FALL 2011

RANDOM PROCESSES

IN COMMUNICATION AND CONTROL
ANSWER KEY TO TEST \# 2:
1.
1.a. Since \boldsymbol{R} is symmetric we need only show that it is positive semi-definite. We write any element \boldsymbol{v} in \mathbb{R}^{n+1} as

$$
\boldsymbol{v}=\left[\begin{array}{l}
x \\
\boldsymbol{y}
\end{array}\right]
$$

with x in \mathbb{R} and $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ in \mathbb{R}^{n}. With this notation we get

$$
\boldsymbol{R} \boldsymbol{v}=\left[\begin{array}{l}
\sigma^{2} x+\sum_{k=1}^{n} \rho_{k} y_{k} \\
\rho_{1} x+\sigma_{1}^{2} y_{1} \\
\rho_{2} x+\sigma_{2}^{2} y_{2} \\
\vdots \\
\rho_{k} x+\sigma_{k}^{2} y_{k} \\
\vdots \\
\rho_{n} x+\sigma_{n}^{2} y_{n}
\end{array}\right]
$$

so that

$$
\begin{align*}
\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v} & =\left(\sigma^{2} x+\sum_{k=1}^{n} \rho_{k} y_{k}\right) x+\sum_{k=1}^{n} y_{k}\left(\rho_{k} x+\sigma_{k}^{2} y_{k}\right) \\
& =\sigma^{2} x^{2}+2 \sum_{k=1}^{n} \rho_{k} x y_{k}+\sum_{k=1}^{n} \sigma_{k}^{2} y_{k}^{2} \\
& =\sigma^{2} x^{2}+\sum_{k=1}^{n}\left(\sigma_{k}^{2} y_{k}^{2}+2 \rho_{k} x y_{k}\right) \\
& =\sigma^{2} x^{2}+\sum_{k=1}^{n}\left(\sigma_{k}^{2} y_{k}^{2}+2\left(\frac{\rho_{k}}{\sigma_{k}} x\right)\left(\sigma_{k} y_{k}\right)\right) \\
& =\sigma^{2} x^{2}+\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}\right)^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}} x\right)^{2} \\
& =\left(\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2}\right) x^{2}+\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}\right)^{2} \tag{1.1}
\end{align*}
$$

It is now plain that \boldsymbol{R} is positive semi-definite, i.e., $\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v} \geq 0$ for all \boldsymbol{v} in \mathbb{R}^{n+1}, if and only if

$$
\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2} \geq 0
$$

This condition is now enforced on the parameters entering \boldsymbol{R}.
Many of you used a criterion for positive semi-definiteness that involves the leading principal minors. Unfortunately, this condition is necessary and sufficient for positive definiteness, but only necessary for semi-positive definiteness.
1.b. The $(n+1)$-dimensional random vector $\left(X, Y_{1}, \ldots, Y_{n}\right)^{\prime}$ is assumed to be normally distributed $\mathrm{N}\left((0,0, \ldots, 0)^{\prime}, \boldsymbol{R}\right)$. The existence of a probability density function is equivalent to \boldsymbol{R} being invertible (i.e., positive definite), and this occurs if and only if

$$
\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2}>0
$$

Indeed, $\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v}=0$ occurs if and only if

$$
\left(\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2}\right) x^{2}=0
$$

and

$$
\left(\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}\right)^{2}=0, \quad k=1, \ldots, n
$$

If the condition $\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v}=0$ must imply $\mathbf{0}_{n+1}$, then we necessarily have

$$
\left(\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2}\right) \neq 0
$$

and the announced condition follows!
1.c. By Part 1.b, the probability distribution function of the $(n+1)$-dimensional random vector $\left(X, Y_{1}, \ldots, Y_{n}\right)^{\prime}$ will not admit a probability density function if and only if

$$
\sigma^{2}-\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}}\right)^{2}=0
$$

in which case

$$
\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v}=\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}\right)^{2}, \quad \boldsymbol{v} \in \mathbb{R}^{n+1}
$$

Therefore, $\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v}=0$ if and only if

$$
\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}=0, \quad k=1,2, \ldots, n
$$

i.e.,

$$
y_{k}=-\left(\frac{\rho_{k}}{\sigma_{k}^{2}}\right) x, \quad k=1,2, \ldots, n
$$

