical electron moving through field-free
space has a purely kinetic energy, E. This energy is:

E =
1
2
mv2 =

1
2m

m2v2 =
!2k2

2m
=

!24π2

2mλ2
(5)

This allows us to solve for λ:

λ =
√

2mE

2π! (6)

Substitution into eq.2 gives a new Bragg condition for electrons:

n
√

2mE

2π! = 2d sin(θ) (7)

It appears that the sine of the diffraction angle θ is proportional to the square rood of
energy. The electron diffraction experiment verified this. And so, in one fell swoop, David-
son and Germer showed the wave-like nature of the electron and verified the De Broglie
equation. Needless to say, this won the whole crew (De Broglie, Davidson and Germer)
their nobel prizes.

And so, from these discussions, it appears that wave-like and particle-like behaviors
are both associated with (or, they are properties of) objects as they appear in the physical
universe. These properties can exist simultaneously in a given object. How these properties
are manifest in actual observation depends on the type of observation we make. From the
above discussion, it seems that we can merge these two properties in a single entity and
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get a consistent result (look at eq. 7, for example). What appeared to be a contradiction
at first, really isn’t a contradiction at all.

But there is still that nagging question, “does the electron actually ‘interfere’ with
itself, or, with other electrons?” To eliminate contradiction here, more quantum mechanics
(in the sense of my opening definition) is needed. We have to be more precise by what we
mean by the term “interfere.”

2 The Copenhagen Interpretation and the Schrodinger Equa-
tion

Let us accept as fact the principle that matter and light have both wave-like and particle-
like properties existing simultaneously within them. We don’t have any problem seeing
how waves can interfere. If we switch our thinking over to the “particle ”side, we find
our difficulties appearing. How can particles “interfere?” The answer, on the particle
side, is: they don’t! To accommodate this position, Bohr and others (who were living in
Copenhagen2 at the time. They said that our observations, our senses, mainly register
the presence or absence of a particle and that there was a probability associated with
registering this presence or absence. Some how, this probability could be made to exhibit
the “light/dark” intensity pattern we associate with wave interference.

For this to become concrete and useful, we had to develop a mathematics which would
reflect this. The mathematics was suggested by the “complex” math that describes diffrac-
tive interference. That is, for example, we can describe an electromagnetic wave in terms of
its unmeasurable amplitude, or in terms of a measurable intensity, the power incident
on a detector surface. The intensity is just the complex square of the wave amplitude.

Consider expressing a wave in complex form (ignoring the time-dependent part for a
moment). Usually, we write:

Ψ1(x) = A1 exp(ikx) (8)

As usual, i is the square root of -1. Next, consider a second wave:

Ψ2(x) = A2 exp(ik(x + ∆x)) (9)

and we allow this second wave to interact with the first. The rule here is that the interaction
is represented as a simple sum of amplitudes

Ψ(x) = Ψ1(x) + Ψ2(x) = A1 exp(ikx) + A2 exp(ik(x + ∆x)) (10)

If A1 = A2 = A and ∆x = 0, we have:
2If you are interested in seeing what Copenhagen was like for Bohr and his colleagues, you can go to see

the play “Copenhagen,” or read the book.
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Ψ(x) = 2A exp(ikx) (11)

The rule established above is that intensity is the complex square of the amplitude:

I = Ψ∗(x)Ψ(x) (12)

where the star over the first Ψ indicates complex conjugation. For this simple case, the
waves sum together constructively and the positional dependence of the intensity “goes
away, and we have:

I = 4A2 (13)

a constant. (The reader should verify this is the case). Thus, for waves adding in phase,
interference is only constructive and no “diffraction effects” appear.

Now consider the case in which ∆x is not zero. For simplicity, we still take the ampli-
tudes to be equal. We now have:

Ψ(x) = A exp(ikx)(1 + exp(ik∆x)) (14)

The intensity is the complex square of this term:

I(x) = Ψ∗(x)Ψ(x) = 2A2(1 + 2cos(k∆x) (15)

Again, the reader is encouraged to fill in missing steps in the “complex” math. Note that
the over all intensity is constant (not position dependent). But the intensity fluctuates
from zero (complete destructive interference) to 4A (complete constructive interference),
depending on the value of ∆x.

In optical diffraction, though, you say you’ve seen intensity variation patterns which
had spatial dependence. For our current example, there was no spatial dependence on the
phase factor ∆x. To reconstruct this spatial dependence consider the “two-slit” set-up in
the following picture.

Figure 2: A two slit interference experiment demonstrating variation in intensity along x
due to wavefront interference effects.
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As you see in this figure, the phase difference between the spherical waves emitted from
the point source “slits” is given by ∆x = l1− l2.

Problem 1: This analysis gives a light and dark pattern in the x-direction in
the plane of diffraction. It is left as an exercise to the reader to work out what
this pattern is.

