FALL 2011

RANDOM PROCESSES IN COMMUNICATION AND CONTROL ANSWER KEY TO TEST \# 1:

1.

1.a. Fix $x>0$ and $s>0$. It is plain that

$$
\begin{align*}
\mathbb{P}[X \leq x, X+Y \leq s] & =\mathbb{E}[\mathbf{1}[X \leq x, X+Y \leq s]] \\
& =\mathbb{E}[\mathbb{E}[\mathbf{1}[X \leq x, X+Y \leq s] \mid X]] \\
& =\mathbb{E}[\mathbf{1}[X \leq x] \mathbb{E}[\mathbf{1}[X+Y \leq s] \mid X]] \\
& =\mathbb{E}\left[\mathbf{1}[X \leq x] \mathbb{E}[\mathbf{1}[\star+Y \leq s]]_{\star=X}\right] \\
& =\mathbb{E}\left[\mathbf{1}[X \leq x] \mathbb{P}[Y \leq s-\star]_{\star=X}\right] \\
& =\mathbb{E}\left[\mathbf{1}[X \leq x] \mathbf{1}[X \leq s]\left(1-e^{-\lambda(s-X)}\right)\right] \\
& =\mathbb{E}\left[\mathbf{1}[X \leq \min (x, s)]\left(1-e^{-\lambda(s-X)}\right)\right] \\
& =\int_{0}^{\min (x, s)} \lambda e^{-\lambda t}\left(1-e^{-\lambda(s-t)}\right) d t \\
& =\int_{0}^{\min (x, s)} \lambda e^{-\lambda t} d t-\int_{0}^{\min (x, s)} \lambda e^{-\lambda t} e^{-\lambda(s-t)} d t \\
& =1-e^{-\lambda \min (x, s)}-\int_{0}^{\min (x, s)} \lambda e^{-\lambda s} d t . \tag{1.1}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\mathbb{P}[X \leq x, X+Y \leq s] & =1-e^{-\lambda \min (x, s)}-\lambda \min (x, s) e^{-\lambda s} \\
& =\left\{\begin{array}{cl}
1-e^{-\lambda x}-\lambda x e^{-\lambda s} & \text { if } 0 \leq x \leq s \\
1-e^{-\lambda s}-\lambda s e^{-\lambda s} & \text { if } s \leq x
\end{array}\right. \tag{1.2}
\end{align*}
$$

1.b. The joint probability distribution function of $(X, X+Y)$ is differentiable everywhere except possibly on the line $s=x$ (which is a one-dimensional manifold in \mathbb{R}^{2} and therefore has Lebesgue measure zero!) Therefore, this joint distribution is of continuous type with density obtained by taking the mixed deribvative with respect to x and s : We get

$$
f_{X, X+Y}(x, s)=\frac{\partial^{2}}{\partial x \partial s} \mathbb{P}[X+Y \leq s, X \leq x]
$$

when $s \neq x$ in \mathbb{R}^{2}. Thus,

$$
f_{X, X+Y}(x, s)= \begin{cases}\lambda^{2} e^{-\lambda s} & \text { if } 0 \leq x<s \tag{1.3}\\ 0 & \text { if } s<x\end{cases}
$$

1.c. It follows from the calculations above ${ }^{1}$ that

$$
\mathbb{P}[X+Y \leq s]=1-e^{-\lambda s}-\lambda s e^{-\lambda s}, \quad s \geq 0
$$

whence

$$
f_{X+Y}(s)=\lambda^{2} s e^{-\lambda s}, \quad s \geq 0
$$

Therefore,

$$
\begin{align*}
f_{X \mid X+Y}(x \mid s) & =\frac{f_{X+Y, X}(x, s)}{f_{X+Y}(s)} \\
& = \begin{cases}\frac{\lambda^{2} e^{-\lambda s}}{\lambda^{2} s e^{-\lambda s}} & \text { if } 0 \leq x<s \\
0 & \text { if } s<x\end{cases} \tag{1.4}
\end{align*}
$$