This suggests introducing the linear subspace K of \mathbb{R}^{n+1} given by

$$
K=\left\{\boldsymbol{v} \in \mathbb{R}^{n+1}: \boldsymbol{v}=x \boldsymbol{a}, x \in \mathbb{R}\right\}=\mathbb{R} \boldsymbol{a}
$$

where

$$
\boldsymbol{a}=\left(1,-\left(\frac{\rho_{1}}{\sigma_{1}^{2}}\right), \ldots,-\left(\frac{\rho_{n}}{\sigma_{n}^{2}}\right)\right)^{\prime}\left(\neq \mathbf{0}_{n+1}\right)
$$

Note that $\operatorname{dim}(K)=1$.
It now follows in the usual manner that

$$
\begin{align*}
\operatorname{Var}\left[x X+\boldsymbol{y}^{\prime} \boldsymbol{Y}\right] & =\boldsymbol{v}^{\prime} \boldsymbol{R} \boldsymbol{v} \\
& =\sum_{k=1}^{n}\left(\frac{\rho_{k}}{\sigma_{k}} x+\sigma_{k} y_{k}\right)^{2} \\
& =0, \quad \boldsymbol{v} \in K \tag{1.2}
\end{align*}
$$

in which case

$$
x X+\boldsymbol{y}^{\prime} \boldsymbol{Y}=0 \quad \text { a.s. }
$$

whenever $\boldsymbol{v}=\left(x, \boldsymbol{y}^{\prime}\right)^{\prime}$ is an element of K. Thus,

$$
\mathbb{P}\left[\left(X, Y_{1}, \ldots, Y_{n}\right)^{\prime} \in H\right]=1
$$

where

$$
\begin{align*}
H & =K^{\perp} \\
& =\left\{\boldsymbol{v} \in \mathbb{R}^{n+1}: \boldsymbol{v}^{\prime} \boldsymbol{a}=0\right\} \\
& =\left\{\left(x, \boldsymbol{y}^{\prime}\right)^{\prime} \in \mathbb{R}^{n+1}: x=\sum_{k=1}^{n} \frac{\rho_{k}}{\sigma_{k}^{2}} y_{k}\right\} \tag{1.3}
\end{align*}
$$

and $\operatorname{dim}(K)=n$.
2. \qquad
2.a. For each t in \mathbb{R}, note that

$$
\mathbb{E}\left[e^{i t X}\right]=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} e^{-\lambda} e^{i k t}=e^{-\lambda\left(1-e^{i t}\right)}
$$

by standard calculations, with a similar expression for $\mathbb{E}\left[e^{i t Y}\right]$. By the independence of the rvs X and Y, hence of the rvs $e^{i t X}$ and $e^{-i t Y}$, we get

$$
\begin{align*}
\mathbb{E}\left[e^{i t(X-Y)}\right] & =\mathbb{E}\left[e^{i t X}\right] \cdot \mathbb{E}\left[e^{-i t Y}\right] \\
& =e^{-\lambda\left(1-e^{i t}\right)} \cdot e^{-\lambda\left(1-e^{-i t}\right)} \\
& =e^{-2 \lambda(1-\cos t)} \tag{1.4}
\end{align*}
$$

as we recall the identity

$$
\cos t=\frac{e^{i t}+e^{-i t}}{2}
$$

2.b. Fix $n=1,2, \ldots$ and t in \mathbb{R}. For each $k=1,2, \ldots, n$, we find

$$
\begin{align*}
\mathbb{E}\left[e^{i t \frac{x_{n, k}}{\sqrt{n}}}\right] & =\frac{1}{2 n}\left(e^{i t}+e^{-i t}\right)+1-\frac{1}{n} \\
& =\frac{1}{n} \cos t+1-\frac{1}{n} \\
& =\left(1-\frac{1}{n}(1-\cos t)\right) \tag{1.5}
\end{align*}
$$

Using the independence of the $\operatorname{rvs} X_{n, 1}, \ldots, X_{n, n}$ we get

$$
\begin{align*}
\mathbb{E}\left[e^{i t \frac{S_{n}}{\sqrt{n}}}\right] & =\prod_{k=1}^{n} \mathbb{E}\left[e^{i t \frac{x_{n, k}}{\sqrt{n}}}\right] \\
& =\left(1-\frac{1}{n}(1-\cos t)\right)^{n} \tag{1.6}
\end{align*}
$$

2.c. It is now plain that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i t \frac{S_{n}}{\sqrt{n}}}\right]=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}(1-\cos t)\right)^{n}=e^{-(1-\cos t)}
$$

for each t in \mathbb{R}, thus $\frac{S_{n}}{\sqrt{n}} \Longrightarrow{ }_{n} L$ where L is distributed like the difference of two independent Poisson rvs with parameter $\lambda=\frac{1}{2}$ - This is an immediate consequence of Part 2.a.
3.
3.a. There are several different ways to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{X_{n}}{\sqrt[p]{n}}=0 \quad \text { a.s. } \tag{1.7}
\end{equation*}
$$

for each $p \geq 1$.

