2.18. Consider a wide-emitter but narrow-base n'-p diode, with emitter doping concentration Ng
=10% cm™, base doping concentration Nz = 10" cm™, and base width Wz = 100 nm.

(2) Ignoring heavy-doping effect, Eq. (2.143) gives the diffusion capacitance ratio
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and ny; =n} exp(AE,; /| kT).
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Therefore, n’% = exp[M‘f-J . (8)
M kT

From Fig. 6.3, we have AEgp ~ 2 meV for p-type base with doping concentration of 10" cm,

and AEgr ~ 92 meV for n-type emitter with doping concentration of 10* cm™. Also, at room
temperature (300 K), £7'= 26 meV. Therefore
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3.1. At low drain biases or near the source, ' = 0. Given Ve v can be solved from Eq. (3.14).
Since qu/kT is small compared with (nrjfﬁ.,z]exp{qw&?} beyond strong inversion, one has

Ve=Va+y, + E«EE‘HN- [F?_}"Jm'
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When F; increases beyond the point where y; = 2y, most of that increase appears as inversion
charge in the third term. There is very little change in the band bending beyond y, = 2ys. A
good approximate solution for y, is then obtained by letting y, = 2y for the second term and
solving ; from the third term:

W, = 2w, +

zkrln C.(V, ~V 4 —2w,)
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Here exp(q ye/kT) = N./n, has been applied.
It is clear from the above equation that w, — 2y is a weak function of V. As an example,

for N, = 10" em™, 1, =200 A, and V, — V3 = 5 V, one has 2pp =07V, and y, - 2y ~ 8kTlg =
02V,

3.2.  Eq.(3.14) is an implicit equation relating w;, and V. Taking a differential yields
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It is straightforward to re-group the terms and show that
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in the limit of ¥ — 0, where
2 1
|QJ|= EEEHN‘ %4._}::2 eqw;rw] )

3.4. This exercise is closely related to Exercise 2.10, in which Eq. (3.57) is derived:

d-0)__ C.C
dv C.+C +C,

2

i i i - ; Ca/Co) << Ca. Above
When ¥, is below the threshold of strong inversion, d(-Q,)/dVg = Ci/(1 + ( <C
strong i:wersion, C, >> Cu (> Cy), and one has d(—Q))/dV, =~ Ca.. This behavior is sketched

below.
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OAV¢) is simply the integrated area under the curve. Beyond threshold, {J; increases linearly with
V, with a slope equal to C (see Fig. 3.15 in the text).

The sharp transition above can be used to define a kind of imversion charge threshold
voltage, V{™", where C; = C. Since Cy — 0 due to screening by inversion charge (Exercise 2.6),
dO)dV, = CauC(CartC)) = Cudf2 at ¥y = 1™, Also, from Eq. (2.178), one has O; = (2k7/¢)Ca
at this point. Such a threshold voltage is slightly higher than the “2 " threshold where C, = C.

3.5. From the last term of Eq. (3.59), the polysilicon depletion effect causes an inversion
charge loss of

CME(V - Vr}z
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If we neglect the depletion charge in bulk silicon, then O, = 0, = Cu{V; — V1) and the above
equation can be written as AQJ(Q, = Coi0/26.gN,. From the discussions below Eq. (2.184), the
polysilicon depletion capacitance is Cp = £:gN/O,. Therefore, one has AQJ/Q; = Co/2C,.

There is a factor of two difference between the loss of charge and the loss of capacitance
because charge is the integration of capacitance and the polysilicon depletion capacitance is
voltage dependent (the next increment of charge always appears at the far edge of the poly
depletion region). This shows that treating the polysilicon depletion region as an equivalent oxide
layer will over estimate its effect on the drain current.



3.6. Following basic trigonometry in the diagram below,

one has

£;—L':J(x;+wd,]1—w; —x, = x,( I+ 2W, 7%, -1).

From which it is easy to show that

L+1L -1-% HZ:FV,"__] |
2L L X,

!

In Fig. 3.19, the depletion charge in a short-channel device is proportional to the area of
the trapezoid region, ie., O = gN.WWa(L + L')/2, which is less than that of the long channel
device, Op = gN.WWal. From Eq. (3.62), AV{SCE) = ((Js — 05"V WLC.,; therefore,
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