In short,

$$
[X \mid X+Y=s]={ }_{s t} \mathcal{U}(0, s)
$$

1.d. In view of Part 1.c we find

$$
\mathbb{E}[X \mid X+Y=s]=\int_{0}^{s} x \cdot \frac{1}{s} d x=\frac{s}{2}, \quad s>0 .
$$

This is not too surprising in view of the following reasoning: By symmetry we have

$$
\mathbb{E}[X \mid X+Y=s]=\mathbb{E}[Y \mid X+Y=s]
$$

so that

$$
\begin{align*}
\mathbb{E}[X+Y \mid X+Y=s] & =\mathbb{E}[X \mid X+Y=s]+\mathbb{E}[Y \mid X+Y=s] \\
& =2 \mathbb{E}[X \mid X+Y=s] \tag{1.5}
\end{align*}
$$

by linearity. Yet,

$$
\mathbb{E}[X+Y \mid X+Y=s]=s
$$

and the conclusion

$$
\mathbb{E}[X \mid X+Y=s]=\mathbb{E}[Y \mid X+Y=s]=\frac{s}{2}
$$

follows!
2.
2.a. Fix distinct $k, \ell=1, \ldots, n$ so that $k+2$ and $\ell+2$ are also distinct. Note that

$$
\begin{align*}
\operatorname{Cov}\left[Z_{k}, Z_{\ell}\right] & =\operatorname{Cov}\left[X_{k}-X_{k+2}, X_{\ell}-X_{\ell+2}\right] \\
& =\operatorname{Cov}\left[X_{k}, X_{\ell}\right]-\operatorname{Cov}\left[X_{k}, X_{\ell+2}\right]-\operatorname{Cov}\left[X_{k+2}, X_{\ell}\right]+\operatorname{Cov}\left[X_{k+2}, X_{\ell+2}\right] \\
& =-\operatorname{Cov}\left[X_{k}, X_{\ell+2}\right]-\operatorname{Cov}\left[X_{k+2}, X_{\ell}\right] \\
& =-(\delta(k, \ell+2)+\delta(k+2, \ell)) \sigma^{2} . \tag{1.6}
\end{align*}
$$

[^0]It is now plain that

$$
\operatorname{Cov}\left[Z_{k}, Z_{\ell}\right]= \begin{cases}0 & \text { if }|k-\ell| \neq 2 \\ -\sigma^{2} & \text { if }|k-\ell|=2\end{cases}
$$

and only when $|k-\ell|=2$ are the rvs Z_{k} and Z_{ℓ} not correlated!
2.b. Write

$$
S_{p}=X_{1}+\ldots+X_{p}, \quad p=1,2, \ldots, n+2
$$

and

$$
R_{n}=Z_{1}+\ldots+Z_{n}
$$

Note that

$$
R_{n}=X_{1}+X_{2}-X_{n+1}-X_{n+2}
$$

Therefore, if $n=1$, then $R_{1}=X_{1}-X_{3}$ so that $\operatorname{Var}\left[R_{1}\right]=2 \sigma^{2}$. On the other hand, if $n=2,3, \ldots$, then the four rvs X_{1}, X_{2}, X_{n+1} and X_{n+2} being uncorrelated, we get

$$
\operatorname{Var}\left[R_{n}\right]=\operatorname{Var}\left[X_{1}+X_{2}-X_{n+1}-X_{n+2}\right]=4 \sigma^{2}
$$

under the assumption that the rvs $\left\{X_{1}, \ldots, X_{n+2}\right\}$ are uncorrelated.
2.c. This time we find

$$
\begin{align*}
\operatorname{Cov}\left[S_{n}, R_{n}\right] & =\operatorname{Cov}\left[S_{n}, X_{1}+X_{2}-X_{n+1}-X_{n+2}\right] \\
& =\operatorname{Cov}\left[X_{1}+\ldots+X_{n}, X_{1}+X_{2}-X_{n+1}-X_{n+2}\right] \\
& =\operatorname{Cov}\left[X_{1}+\ldots+X_{n}, X_{1}+X_{2}\right] \\
& = \begin{cases}\sigma^{2} & \text { if } n=1 \\
2 \sigma^{2} & \text { if } n=2,3, \ldots\end{cases} \tag{1.7}
\end{align*}
$$

since the rvs $\left\{X_{1}, \ldots, X_{n+2}\right\}$ are uncorrelated.
3. \qquad