First approach - The rvs $\left\{X, X_{n}, n=1,2, \ldots\right\}$ are i.i.d. rvs, each exponentially distributed with unit parameter. Thus,

$$
\begin{equation*}
\mathbb{E}\left[X^{k}\right]<\infty, \quad k=1,2, \ldots \tag{1.8}
\end{equation*}
$$

so that $\mathbb{E}\left[X^{p}\right]<\infty$ for each $p \geq 1$ - Just apply (1.8) with $k(p)=\lceil p\rceil$ and use the fact that $\mathbb{E}\left[X^{p}\right]$ is necessarily finite since $p<\lceil p\rceil$.

The rvs $\left\{\left(X_{n}\right)^{p}, n=1,2, \ldots\right\}$ are still independent and identically distributed, and by the Strong Law of Large Numbers applied to this sequence of rvs we conclude that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left(X_{k}\right)^{p}=\mathbb{E}\left[X^{p}\right] \quad \text { a.s. }
$$

whence

$$
\lim _{n \rightarrow \infty} \frac{\left(X_{n}\right)^{p}}{n}=0 \quad \text { a.s. }
$$

by standard arguments. This establishes (1.7).

Second approach - For every $\varepsilon>0$, note that

$$
\mathbb{P}\left[\frac{X_{n}}{\sqrt[p]{n}}>\varepsilon\right]=\mathbb{P}\left[X_{n}>\varepsilon \sqrt[p]{n}\right]=e^{-\varepsilon \sqrt[p]{n}}
$$

for each $n=1,2, \ldots$ Thus,

$$
\sum_{n=1}^{\infty} \mathbb{P}\left[\frac{X_{n}}{\sqrt[p]{n}}>\varepsilon\right]=\sum_{n=1}^{\infty} e^{-\varepsilon \sqrt[p]{n}}<\infty
$$

and the a.s. convergence (1.7) follows.
3.b. For each $n=1,2, \ldots$, elementary calculations yield

$$
\begin{align*}
R_{n} & =\sqrt{T_{n+1}}-\sqrt{T_{n}} \\
& =\frac{\left(\sqrt{T_{n+1}}-\sqrt{T_{n}}\right) \cdot\left(\sqrt{T_{n+1}}+\sqrt{T_{n}}\right)}{\sqrt{T_{n+1}}+\sqrt{T_{n}}} \\
& =\frac{T_{n+1}-T_{n}}{\sqrt{T_{n+1}}+\sqrt{T_{n}}} \\
& =\frac{X_{n+1}}{\sqrt{T_{n+1}}+\sqrt{T_{n}}} \\
& =\frac{\frac{X_{n+1}}{\sqrt{n+1}}}{\sqrt{\frac{T_{n+1}}{n+1}}+\sqrt{\frac{T_{n}}{n+1}}} . \tag{1.9}
\end{align*}
$$

By the Strong of Large Numbers, we have

$$
\lim _{n \rightarrow \infty} \frac{T_{n+1}}{n+1}=1 \quad \text { a.s. } \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{T_{n}}{n+1}=1 \quad \text { a.s. }
$$

Using these facts and the convergence (1.7) (for $p=2$) we find

$$
\lim _{n \rightarrow \infty} R_{n}=0 \quad \text { a..s. }
$$

4. \qquad
4.a. Here the Orthogonality Principle reads

$$
\begin{equation*}
\mathbb{E}\left[\left(X-Z^{\star}\right) Z\right]=0, \quad Z \in V \tag{1.10}
\end{equation*}
$$

However, any element Z of V is of the form

$$
Z=\sum_{k=1}^{n} a_{k} Y_{k}+b
$$

with arbitrary a_{1}, \ldots, a_{n} and b in \mathbb{R}. Obviously, the rvs $Z=Y_{1}, \ldots, Z=Y_{n}$ and $Z=1$ are in V. Using them in (1.10) we get

$$
\mathbb{E}\left[\left(X-Z^{\star}\right) 1\right]=0 \quad \text { and } \quad \mathbb{E}\left[\left(X-Z^{\star}\right) Y_{k}\right]=0, \quad k=1, \ldots, n .
$$

