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RANDOM PROCESSES
IN COMMUNICATION AND CONTROL

ANSWER KEY TO TEST # 2:

1.

1.a. Since R is symmetric we need only show that it is positive semi-definite. We write
any element v in Rn+1 as

v =

[
x
y

]
with x in R and y = (y1, . . . , yn)′ in Rn. With this notation we get

Rv =



σ2x+
∑n

k=1 ρkyk
ρ1x+ σ2

1y1

ρ2x+ σ2
2y2

...
ρkx+ σ2

kyk
...
ρnx+ σ2

nyn


so that

v′Rv =

(
σ2x+

n∑
k=1

ρkyk

)
x+

n∑
k=1

yk
(
ρkx+ σ2

kyk
)

= σ2x2 + 2
n∑
k=1

ρkxyk +
n∑
k=1

σ2
ky

2
k

= σ2x2 +
n∑
k=1

(
σ2
ky

2
k + 2ρkxyk

)
= σ2x2 +

n∑
k=1

(
σ2
ky

2
k + 2

(
ρk
σk
x

)
(σkyk)

)
= σ2x2 +

n∑
k=1

(
ρk
σk
x+ σkyk

)2

−
n∑
k=1

(
ρk
σk
x

)2

=

(
σ2 −

n∑
k=1

(
ρk
σk

)2
)
x2 +

n∑
k=1

(
ρk
σk
x+ σkyk

)2

(1.1)

It is now plain that R is positive semi-definite, i.e., v′Rv ≥ 0 for all v in Rn+1, if and
only if

σ2 −
n∑
k=1

(
ρk
σk

)2

≥ 0.



This condition is now enforced on the parameters entering R.
Many of you used a criterion for positive semi-definiteness that involves the leading

principal minors. Unfortunately, this condition is necessary and sufficient for positive
definiteness, but only necessary for semi-positive definiteness.

1.b. The (n+ 1)-dimensional random vector (X,Y1, . . . , Yn)′ is assumed to be normally
distributed N((0, 0, . . . , 0)′,R). The existence of a probability density function is equiv-
alent to R being invertible (i.e., positive definite), and this occurs if and only if

σ2 −
n∑
k=1

(
ρk
σk

)2

> 0.

Indeed, v′Rv = 0 occurs if and only if(
σ2 −

n∑
k=1

(
ρk
σk

)2
)
x2 = 0

and (
ρk
σk
x+ σkyk

)2

= 0, k = 1, . . . , n

If the condition v′Rv = 0 must imply 0n+1, then we necessarily have(
σ2 −

n∑
k=1

(
ρk
σk

)2
)
6= 0

and the announced condition follows!

1.c. By Part 1.b, the probability distribution function of the (n+1)-dimensional random
vector (X, Y1, . . . , Yn)′ will not admit a probability density function if and only if

σ2 −
n∑
k=1

(
ρk
σk

)2

= 0,

in which case

v′Rv =
n∑
k=1

(
ρk
σk
x+ σkyk

)2

, v ∈ Rn+1.

Therefore, v′Rv = 0 if and only if

ρk
σk
x+ σkyk = 0, k = 1, 2, . . . , n

i.e.,

yk = −
(
ρk
σ2
k

)
x, k = 1, 2, . . . , n

This suggests introducing the linear subspace K of Rn+1 given by

K = {v ∈ Rn+1 : v = xa, x ∈ R} = Ra



where

a =

(
1,−

(
ρ1

σ2
1

)
, . . . ,−

(
ρn
σ2
n

))′
(6= 0n+1).

Note that dim(K) = 1.
It now follows in the usual manner that

Var [xX + y′Y ] = v′Rv

=
n∑
k=1

(
ρk
σk
x+ σkyk

)2

= 0, v ∈ K (1.2)

in which case
xX + y′Y = 0 a.s.

whenever v = (x,y′)′ is an element of K. Thus,

P [(X, Y1, . . . , Yn)′ ∈ H] = 1

where

H = K⊥

=
{
v ∈ Rn+1 : v′a = 0

}
=

{
(x,y′)′ ∈ Rn+1 : x =

n∑
k=1

ρk
σ2
k

yk

}
(1.3)

and dim(K) = n.

2.

2.a. For each t in R, note that

E

[
eitX

]
=
∞∑
k=0

λk

k!
e−λeikt = e−λ(1−eit)

by standard calculations, with a similar expression for E
[
eitY
]
. By the independence of

the rvs X and Y , hence of the rvs eitX and e−itY , we get

E

[
eit(X−Y )

]
= E

[
eitX

]
· E
[
e−itY

]
= e−λ(1−eit) · e−λ(1−e−it)

= e−2λ(1−cos t) (1.4)

as we recall the identity

cos t =
eit + e−it

2
.



2.b. Fix n = 1, 2, . . . and t in R. For each k = 1, 2, . . . , n, we find

E

[
e
it
Xn,k√
n

]
=

1

2n

(
eit + e−it

)
+ 1− 1

n

=
1

n
cos t+ 1− 1

n

=

(
1− 1

n
(1− cos t)

)
(1.5)

Using the independence of the rvs Xn,1, . . . , Xn,n we get

E

[
e
it Sn√

n

]
=

n∏
k=1

E

[
e
it
Xn,k√
n

]
=

(
1− 1

n
(1− cos t)

)n
. (1.6)

2.c. It is now plain that

lim
n→∞

E

[
e
it Sn√

n

]
= lim

n→∞

(
1− 1

n
(1− cos t)

)n
= e−(1−cos t)

for each t in R, thus Sn√
n

=⇒n L where L is distributed like the difference of two inde-

pendent Poisson rvs with parameter λ = 1
2

– This is an immediate consequence of Part
2.a.