Throughout $u, w \geq 0$ are held fixed.
3.a. Note that

$$
\begin{align*}
\mathbb{P}[X<Y] & =\mathbb{E}[\mathbf{1}[X<Y]] \\
& =\mathbb{E}[\mathbb{E}[\mathbf{1}[X<Y] \mid X]] \\
& =\mathbb{E}\left[(\mathbb{E}[\mathbf{1}[\star<Y] \mid X=\star])_{\star=X}\right] \\
& =\mathbb{E}\left[(\mathbb{E}[\mathbf{1}[\star<Y]])_{\star=X}\right] \\
& =\mathbb{E}\left[(\mathbb{P}[\star<Y])_{\star=X}\right] \\
& =\mathbb{E}\left[e^{-\mu X}\right] \\
& =\int_{0}^{\infty} e^{-\mu x} \lambda e^{-\lambda x} d x \tag{1.8}
\end{align*}
$$

so that

$$
\mathbb{P}[X<Y]=\frac{\lambda}{\lambda+\mu}
$$

By symmetry, we also have

$$
\mathbb{P}[Y<X]=\frac{\mu}{\lambda+\mu}
$$

3.b. Note that

$$
\mathbb{P}[X=Y]=\int_{0}^{\infty} \mathbb{P}[X=t] \mu e^{-\mu t} d t=0
$$

under the assumed independence. Next, we start with the observation that

$$
\begin{align*}
& \mathbb{P}[U \leq u, W \leq w] \\
& \quad=\mathbb{P}[X<Y, U \leq u, W \leq w]+\mathbb{P}[Y<X, U \leq u, W \leq w] \\
& \tag{1.9}\\
& \quad=\mathbb{P}[X<Y, X \leq u, Y-X \leq w]+\mathbb{P}[Y<X, Y \leq u, X-Y \leq w]
\end{align*}
$$

Therefore, considering the fist term, we can use the independence of the rvs X and Y to find

$$
\begin{align*}
& \mathbb{P}[X<Y, X \leq u, Y-X \leq w] \\
& \quad=\mathbb{E}[\mathbf{1}[X<Y, X \leq u, Y-X \leq w]] \\
& = \\
& =\mathbb{E}[\mathbb{E}[\mathbf{1}[X<Y, X \leq u, Y-X \leq w] \mid X]] \\
& \\
& =\mathbb{E}[\mathbf{1}[X \leq u] \mathbb{E}[\mathbf{1}[X<Y, Y-X \leq w] \mid X]] \\
& \\
& =\mathbb{E}\left[\mathbf{1}[X \leq u]\left(\mathbb{E}[\mathbf{1}[\mathbf{1}[\star<Y, Y-\star \leq w] \mid X=\star])_{\star=X}\right]\right. \\
& = \\
& =\mathbb{E}\left[\mathbf{1}[X \leq u](\mathbb{E}[\mathbf{1}[\star<Y, Y-\star \leq w]])_{\star=X}\right] \\
& \\
& =\mathbb{E}\left[\mathbf{1}[X \leq u](\mathbb{E}[\mathbf{1}[\star<Y, Y \leq \star+w]])_{\star=X}\right] \tag{1.10}\\
& \\
& =\mathbb{E}\left[\mathbf{1}[X \leq u](\mathbb{P}[\star<Y \leq w+\star])_{\star=X}\right] \\
& \\
& =\left(1-e^{-\mu w}\right) \mathbb{E}\left[\mathbf{1}[X \leq u] e^{-\mu X}\right] \\
& \\
& =\left(1-e^{-\mu w}\right) \int_{0}^{u} \lambda e^{-\lambda x} e^{-\mu x} d x
\end{align*}
$$

so that

$$
\mathbb{P}[X<Y, X \leq u, Y-X \leq w]=\frac{\lambda}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) u}\right)\left(1-e^{-\mu w}\right)
$$