Thus, Z^{\star} satisfies

$$
\mathbb{E}[X]=\mathbb{E}\left[Z^{\star}\right] \quad \text { and } \quad \mathbb{E}\left[\left(X-\mathbb{E}[X]+\mathbb{E}\left[Z^{\star}\right]-Z^{\star}\right) Y_{k}\right]=0, \quad k=1, \ldots, n
$$

and this is equivalent to

$$
\begin{equation*}
\mathbb{E}[X]=\mathbb{E}\left[Z^{\star}\right] \quad \text { and } \quad \operatorname{Cov}\left[X-Z^{\star}, Y_{k}\right]=0, \quad k=1, \ldots, n \tag{1.11}
\end{equation*}
$$

By linearity it is elementary to see that (1.10) and (1.11) are indeed equivalent.
4.b. Recall that Z^{\star} is of the form

$$
Z^{\star}=\sum_{\ell=1}^{n} a_{\ell}^{\star} Y_{\ell}+b^{\star}
$$

with $a_{1}^{\star}, \ldots, a_{n}^{\star}$ and b^{\star} in \mathbb{R} such that (1.11) holds. In particular,

$$
\mathbb{E}[X]=\sum_{\ell=1}^{n} a_{\ell}^{\star} \mathbb{E}\left[Y_{\ell}\right]+b^{\star}
$$

and for each $k=1,2, \ldots, n$, we find

$$
\begin{align*}
\operatorname{Cov}\left[X-Z^{\star}, Y_{k}\right] & =\operatorname{Cov}\left[X-\left(\sum_{\ell=1}^{n} a_{\ell}^{\star} Y_{\ell}+b^{\star}\right), Y_{k}\right] \\
& =\operatorname{Cov}\left[X, Y_{k}\right]-\sum_{\ell=1}^{n} a_{\ell}^{\star} \operatorname{Cov}\left[Y_{\ell}, Y_{k}\right] \\
& =\operatorname{Cov}\left[X, Y_{k}\right]-a_{k}^{\star} \operatorname{Var}\left[Y_{k}\right] \\
& =\rho_{k}-a_{k}^{\star} \sigma_{k}^{2} \tag{1.12}
\end{align*}
$$

whence

$$
a_{k}^{\star}=\frac{\rho_{k}}{\sigma_{k}^{2}} .
$$

It is now plain that

$$
\begin{align*}
Z^{\star} & =\sum_{\ell=1}^{n} a_{\ell}^{\star} Y_{\ell}+b^{\star} \\
& =\sum_{\ell=1}^{n} a_{\ell}^{\star} Y_{\ell}+\left(\mathbb{E}[X]-\sum_{\ell=1}^{n} a_{\ell}^{\star} \mathbb{E}\left[Y_{\ell}\right]\right) \\
& =\mathbb{E}[X]+\sum_{\ell=1}^{n} a_{\ell}^{\star}\left(Y_{\ell}-\mathbb{E}\left[Y_{\ell}\right]\right) \\
& =\mathbb{E}[X]+\sum_{\ell=1}^{n} \frac{\rho_{\ell}}{\sigma_{\ell}^{2}}\left(Y_{\ell}-\mathbb{E}\left[Y_{\ell}\right]\right) \tag{1.13}
\end{align*}
$$

4.c. Next, we note that

$$
X-Z^{\star}=X-\mathbb{E}[X]-\sum_{\ell=1}^{n} \frac{\rho_{\ell}}{\sigma_{\ell}^{2}}\left(Y_{\ell}-\mathbb{E}\left[Y_{\ell}\right]\right)
$$

so that

$$
\begin{align*}
\operatorname{Var}\left[X-Z^{\star}\right] & =\mathbb{E}\left[\left(X-Z^{\star}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(X-\mathbb{E}[X]-\sum_{\ell=1}^{n} \frac{\rho_{\ell}}{\sigma_{\ell}^{2}}\left(Y_{\ell}-\mathbb{E}\left[Y_{\ell}\right]\right)\right)^{2}\right] \\
& =\operatorname{var}[X]+\sum_{\ell=1}^{n}\left(\frac{\rho_{\ell}}{\sigma_{\ell}^{2}}\right)^{2} \sigma_{\ell}^{2}-2 \sum_{\ell=1}^{n} \frac{\rho_{\ell}}{\sigma_{\ell}^{2}} \operatorname{Cov}\left[X, Y_{\ell}\right] \\
& =\operatorname{var}[X]+\sum_{\ell=1}^{n}\left(\frac{\rho_{\ell}}{\sigma_{\ell}}\right)^{2}-2 \sum_{\ell=1}^{n}\left(\frac{\rho_{\ell}}{\sigma_{\ell}}\right)^{2} \\
& =\operatorname{var}[X]-\sum_{\ell=1}^{n}\left(\frac{\rho_{\ell}}{\sigma_{\ell}}\right)^{2} . \tag{1.14}
\end{align*}
$$

