

2.6. (a) Using the integral expressions of Q_d and Q_i , one has

$$C_d \equiv -\frac{dQ_d}{d\psi_s} = \frac{qN_a(1 - e^{-q\psi_s/kT})}{\mathcal{E}_s},$$

and

$$C_i \equiv -\frac{dQ_i}{d\psi_s} = \frac{q(n_i^2/N_a)(e^{q\psi_s/kT} - 1)}{\mathcal{E}_s}.$$

Here $\mathcal{E}_s = \mathcal{E}(\psi = \psi_s)$.

(b) Take the square of Eq. (2.154) and differentiate with respect to ψ_s , one obtains

$$2Q_s \frac{dQ_s}{d\psi_s} = 2\mathcal{E}_s qN_a \left[\left(1 - e^{-q\psi_s/kT}\right) + \frac{n_i^2}{N_a^2} \left(e^{q\psi_s/kT} - 1\right) \right].$$

Using $Q_s = \epsilon_s \mathcal{E}_s$ (Gauss's law) and the above two equations in (a), it is straightforward to show that

$$C_s \equiv -\frac{dQ_s}{d\psi_s} = \frac{qN_a}{\mathcal{E}_s} \left[\left(1 - e^{-q\psi_s/kT}\right) + \frac{n_i^2}{N_a^2} \left(e^{q\psi_s/kT} - 1\right) \right] = C_d + C_i.$$

(c) When $\psi_s = 2\psi_B$, $\exp(q\psi_s/kT) = (N_a/n_i)^2 \gg 1$ and $\exp(-q\psi_s/kT) \ll 1$. From (a), one has

$$C_i \equiv C_d \equiv \frac{qN_a}{\mathcal{E}_s}.$$

(d) It is clear from Fig. 2.25 that Q_s and therefore \mathcal{E}_s takes off rapidly beyond strong inversion. This means that $C_d \propto \mathcal{E}_s^{-1}$ decreases rapidly beyond strong inversion. We say that the depletion layer (charge) is "screened" by the inversion layer. Note that C_i , on the other hand, increases rapidly beyond strong inversion because of the $\exp(q\psi_s/kT)$ factor.

2.8. Substituting Eq. (2.161) into Eq. (2.167), one obtains

$$V_g = \frac{\sqrt{2\epsilon_s q N_a \psi_s}}{C_{ox}} + \psi_s,$$

which is basically a quadratic equation that can be solved for ψ_s :

$$\psi_s = V_g + \frac{\epsilon_s q N_a}{C_{ox}^2} - \sqrt{2 \frac{\epsilon_s q N_a}{C_{ox}^2} V_g + \left(\frac{\epsilon_s q N_a}{C_{ox}^2} \right)^2}.$$

For differential changes in ψ_s and V_g , one goes back to the previous equation and obtains

$$\Delta V_g / \Delta \psi_s = 1 + \frac{\sqrt{\epsilon_s q N_a / 2\psi_s}}{C_{ox}}.$$

This is simply $\Delta \psi_s = \Delta V_g / (1 + C_d/C_{ox})$, where C_d is the depletion charge capacitance given by Eq. (2.174).

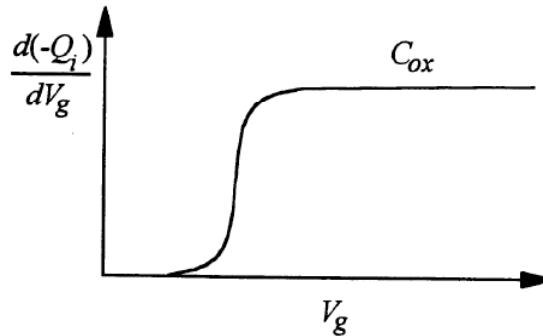
2.10. In Fig. 2.28(b), the total capacitance seen by the gate equals C_{ox} and $(C_i + C_d)$ connected in series, i.e.,

$$C = \frac{d(-Q_s)}{dV_g} = \frac{C_{ox}(C_i + C_d)}{C_{ox} + C_i + C_d}.$$

Since $Q_s = Q_i + Q_d$ and $\Delta Q_i / \Delta Q_d = C_i/C_d$, it follows that

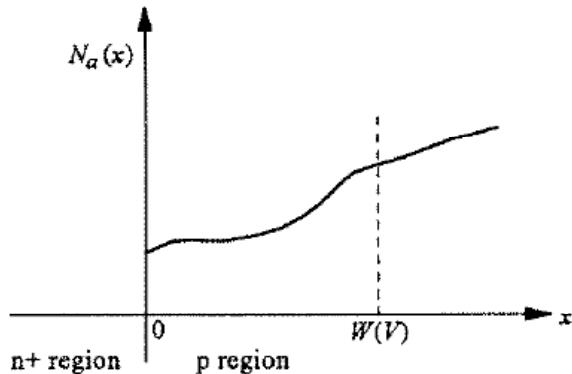
$$\frac{d(-Q_i)}{dV_g} = \frac{C_{ox} C_i}{C_{ox} + C_i + C_d}.$$

When V_g is below the threshold of strong inversion, $C_i \ll C_{ox}$, therefore $d(-Q_i)/dV_g \approx C_i/(1 + C_d/C_{ox}) \ll C_{ox}$. Above strong inversion, $C_i \gg C_{ox} (> C_d)$ (see Exercise 2.6), and one has $d(-Q_i)/dV_g \approx C_{ox}$. Such a behavior is sketched schematically below.