By symmetry, we also have

$$
\mathbb{P}[Y<X, Y \leq u, X-Y \leq w]=\frac{\mu}{\lambda+\mu}\left(1-e^{-(\lambda+\mu) u}\right)\left(1-e^{-\lambda w}\right)
$$

Combining the last two expressions, we conclude that

$$
\mathbb{P}[U \leq u, W \leq w]=\left(1-e^{-(\lambda+\mu) u}\right)\left(\frac{\lambda}{\lambda+\mu}\left(1-e^{-\mu w}\right)+\frac{\mu}{\lambda+\mu}\left(1-e^{-\lambda w}\right)\right)
$$

3.c. Let u and w go to infinity in this last expression. This yields ${ }^{2}$

$$
\mathbb{P}[U \leq u]=1-e^{-(\lambda+\mu) u}, \quad u \geq 0
$$

and

$$
\mathbb{P}[W \leq w]=\frac{\lambda}{\lambda+\mu}\left(1-e^{-\mu w}\right)+\frac{\mu}{\lambda+\mu}\left(1-e^{-\lambda w}\right), \quad w \geq 0 .
$$

Therefore,

$$
\mathbb{P}[U \leq u, W \leq w]=\mathbb{P}[U \leq u] \mathbb{P}[W \leq w], \quad u, w \geq 0
$$

and the independence of the rvs U and W follows!
4. \qquad
4.a. One possible choice is to take $\Omega=\{0,1\}^{n} \times\{0,1\}^{n}$ with the following interpretation: With

$$
\omega=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)
$$

a generic element of Ω where a_{i}, b_{i} in $\{0,1\}$ for each $i=1, \ldots, n, a_{i}=1$ (resp. $a_{i}=0$) means that Alice has (resp. has not) selected item i, and $b_{i}=1$ (resp. $b_{i}=0$) means that Bob has (resp. has not) selected item i.

The set Ω being finite, we shall take \mathcal{F} to be the power set of Ω, and define \mathbb{P} by

$$
\mathbb{P}\left[\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)\right]=\prod_{i=1}^{n} p^{a_{i}}(1-p)^{1-a_{i}} \cdot \prod_{i=1}^{n} p^{b_{i}}(1-p)^{1-b_{i}} .
$$

4.b. For each $i=1, \ldots, n$, it is convenient to define the rvs $A_{i}, B_{i}: \Omega \rightarrow\{0,1\}$ by

$$
A_{i}(\omega)=a_{i} \quad \text { and } \quad B_{i}(\omega)=b_{i}
$$

where $\omega=\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right)$ as before. Under the assumptions of the problem, the $\operatorname{rvs}\left\{A_{i}, B_{i}, i=1,2, \ldots, n\right\}$ are i.i.d. $\{0,1\}$-valued rvs with

$$
\mathbb{P}\left[A_{i}=1\right]=\mathbb{P}\left[B_{i}=1\right]=p, \quad i=1, \ldots, n .
$$

