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RANDOM PROCESSES
IN COMMUNICATION AND CONTROL

ANSWER KEY TO TEST # 1:

1.

1.a. Fix x > 0 and s > 0. It is plain that

P [X ≤ x,X + Y ≤ s] = E [1 [X ≤ x,X + Y ≤ s]]

= E [E [1 [X ≤ x,X + Y ≤ s] |X]]

= E [1 [X ≤ x]E [1 [X + Y ≤ s] |X]]

= E [1 [X ≤ x]E [1 [?+ Y ≤ s]]?=X ]

= E [1 [X ≤ x]P [Y ≤ s− ?]?=X ]

= E
[
1 [X ≤ x]1 [X ≤ s]

(
1− e−λ(s−X)

)]
= E

[
1 [X ≤ min(x, s)]

(
1− e−λ(s−X)

)]
=

∫ min(x,s)

0

λe−λt
(
1− e−λ(s−t)

)
dt

=

∫ min(x,s)

0

λe−λtdt−
∫ min(x,s)

0

λe−λte−λ(s−t)dt

= 1− e−λmin(x,s) −
∫ min(x,s)

0

λe−λsdt. (1.1)

Therefore,

P [X ≤ x,X + Y ≤ s] = 1− e−λmin(x,s) − λmin(x, s)e−λs

=


1− e−λx − λxe−λs if 0 ≤ x ≤ s

1− e−λs − λse−λs if s ≤ x.
(1.2)

1.b. The joint probability distribution function of (X,X+Y ) is differentiable everywhere
except possibly on the line s = x (which is a one-dimensional manifold in R2 and therefore
has Lebesgue measure zero!) Therefore, this joint distribution is of continuous type with
density obtained by taking the mixed deribvative with respect to x and s: We get

fX,X+Y (x, s) =
∂2

∂x∂s
P [X + Y ≤ s,X ≤ x]

when s 6= x in R2. Thus,

fX,X+Y (x, s) =


λ2e−λs if 0 ≤ x < s

0 if s < x.
(1.3)



1.c. It follows from the calculations above1 that

P [X + Y ≤ s] = 1− e−λs − λse−λs, s ≥ 0

whence
fX+Y (s) = λ2se−λs, s ≥ 0.

Therefore,

fX|X+Y (x|s) =
fX+Y,X(x, s)

fX+Y (s)

=


λ2e−λs

λ2se−λs
if 0 ≤ x < s

0 if s < x.

(1.4)

In short,
[X|X + Y = s] =st U(0, s).

1.d. In view of Part 1.c we find

E [X|X + Y = s] =

∫ s

0

x · 1

s
dx =

s

2
, s > 0.

This is not too surprising in view of the following reasoning: By symmetry we have

E [X|X + Y = s] = E [Y |X + Y = s]

so that

E [X + Y |X + Y = s] = E [X|X + Y = s] + E [Y |X + Y = s]

= 2E [X|X + Y = s] (1.5)

by linearity. Yet,
E [X + Y |X + Y = s] = s

and the conclusion
E [X|X + Y = s] = E [Y |X + Y = s] =

s

2
follows!

2.

2.a. Fix distinct k, ` = 1, . . . , n so that k + 2 and `+ 2 are also distinct. Note that

Cov[Zk, Z`] = Cov[Xk −Xk+2, X` −X`+2]

= Cov[Xk, X`]− Cov[Xk, X`+2]− Cov[Xk+2, X`] + Cov[Xk+2, X`+2]

= −Cov[Xk, X`+2]− Cov[Xk+2, X`]

= − (δ(k, `+ 2) + δ(k + 2, `))σ2. (1.6)

1Just take x ↑ ∞.



It is now plain that

Cov[Zk, Z`] =


0 if |k − `| 6= 2

−σ2 if |k − `| = 2

and only when |k − `| = 2 are the rvs Zk and Z` not correlated!

2.b. Write
Sp = X1 + . . .+Xp, p = 1, 2, . . . , n+ 2

and
Rn = Z1 + . . .+ Zn.

