Solutivns to Chapter 2 Exercises

2.1.  From Eq (2.1),
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Adding the sbove two equations yields
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2.2,  Neglecting the hole {last) term in Eq. (2.10}, one obtaing
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Treating exp{£/kT) as an unknown, the above equation is a quadratic equation with the solution

e _ =11+ BN, | N et EE
- dpFaT '

Here only the positive root has been kept. For shallow donors with low o moderate
cOnNCENiralion at room temperature, (NN, Jexp[(E, - FEWET] == 1, and the last cquation can be
approximated by
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which is the same as Eq. (2.11). If we compare the above relation with Eq. (2,100, it is clear that
in this case, exp[~{(Es ~ EVAT] << 1, and N, = N2 or complete jonization.

If the condition for low to moderate concentration of shallow donors is net met, then
exp{—{Ey - EAET] is no longer negligible compared with umity. That means N’ < ¥, (Eq. (2.107)
of incomplete ionization (freeze-out), [Mote that incomplete ionization never oceurs for shallow
impurities; arsenic, boron, phosphorus, and antimony at room temperature, even for doping
concentrations higher than A, or &, This is becayse in heavily doped silicon, the impurity level
broadens and the ionization energy decreases to zero, as discussed in Section 2.1.2.3 ]



2.3 ibuti i 2 theti
o () Substituting Egs. (2.2) and (A3.4) im0 the expression for average kinetic enesgy, one
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Applying integration by parts to the numerator vields
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(b) For a degenerate semiconductor at 0 -1 s
E;> E, Therefore, st 0K AE) = 1HE < Eyand fIE) = 0if £ > E; Here

KE)=2 " 3 g

2.4, With the point charge ( at the center, construct a closed spherical surface 5 with radius

By symmetry, the electric field at every point on § has the same magnitude and poi outward

perpendicular to the surface. Therefore, e potis cutacd
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where ¥is the magnitude of the eleciric field on 5. 3-D Gauss’s law then gives
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which is Coulomb's law,
Since ¥F=—dldr, the clectric potential &t a point on the sphere is
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if one defines the potential 1o be zero 2t infinity.



1.5 (2) Construct a evlindrical Gaussian surface perpendicular to the charge sheet s shown:
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The cross-sectional area is 4. At the two ends of the cylinder, the electric field ¥ is perpendicular
to the surface and pointing outward. Along the side surface of the cylinder, the field is parallel 1o
the surface, o FdS = 0. For an infinitely large sheet of charge, ¥ is uniform across 4 from
symmetry. Therefore,
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The charge enclosed within the surface is (4. From Gauss's law, one obtains =02

{b) The field due 1o the positively charged sheet is (./2¢ pointing away from the sheet.
The ficld due to the negatively charged sheet is also (J2¢, but pointing toward the negatively
charged sheet In the region between the twe sheets, the two fields are in the same direction and
the total field adds up to /g, pointing from the positively charged sheet toward the negatively
charged sheet. In the regions cutside the two parallel sheets, the fields are equal and opposite to
each other, resulting in zero net field,