The sharp transition takes place at the threshold voltage. $Q_i(V_g)$ is simply the integrated area under the above curve. Beyond threshold, Q_i increases linearly with V_g with a slope equal to C_{ox} (see Fig. 3.15 in the text).

2.14.



For the one-sided n^+ -p diode, the incremental increase in the magnitude of the d layer charge dQ_d on the p-side as a result of an incremental increase in the applied voltage

$$dQ_d = qN_a(W)dW, \quad (1)$$

where the depletion-layer width W is a function of V . The depletion-layer capacitance is

$$C = \frac{dQ_d}{dV} = qN_a(W) \frac{dW}{dV}, \quad (2)$$

which gives

$$N_a(W) = \frac{C}{q(dW/dV)}. \quad (3)$$

From

$$C = \frac{\epsilon_s}{W},$$

we have

$$\frac{dW}{dV} = -\frac{\epsilon_s}{C^2} \frac{dC}{dV} = \frac{\epsilon_s C}{2} \frac{d(1/C^2)}{dV}. \quad (4)$$

Substituting (4) into (3), we have

$$N_a(W) = \frac{2}{q\epsilon_s [d(1/C^2)/dV]}.$$

2.15. Referring to Fig. 2.14 and Eq. (2.75), we have

$$\psi_m = \psi_{bi} + V = \frac{\mathcal{E}_m(W_d + d)}{2},$$

where V is the applied voltage. From Gauss's law we have

$$Q_d = \epsilon_{si} \mathcal{E}_m. \quad (2)$$

Therefore,

$$\frac{1}{C_d} = \frac{dV}{dQ_d} = \frac{d[\mathcal{E}_m(W_d + d)/2]}{d[\epsilon_{si} \mathcal{E}_m]} = \frac{1}{2\epsilon_{si}} \left[(W_d + d) + \mathcal{E}_m \frac{dW_d}{d\mathcal{E}_m} \right]. \quad (3)$$

Now, from Eq. (2.74), we have

$$\mathcal{E}_m \frac{dW_d}{d\mathcal{E}_m} = \mathcal{E}_m \frac{d(x_n + x_p)}{d\mathcal{E}_m} = \mathcal{E}_m \frac{dx_n}{d\mathcal{E}_m} + \mathcal{E}_m \frac{dx_p}{d\mathcal{E}_m} = (x_n - d) + x_p. \quad (4)$$

Substituting (4) into (3), we have

$$\frac{1}{C_d} = \frac{W_d}{\epsilon_{si}}.$$

2.17. (a) Ignoring heavy doping effect, from Eq. (2.110) the electron saturation current density is

$$J_n = \frac{qD_n n_i^2}{N_a L_n} = \frac{q n_i^2}{N_a} \frac{L_n}{\tau_n}, \quad (1)$$

where we have used the fact that $(D/L) = (L/\tau)$. From Table 2.1, we have $n_i = 1.4 \times 10^{10} \text{ cm}^{-3}$, and from Fig. 2.18, for $N_a = 10^{17} \text{ cm}^{-3}$, we have $L_n = 75 \mu\text{m} = 7.5 \times 10^{-3} \text{ cm}$, and $\tau_n = 3 \times 10^{-6} \text{ s}$. Substituting these values into (1) gives $J_n = 7.8 \times 10^{-13} \text{ A/cm}^2$. Similarly, the hole saturation current density is

$$J_p = \frac{qD_p n_i^2}{N_d L_p} = \frac{q n_i^2}{N_d} \frac{L_p}{\tau_p}. \quad (2)$$

From Fig. 2.18, for $N_d = 10^{20} \text{ cm}^{-3}$, we have $L_p = 0.38 \mu\text{m} = 3.8 \times 10^{-5} \text{ cm}$, and $\tau_p = 5 \times 10^{-10} \text{ s}$. Substituting these values into (2) gives $J_p = 2.4 \times 10^{-14} \text{ A/cm}^2$.

(b) If the n^+ -region is shallow, with a width of $W_n = 0.1 \mu\text{m} = 1 \times 10^{-5} \text{ cm}$, the hole saturation current density is

$$J_p = \frac{qD_p n_i^2}{N_d W_n} = \frac{q n_i^2}{N_d} \frac{L_p^2}{\tau_p W_n}. \quad (3)$$

Using the same values as in (a), we have $J_p = 9.1 \times 10^{-14} \text{ A/cm}^2$.

(c) If heavy-doping effect is included in (b), then the hole saturation current density is given by

$$J_p = \frac{qD_p n_{ie}^2}{N_d W_n} = \frac{q n_i^2}{N_d} \frac{L_p^2}{\tau_p W_n} \exp(\Delta E_g / kT). \quad (4)$$

From Fig. 6.3, for an n^+ -region doped to 10^{20} cm^{-3} , $\Delta E_g \approx 92 \text{ meV}$. At room temperature (300 K), $kT = 26 \text{ meV}$, and $\exp(\Delta E_g / kT) = 34$. That is, the effect of heavy doping increases J_p by a factor of 34, giving $J_p = 3.1 \times 10^{-12} \text{ A/cm}^2$.