Note that
Rn = X1 +X2 −Xn+1 −Xn+2.

Therefore, if n = 1, then R1 = X1 −X3 so that Var[R1] = 2σ2. On the other hand, if
n = 2, 3, . . ., then the four rvs X1, X2, Xn+1 and Xn+2 being uncorrelated, we get

Var[Rn] = Var[X1 +X2 −Xn+1 −Xn+2] = 4σ2

under the assumption that the rvs {X1, . . . , Xn+2} are uncorrelated.
2.c. This time we find

Cov[Sn, Rn] = Cov[Sn, X1 +X2 −Xn+1 −Xn+2]

= Cov[X1 + . . .+Xn, X1 +X2 −Xn+1 −Xn+2]

= Cov[X1 + . . .+Xn, X1 +X2]

=


σ2 if n = 1

2σ2 if n = 2, 3, . . .
(1.7)

since the rvs {X1, . . . , Xn+2} are uncorrelated.

3.

Throughout u,w ≥ 0 are held fixed.

3.a. Note that

P [X < Y ] = E [1 [X < Y ]]

= E [E [1 [X < Y ] |X]]

= E [(E [1 [? < Y ] |X = ?])?=X ]

= E [(E [1 [? < Y ]])?=X ]

= E [(P [? < Y ])?=X ]

= E
[
e−µX

]
=

∫ ∞
0

e−µxλe−λxdx (1.8)



so that

P [X < Y ] =
λ

λ+ µ
.

By symmetry, we also have

P [Y < X] =
µ

λ+ µ
.

3.b. Note that

P [X = Y ] =

∫ ∞
0

P [X = t]µe−µtdt = 0

under the assumed independence. Next, we start with the observation that

P [U ≤ u,W ≤ w]

= P [X < Y,U ≤ u,W ≤ w] + P [Y < X,U ≤ u,W ≤ w]

= P [X < Y,X ≤ u, Y −X ≤ w] + P [Y < X, Y ≤ u,X − Y ≤ w] (1.9)

Therefore, considering the fist term, we can use the independence of the rvs X and Y to
find

P [X < Y,X ≤ u, Y −X ≤ w]

= E [1 [X < Y,X ≤ u, Y −X ≤ w]]

= E [E [1 [X < Y,X ≤ u, Y −X ≤ w] |X]]

= E [1 [X ≤ u]E [1 [X < Y, Y −X ≤ w] |X]]

= E [1 [X ≤ u] (E [1 [X < Y, Y −X ≤ w] |X = ?])?=X ]

= E [1 [X ≤ u] (E [1 [? < Y, Y − ? ≤ w] |X = ?])?=X ]

= E [1 [X ≤ u] (E [1 [? < Y, Y − ? ≤ w]])?=X ]

= E [1 [X ≤ u] (E [1 [? < Y, Y ≤ ?+ w]])?=X ]

= E [1 [X ≤ u] (P [? < Y ≤ w + ?])?=X ]

= E
[
1 [X ≤ u]

(
e−µX − e−µ(w+X)

)]
=

(
1− e−µw

)
E
[
1 [X ≤ u] e−µX

]
=

(
1− e−µw

) ∫ u

0

λe−λxe−µxdx (1.10)

so that

P [X < Y,X ≤ u, Y −X ≤ w] =
λ

λ+ µ

(
1− e−(λ+µ)u

) (
1− e−µw

)
.

By symmetry, we also have

P [Y < X, Y ≤ u,X − Y ≤ w] =
µ

λ+ µ

(
1− e−(λ+µ)u

) (
1− e−λw

)
.

Combining the last two expressions, we conclude that

P [U ≤ u,W ≤ w] =
(
1− e−(λ+µ)u

)( λ

λ+ µ

(
1− e−µw

)
+

µ

λ+ µ

(
1− e−λw

))



3.c. Let u and w go to infinity in this last expression. This yields2

P [U ≤ u] = 1− e−(λ+µ)u, u ≥ 0

and

P [W ≤ w] =
λ

λ+ µ

(
1− e−µw

)
+

µ

λ+ µ

(
1− e−λw

)
, w ≥ 0.