Hopefully, this discussion has convinced you that the complex method of representing
waves and the concept that amplitudes add, giving rise to interference phenomena, provides
a mathematical framework for understanding diffraction effects. But, once again, the story
isn’t finished. We must next make the connection between “interfering probabilities” and
this complex arithmetic. We do this by writing a new equation, the Schrodinger equation,
that provides the complex probability “amplitudes.” Squaring these amplitudes will give
us the particle location probabilities and, at the same time, account for the apparent
interference effects.

Our goal here is to provide a kind of “quantum analog” of Newton’s laws. To do this,
we begin with Hamilton’s modification of Newton’s principles. Hamilton (and Lagrange
before him) wanted to derive classical mechanics (the science of motion for particles and
extended masses) from a “variational” principle. That is, these people wanted to define
a “control function” for mechanical systems. When the system was in equilibrium, this
control function would take on some smallest value. The path the system would take to
equilibrium would be the “shortest” one between the initial and final points on a surface
defined by the control function.

The control function Hamilton chose was pretty straight forward: it was just an ex-
pression for total energy of the system, E. We know from freshman physics that the total
energy of a system is the sum of the kinetic (KE) and potential(V) energies of all the
masses in the system:

E = KE + V (16)

Sometimes, E is replaced by H and the equation is called “the system Hamiltonian.”
Schrodinger set out to create a probability amplitude equation from this starting point.
Also, as energy expressed this way is a generalized function of the system coordinates,
he wanted to define an operator equation for the probability amplitudes. Remember,
an operator is a mathematical object that “acts on a function,” just like a function is a
mathematical object that acts on a number.

But Schrodinger wanted to do a bit more. He wanted to his equation to account for
“wavelike” and “particle” properties of matter. So he started by assuming a wavelike
solution to his equation:

Ψ(r, t) = A exp[i(kx− ωt)] (17)

6



He also required that the wave-particle duality equations of Einstein and De Broglie (E =
!ω and p = !k) would be embedded in his equation.

We proceed with these requirements in mind. Remember some examples of operators:
differentiation (of any order) and integration. Consider the action of a differentiation
operators on eq. 17

∂Ψx, t

∂x
= ikΨ(x, t) (18)

∂Ψx, t

∂t
= −iωΨ(x, t) (19)

Multiplying both sides of these two equations by !, and, with minor rearrangement, we get

!
i

∂Ψ(x, t)
∂x

= !kΨ(x, t) (20)

−!
i

∂Ψ(x, t)
∂t

= !ωΨ(x, t) (21)

Thus we can say that an “operator” notation for momentum, p, is (with reference to eq.
20):

p→ !
i

∂

∂x
(22)

and (with reference to eq.21):

E → −!
i

∂

∂t
(23)

We can complete our operator equation for the probability amplitude by writing the semi-
classical expression for the Hamiltonian:

E =
p2

2m
+ V (24)

and using the operator equivalent terms for E and p, we get;

−!
i

∂Ψ(x, t)
∂t

= V (x, t)Ψ(x, t)− !2

2m

∂2Ψ(x, t)
∂x2

(25)

This is the famous Schrodinger equation. it is an equation for the probability am-
plitudes of particles in some potential field. Complex squaring the resulting probability
amplitude will provide a measure of the probability of finding a particle at a given location
in a given time. It looks very much like the classical heat flow equation (first order in time,
second order in position). But the imaginary term in the left hand side makes it an entirely
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different animal. The imaginary term is necessary to allow for solutions with a traveling
wave property.

Note two things. The equation embeds wave and particle properties in a single equa-
tion.3 Also, all the equation does is provide us with a means to find location probabilities.
It doesn’t say anything about particle acceleration. All it gives is probabilities.

Thus, comments to the effect that the probability function “indicates that the particle
spends more time here or there as it buzzes about in the potential space” are just flat out
wrong! There’s no mention of how particles arrive at the point of measurement. We just
get a probability that they’re there from the equation.4

We can also make the following “conclusions and observations” concerning our “re-
searches” in this section. The first observation talks to the issue of why we have an
equation for a probability amplitude, and not for a probability itself. Our goal in setting
up the Schrodinger equation was to provide a mathematics that would neatly express wave
interference effects. Think back on how Maxwell’s E&M equations allow this to be done.
The basic equations solve for field amplitudes. These sum vectorially in three dimensional
space and lead to the light and dark patterns associated with diffraction. As we saw
above, an individual wave converts to a spatially homogeneous energy deposition pattern
on a plane of observation. This energy is expressed as a non-negative scalar.

Once a light wave deposits its energy (through absorption, say, on a solid surface) phase
information is lost and diffraction is not possible. We say that amplitudes interfere, inten-
sities sum. The essence of this statement is at the core of the Copenhagen interpretation.
Wave functions interfere, probabilities imply sum. The phase information creates the true
interference. At the time of measurement, this information is lost and only intensity (or
probability) remains.