Note that $A=\left\{i=1, \ldots, n: A_{i}=1\right\}$ and $B=\left\{i=1, \ldots, n: B_{i}=1\right\}$, so that

$$
[A \cap B=\emptyset]=\cap_{i=1}^{n}\left[A_{i} B_{i}=0\right] .
$$

By independence,

$$
\mathbb{P}[A \cap B=\emptyset]=\prod_{i=1}^{n} \mathbb{P}\left[A_{i} B_{i}=0\right]
$$

with

$$
\begin{align*}
\mathbb{P}\left[A_{i} B_{i}=0\right] & =1-\mathbb{P}\left[A_{i} B_{i}=1\right] \\
& =1-\mathbb{P}\left[A_{i}=1\right] \mathbb{P}\left[B_{i}=1\right]=1-p^{2} \tag{1.11}
\end{align*}
$$

[^1]Collecting we conclude that

$$
\mathbb{P}[A \cap B=\emptyset]=\left(1-p^{2}\right)^{n}
$$

4.c. In the usual manner, we have

$$
\mathbb{P}\left[A \cap B=\emptyset \left\lvert\, \begin{array}{l}
|A| \neq 0 \\
|B| \neq 0
\end{array}\right.\right]=\frac{\mathbb{P}[A \cap B=\emptyset,|A| \neq 0,|B| \neq 0]}{\mathbb{P}[|A| \neq 0,|B| \neq 0]}
$$

It is plain that

$$
\begin{align*}
\mathbb{P}[|A| \neq 0,|B| \neq 0] & =\mathbb{P}[|A| \neq 0] \mathbb{P}[|B| \neq 0] \\
& =(1-\mathbb{P}[|A|=0])(1-\mathbb{P}[|B|=0]) \\
& =\left(1-(1-p)^{n}\right)^{2} \tag{1.12}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \mathbb{P}[A \cap B=\emptyset,|A| \neq 0,|B| \neq 0] \\
&= \mathbb{P}[A \cap B=\emptyset]-\mathbb{P}[A \cap B=\emptyset,|A|=0,|B| \neq 0] \\
&-\mathbb{P}[A \cap B=\emptyset,|A| \neq 0,|B|=0]-\mathbb{P}[A \cap B=\emptyset,|A|=|B|=0] \\
&= \mathbb{P}[A \cap B=\emptyset]-\mathbb{P}[|A|=0,|B| \neq 0] \\
&-\mathbb{P}[|A| \neq 0,|B|=0]-\mathbb{P}[|A|=|B|=0]
\end{aligned}
$$

since $A \cap B=\emptyset$ as soon as either set A or B (or both) is empty.
Note that

$$
\begin{aligned}
& \mathbb{P}[|A|=0,|B| \neq 0]=\mathbb{P}[|A|=0] \mathbb{P}[|B| \neq 0]=(1-p)^{n}\left(1-(1-p)^{n}\right), \\
& \mathbb{P}[|A| \neq 0,|B|=0]=\mathbb{P}[|A| \neq 0] \mathbb{P}[|B|=0]=(1-p)^{n}\left(1-(1-p)^{n}\right)
\end{aligned}
$$

and

$$
\mathbb{P}[|A|=|B|=0]=\mathbb{P}[|A|=0] \mathbb{P}[|B|=0]=(1-p)^{n}(1-p)^{n}=(1-p)^{2 n}
$$

Thus,

$$
\begin{aligned}
& \mathbb{P}[A \cap B=\emptyset,|A| \neq 0,|B| \neq 0] \\
& \quad=\left(1-p^{2}\right)^{n}-2(1-p)^{n}\left(1-(1-p)^{n}\right)-(1-p)^{2 n}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left[A \cap B=\emptyset \left\lvert\, \begin{array}{l}
|A| \neq 0 \\
|B| \neq 0
\end{array}\right.\right] \\
& \quad=\frac{\left(1-p^{2}\right)^{n}-2(1-p)^{n}\left(1-(1-p)^{n}\right)-(1-p)^{2 n}}{\left(1-(1-p)^{n}\right)^{2}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Just take $x \uparrow \infty$.

[^1]: ${ }^{2}$ And this first conclusion should not surprise you since it is already known to you [Remember problem 6 in $\mathrm{HW} \# 5]$ that U is exponentially distributed with parameter $\lambda+\mu$.