3.

3.a. There are several different ways to show that

lim
n→∞

Xn

p
√
n

= 0 a.s. (1.7)

for each p ≥ 1.

First approach – The rvs {X,Xn, n = 1, 2, . . .} are i.i.d. rvs, each exponentially
distributed with unit parameter. Thus,

E

[
Xk
]
<∞, k = 1, 2, . . . (1.8)

so that E [Xp] < ∞ for each p ≥ 1 – Just apply (1.8) with k(p) = dpe and use the fact
that E [Xp] is necessarily finite since p < dpe.

The rvs {(Xn)p, n = 1, 2, . . .} are still independent and identically distributed, and by
the Strong Law of Large Numbers applied to this sequence of rvs we conclude that

lim
n→∞

1

n

n∑
k=1

(Xk)
p = E [Xp] a.s.

whence

lim
n→∞

(Xn)p

n
= 0 a.s.

by standard arguments. This establishes (1.7).



Second approach – For every ε > 0, note that

P

[
Xn

p
√
n
> ε

]
= P

[
Xn > ε p

√
n
]

= e−ε
p√n

for each n = 1, 2, . . .. Thus,

∞∑
n=1

P

[
Xn

p
√
n
> ε

]
=
∞∑
n=1

e−ε
p√n <∞

and the a.s. convergence (1.7) follows.

3.b. For each n = 1, 2, . . ., elementary calculations yield

Rn =
√
Tn+1 −

√
Tn

=

(√
Tn+1 −

√
Tn
)
·
(√

Tn+1 +
√
Tn
)

√
Tn+1 +

√
Tn

=
Tn+1 − Tn√
Tn+1 +

√
Tn

=
Xn+1√

Tn+1 +
√
Tn

=

Xn+1√
n+1√

Tn+1

n+1
+
√

Tn
n+1

. (1.9)

By the Strong of Large Numbers, we have

lim
n→∞

Tn+1

n+ 1
= 1 a.s. and lim

n→∞

Tn
n+ 1

= 1 a.s.

Using these facts and the convergence (1.7) (for p = 2) we find

lim
n→∞

Rn = 0 a..s.

4.

4.a. Here the Orthogonality Principle reads

E [(X − Z?)Z] = 0, Z ∈ V. (1.10)

However, any element Z of V is of the form

Z =
n∑
k=1

akYk + b

with arbitrary a1, . . . , an and b in R. Obviously, the rvs Z = Y1, . . . , Z = Yn and Z = 1
are in V . Using them in (1.10) we get

E [(X − Z?) 1] = 0 and E [(X − Z?)Yk] = 0, k = 1, . . . , n.



Thus, Z? satisfies

E [X] = E [Z?] and E [(X − E [X] + E [Z?]− Z?)Yk] = 0, k = 1, . . . , n

and this is equivalent to

E [X] = E [Z?] and Cov[X − Z?, Yk] = 0, k = 1, . . . , n. (1.11)

By linearity it is elementary to see that (1.10) and (1.11) are indeed equivalent.

4.b. Recall that Z? is of the form

Z? =
n∑
`=1

a?`Y` + b?

with a?1, . . . , a
?
n and b? in R such that (1.11) holds. In particular,

E [X] =
n∑
`=1

a?`E [Y`] + b?

and for each k = 1, 2, . . . , n, we find

Cov[X − Z?, Yk] = Cov[X −

(
n∑
`=1

a?`Y` + b?

)
, Yk]

= Cov[X, Yk]−
n∑
`=1

a?`Cov[Y`, Yk]

= Cov[X, Yk]− a?kVar[Yk]

= ρk − a?kσ2
k (1.12)

whence
a?k =

ρk
σ2
k

.

It is now plain that

Z? =
n∑
`=1

a?`Y` + b?

=
n∑
`=1

a?`Y` +

(
E [X]−

n∑
`=1

a?`E [Y`]

)

= E [X] +
n∑
`=1

a?` (Y` − E [Y`])

= E [X] +
n∑
`=1

ρ`
σ2
`

(Y` − E [Y`]) . (1.13)



4.c. Next, we note that

X − Z? = X − E [X]−
n∑
`=1

ρ`
σ2
`

(Y` − E [Y`])

so that

Var[X − Z?] = E

[
(X − Z?)2]

= E

(X − E [X]−
n∑
`=1

ρ`
σ2
`

(Y` − E [Y`])

)2


= var[X] +
n∑
`=1

(
ρ`
σ2
`

)2

σ2
` − 2

n∑
`=1

ρ`
σ2
`

Cov[X,Y`]

= var[X] +
n∑
`=1

(
ρ`
σ`

)2

− 2
n∑
`=1

(
ρ`
σ`

)2

= var[X]−
n∑
`=1

(
ρ`
σ`

)2

. (1.14)


