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RANDOM PROCESSES
IN COMMUNICATION AND CONTROL

ANSWER KEY TO TEST # 2:

1.a. Since R is symmetric we need only show that it is positive semi-definite. We write
any element v in R"*! as
x
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with z in R and y = (y1,...,y,) in R". With this notation we get
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It is now plain that R is positive semi-definite, i.e., v"Rv > 0 for all v in R"*!, if and
only if



This condition is now enforced on the parameters entering R.

Many of you used a criterion for positive semi-definiteness that involves the leading
principal minors. Unfortunately, this condition is necessary and sufficient for positive
definiteness, but only necessary for semi-positive definiteness.

1.b. The (n + 1)-dimensional random vector (X,Y;,...,Y,) is assumed to be normally
distributed N((0,0,...,0)", R). The existence of a probability density function is equiv-
alent to R being invertible (i.e., positive definite), and this occurs if and only if

and
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If the condition v’ Rv = 0 must imply 0,,,1, then we necessarily have

and the announced condition follows!

1.c. By Part 1.b, the probability distribution function of the (n+1)-dimensional random
vector (X,Y7,...,Y,)" will not admit a probability density function if and only if
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in which case
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Therefore, v Rv = 0 if and only if
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This suggests introducing the linear subspace K of R"*! given by

K={veR": v=2za, 1€ R} =Ra



where
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Note that dim(K) = 1.
It now follows in the usual manner that
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whenever v = (z,y’)" is an element of K. Thus,
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and dim(K) = n.

2.

2.a. For each t in R, note that
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by standard calculations, with a similar expression for E [ ”Y]

the rvs X and Y, hence of the rvs e* and e~*Y, we get
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2.b. Fixn=1,2,... and ¢t in R. For each £k =1,2,...,n, we find
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Using the independence of the rvs X,,1,..., X, we get
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2.c. It is now plain that

lim E [eltxs/ﬁ} = lim <1 — — (1 —cos t)) — o (1—cost)
n—0oo n—oo n

for each t in R, thus % =, L where L is distributed like the difference of two inde-

pendent Poisson rvs with parameter A = % — This is an immediate consequence of Part
2.a.

3.

3.a. There are several different ways to show that
X,
lim
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for each p > 1.

First approach — The rvs {X,X,, n = 1,2,...} are i.i.d. rvs, each exponentially
distributed with unit parameter. Thus,

E[X"] <00, k=1,2,... (1.8)

so that E [XP?] < oo for each p > 1 — Just apply (1.8) with k(p) = [p] and use the fact
that E [X?] is necessarily finite since p < [p].

The rvs {(X,)?, n=1,2,...} are still independent and identically distributed, and by
the Strong Law of Large Numbers applied to this sequence of rvs we conclude that
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by standard arguments. This establishes (1.7).
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Second approach — For every € > 0, note that
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for each n =1,2,.... Thus,
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and the a.s. convergence (1.7) follows.
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3.b. For each n =1,2,..., elementary calculations yield
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By the Strong of Large Numbers, we have
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Using these facts and the convergence (1.7) (for p = 2) we find
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4.a. Here the Orthogonality Principle reads
E(X-29Z]=0, ZeV. (1.10)
However, any element Z of V' is of the form

7 = ZakYk +b
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with arbitrary aq,...,a, and b in R. Obviously, the rvs Z =Y;,....Z =Y, and Z =1
are in V. Using them in (1.10) we get

E(X—-21]=0 and E[(X-Z2")Y]=0, k=1,...,n.



Thus, Z* satisfies
EX]=E[Z*] and E[(X-E[X]|+E[Z]|-2")Y:] =0, k=1,...,n
and this is equivalent to
E[X]=E[Z*] and Cov]X —Z*Yy]=0, k=1,...,n. (1.11)

By linearity it is elementary to see that (1.10) and (1.11) are indeed equivalent.
4.b. Recall that Z* is of the form
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It is now plain that
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4.c. Next, we note that
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