
Solutions to ENEE 601MidTerm Exam - Spring 2006

1.a First, we calculate the “intrinsic ” resistivity using Matthiessien’s rule for addition
or resistances due to different transport processes:

1
ρtotal

=
1

ρholes
+

1
ρelectrons

(1)

ρtotal = eniµhole + eniµelectron (2)

Note: in intrinsic silicon the number of electrons equals the number of holes (ni). Thus,
equation 2 solves as ρtotal = 215,517 Ω - cm.

Now let’s see what happens when we add hole (acceptor) dopant. Again, we use
Matthiessien’s rule for addition or resistances due to different transport processes. We
also solve for the new electron concentration using the law of mass action (consistency of
the pn-product):

1
ρtotal

= e(1.73ni)µhole + e
n2

i

1.73ni
µelectron (3)

which becomes, (for Na = 1.73ni) ρtotal = 248,858 Ω - cm.
1.b Why does the resistivity increase on doping? I was interested in a coherent explanation
of the above calculations. Such an explanation proceeds as follows. The consistency of the
pn-product tells us that when we add more holes, we force electrons out of the conduction
band. Thus we are replacing a high mobility carrier by a low mobility carrier. This
increases resistivity, even though the number density of mobile carriers may not change. If
you included scattering as a cause, I took half off. Man, am I mean!

NOTE: This has nothing to do with scattering. The hole has lower effective mass than
the electron (because it’s dispersion curve, the E-K relationship, differs from that of the
electron. The calculation in (a) didn’t include scattering as a factor in any event. Also,
in the limit of low doping (surely less than 1014 the phonon defined scattering lengths are
so much shorter than the impurity defined scattering lengths that small changes in doping
have no effect on scattering. Impurity scattering doesn’t set in until you get above 1015.

2a. Since the doping is equal (but opposite in sign) on each side of the junction, the
total space charge extent is:
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xsc =

√
4εsi(φbi − Va)

qN
(4)

We can use the log formula to get the built-in voltage; or, we can be really lazy and just
claim the built-in voltage is always around 0.7V. I will opt for the latter. Now let’s visualize
the charge system. We have two “dipole” sheets of equal thickness (xsc/2) pressed against
one another. The charge density in the sheet (charge per unit area, or σ) is:

σ =
1
2
xscqN =

1
2

√
4εsi(φbi − Va)

qN
qN =

√
εsi(φbi − Va)qN (5)

From the Gauss’ Law construction, the electric field from each sheet is σ/(2εsi). As
there are 2 sheet providing electric force in the same direction, the greatest electric field
occurs right at the metallurgical junction and is equal to σ/(εsi). As we know that the
maximum sustainable field is 105V/cm, We can write:

105 =
1
εsi

√
εsi(0.7− Va)qN (6)

and solve for Va (remembering that this is reverse bias, and Va is negative) when N is
1017. Our reference text, Muller and Kamins, derive this formula and neglect the built-in
bias, φbi. They do this because usually the break down voltages are large compared to the
built-in voltages in most cases.But they do acknowledge this is an approximation. If we
neglect the built-in drop, this yields Va = 0.625V to breakdown. Really tiny. Actually, the
breakdown field is doping dependent. For the case at hand the breakdown field is actually
4 times the value listed, giving a breakdown voltage of 9.3 V (including the built-in field
effect). The measured breakdown voltage of such a system (as given in Sze) is 10 V. Pretty
close!

If you take the built-in field into account, the breakdown field is about zero. The
appearance is that the internal space-charge field is strong enough to set the system into
breakdown even without bias. Of course, this cannot happen. If the system started to
breakdown, more mobile charge would be present than the abrupt junction model would
predict and we’d have to re-slove the transport equation system for a new equilibrium.
Very hard to do - not expected on an exam!

Many exam responses used the following (erroneous) reasoning. Since the space charge
thickness is small, so can assume a linear drop in the depletion, and:

|E| = ∂V

∂x
=

Va

xsc
(7)

As there is (in reality) a quadratic potential vs position variation in the space charge,
this equation isn’t true. I gave half credit for this approach - even though the resulting
formula isn’t correct. It’s off by a built-in voltage in the numerator, necessitating use of the
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quadratic formula to solve. The reason I gave half credit is that our main text derives the
maximum field by directly integrating the Poisson equation, achieving the same formula
as shown in eq. 7. So the linear approximation yields a result which is almost right -
interestingly enough.

3.a Donor states are positive when above the Fermi level and neutral when below. At
threshold, the “band bending” (surface potential) is 2φb = 0.7V for the case at hand.
Define the gap energy (in volts) as Vg. Thus, the Fermi level right at the surface is Vg/2 -
0.35 = .55 - .35 = 0.2V below the conduction band edge, and 0.9V above the valence band
edge. For the donor states, only those above the Fermi level are occupied. The area density
of occupied interface charge is: 0.25 q Nit = 0.25 1.6×10−19 × 1011 = 0.4 ×10−8C/cm2.
We divide this by Cox = εox/dox = 3.45 × 10−13/10−6 = 3.45 × 10−7Fd/cm2 to get the
threshold shift. This gives a 12 mV shift. As the states are charged positively the threshold
is lowered (made more negative). So, it seems that really thin oxides don’t suffer from
interface state induced Vth shift as much as thick oxides.

4.a We take the active channel length as the separation of the source and drain metal-
lurgical junctions (3µm). As the source is grounded, and the source is much more heavily
doped than the substrate. We can take the drain junction space charge as fixed in extend,
and assume that the space charge is only in the substrate side of the junction. I’d use the
“lazy” approximation for the built-in voltage, but I’d jack it up about 0.1 V to account for
the heavy source doping: φbi = 0.8V. Thus,

xsc =

√
2εsi0.8

1.6× 10−191016
= 0.32µm (8)

Again, let us say that the drain space charge extends only into the channel. We can
write for the reach-thru condition:

3× 10−4 = 0.32× 10−4 + xdrain
sc = 0.32× 10−4 +

√
2εsi(0.8− Va)

qNsub
(9)

where Nsub is 1016. We can solve this equation for Va, the reverse bias voltage needed to
punch through the channel. Here, Va solves as 56.7V.

4.b Without any calculation, we know that the drain space charge on the substrate side
must be 3 - 0.32 = 2.68 microns across. This, the area charge density in the space charge
is just 2.68 ×10−4 × 1.6× 10−19 × 1016 = 4.3× 10−7C/cm2. If we multiply this by two (to
account for the image charge in the drain doping) and divide by the dielectric permittivity
of silicon, we get the maximum electric field (which, again, occurs at the metallurgical
junction): 8.6×105V/cm. This is above the breakdown field of silicon. So the breakdown
would probably be reached before punch-thru.

EXTRA CREDIT
As always, Q = CV. For the case at hand, the charge is Qf , which is right near the oxide-

semiconductor interface. Thus, it induces all its band-bending in the silicon. and the Q is
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just the full Qf . C is Cox = 3.45×10−13/10−6 = 3.45×10−7Fd/cm2. For a 1mV observable
shift, the minimum observed Qf is 3.45×10−7Fd/cm2×10−3V= 3.45×10−10C/cm2. This
converts to 2.16× 10−9 charges per square centimeter.
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