So what exactly is “the Copenhagen Interpretation?” After all, Schrodinger invented
the equation. The physicist Max Born was actually responsible for the probabilistic inter-
pretation of the wavefunction. Sometimes the uncertainty relationships:

∆x∆p ≈ h (26)
∆t∆E ≈ h (27)

(where h is the Planck constant) gets lumped into the mix. And so does the “Correspon-
dence Principle,” which states that classical behavior can be recovered in some “limiting”
sense (i.e, as the quantum numbers get really large, or as h gets small.)

3Sometimes, this “wedding” of wave and particle properties is known as “complementarity.”
4Sometimes the apparent “collapse” of an “extended” wave function to a point particle at the time of

measurement is called “the collapse of the wavefunction.” This, too, is not correct. The probability function
(and its associated amplitude) are still relevant ways to help define a system. As long as the system exists,
the wavefunction doesn’t “collapse.” . There is a valid concept of wavefunction collapse. But this relates
to the selection of a single quantum mechanical state from a “superposition” of states. This has to do with
“quantum entanglement” and the ”Schrodinger’s Cat Paradox.” All of this is very interesting, but beyond
the scope of our current discussion.
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I guess the main ingredient of a “Copenhagen Interpretation” is the realization that the
methods of quantum mechanics do not say anything about the “underlying reality” of the
physical system. Quantum mechanics merely says something about how likely we are to
make a certain observation, not how that observation came about. Also, we cannot say with
any real authority that an electron will be “here” on July 5, 2080 at 10:51:13:34...PM. This
drove Einstein nuts (well, nuttier than he was before his encounters with Bohr, Schrodinger,
Heisenberg and Born). He spend a large portion of his career pushing his “god doesn’t
play dice with the universe” emotion forward.

While Einstein’s criticism was very constructive and has led to many interesting modern
concepts (like “quantum entanglement,” again beyond our current scope), I always thought
his emotional reaction was a bit too strong. After all, Bohr’s emphasis in the interpretation
was on observable quantities. What counted was the observation. He showed how, by
merely finding a way to derive the likelihood of an observation, we’ve gotten what we want
out of the physics anyway.

3 Some Applications

Now let us turn our attention to how we can get useful information out of this new quantum
formalism.

3.1 Expectation Values

One of the first things we can do is use the theory as developed to calculate some system
parameters. These parameters might answer questions like “where am I most likely to find
a particle?” Or, “what is the most likely energy you’d measure for a particle after a group
of repeated measurements?” In both of these cases, we are asking to find something called
the “expectation” value of a parameter.

From elementary probability theory, we are tempted to write the most likely value as
the average value you obtain after a “large” number of parameter measurements made
on the same system under the same conditions. If p(x) is the (normalized) probability of
finding a value of x for a measurement (in the range from x to x + dx), we’d write the
“expected” value of x as:

< x >=
∫ ∞

0
xp(x)dx (28)

where the wedge brackets mean “expected value” (of x, in this case). But that’s not how
it works in quantum mechanics.

Consider finding the average momentum, !k for a free electron in a very large 1D box
of side L. If you used our operator formalism, and take the electron to be represented by
a “wavelike” wavefunction:
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Ψ(x) =
√

1
L

exp[i(kx− ωt)] (29)

we’d have:

< p >=
∫ L

0

!
i

∂

∂k
Ψ∗(x)Ψ(x)dx = 0 (30)

We know this isn’t true. We get around the problem by writing the expectation value as:

< p >=
∫ L

0
Ψ∗(x)

!
i

∂

∂k
Ψ(x)dx = !k (31)

which is what we’d “expect” as !k is the De Broglie expression for p.
The reason this works out is that we construct our operators so that they return real

numbers when they operate on wavefunctions. Once they’ve done their job, they “dis-
appear” and were left with an inttegral whose kernel is a real number times the complex
conjugate of the wave function times the wave function itself. Clearly, the resulting integral
is a real number - an observable.

Before we move on, let’s question our methods in greater depth.

Problem 2:

a. Note that the exponential in eq. 29 has a 1/
√

L pre-factor. Why? b. Note
that the limits of the integration in eq. 30 are between 0 and ∞. Why?

Now let’s deal with some other expectation issues. What’s the expected position of a
particle with a wave function expressed like eq. 29?

< x >=
∫ L

0

√
1
L

exp[−i(kx− ωt)]x
√

1
L

exp[i(kx− ωt)]dx =
1
L

x2

2
|L0 =

L

2
(32)

Another interesting expectation value is the position of the particle in the box with
infinitely high walls, like we worked in class - the artificial atom problem. The wavefunction
we derived for an electron in the box is:

Ψ(x) =
√

2
L

sin(
nπx

L
) (33)

and:

< x >=
∫ L

0

√
2
L

sin(
nπx

L
)x

√
2
L

sin(
nπx

L
)dx =

2
L

∫ 2

0
x sin2(

nπx

L
)dx (34)

The last integral on the right works out to L/2, just like the traveling wave.

10