Therefore,
P [U ≤ u,W ≤ w] = P [U ≤ u]P [W ≤ w] , u, w ≥ 0

and the independence of the rvs U and W follows!

4.

4.a. One possible choice is to take Ω = {0, 1}n×{0, 1}n with the following interpretation:
With

ω = (a1, . . . , an; b1, . . . , bn)

a generic element of Ω where ai, bi in {0, 1} for each i = 1, . . . , n, ai = 1 (resp. ai = 0)
means that Alice has (resp. has not) selected item i, and bi = 1 (resp. bi = 0) means
that Bob has (resp. has not) selected item i.

The set Ω being finite, we shall take F to be the power set of Ω, and define P by

P [(a1, . . . , an; b1, . . . , bn)] =
n∏
i=1

pai(1− p)1−ai ·
n∏
i=1

pbi(1− p)1−bi .

4.b. For each i = 1, . . . , n, it is convenient to define the rvs Ai, Bi : Ω→ {0, 1} by

Ai(ω) = ai and Bi(ω) = bi

where ω = (a1, . . . , an; b1, . . . , bn) as before. Under the assumptions of the problem, the
rvs {Ai, Bi, i = 1, 2, . . . , n} are i.i.d. {0, 1}-valued rvs with

P [Ai = 1] = P [Bi = 1] = p, i = 1, . . . , n.

Note that A = {i = 1, . . . , n : Ai = 1} and B = {i = 1, . . . , n : Bi = 1}, so that

[A ∩B = ∅] = ∩ni=1[AiBi = 0].

By independence,

P [A ∩B = ∅] =
n∏
i=1

P [AiBi = 0]

with

P [AiBi = 0] = 1− P [AiBi = 1]

= 1− P [Ai = 1]P [Bi = 1] = 1− p2. (1.11)

2And this first conclusion should not surprise you since it is already known to you [Remember problem
6 in HW # 5] that U is exponentially distributed with parameter λ+ µ.



Collecting we conclude that

P [A ∩B = ∅] =
(
1− p2

)n
.

4.c. In the usual manner, we have

P
[
A ∩B = ∅

∣∣∣ |A| 6= 0
|B| 6= 0

]
=

P [A ∩B = ∅, |A| 6= 0, |B| 6= 0]

P [|A| 6= 0, |B| 6= 0]

It is plain that

P [|A| 6= 0, |B| 6= 0] = P [|A| 6= 0]P [|B| 6= 0]

= (1− P [|A| = 0]) (1− P [|B| = 0])

= (1− (1− p)n)2 (1.12)

On the other hand,

P [A ∩B = ∅, |A| 6= 0, |B| 6= 0]

= P [A ∩B = ∅]− P [A ∩B = ∅, |A| = 0, |B| 6= 0]

−P [A ∩B = ∅, |A| 6= 0, |B| = 0]− P [A ∩B = ∅, |A| = |B| = 0]

= P [A ∩B = ∅]− P [|A| = 0, |B| 6= 0]

−P [|A| 6= 0, |B| = 0]− P [|A| = |B| = 0]

since A ∩B = ∅ as soon as either set A or B (or both) is empty.
Note that

P [|A| = 0, |B| 6= 0] = P [|A| = 0]P [|B| 6= 0] = (1− p)n (1− (1− p)n) ,

P [|A| 6= 0, |B| = 0] = P [|A| 6= 0]P [|B| = 0] = (1− p)n (1− (1− p)n)

and

P [|A| = |B| = 0] = P [|A| = 0]P [|B| = 0] = (1− p)n(1− p)n = (1− p)2n.

Thus,

P [A ∩B = ∅, |A| 6= 0, |B| 6= 0]

=
(
1− p2

)n − 2(1− p)n (1− (1− p)n)− (1− p)2n

and

P
[
A ∩B = ∅

∣∣∣ |A| 6= 0
|B| 6= 0

]
=

(1− p2)n − 2(1− p)n (1− (1− p)n)− (1− p)2n

(1− (1− p)n)2
.


