ENEE 620
FALL 2011
RANDOM PROCESSES IN COMMUNICATION AND CONTROL

ANSWER KEY TO FINAL EXAM
1.

Let $\mathcal{P}_{K}$ denote the collection of subsets of $\{1, \ldots, P\}$ of size exactly $K$. Obviously,

$$
\left|\mathcal{P}_{K}\right|=\binom{P}{K}
$$

1.a. Pick a non-empty subset $S$ of $\{1, \ldots, P\}$. By the uniform assumption on $K_{i}$ we have

$$
\mathbb{P}\left[K_{i}=T\right]=\frac{1}{\binom{P}{K}}, \quad T \in \mathcal{P}_{K}
$$

so that

$$
\begin{align*}
q(S) & =\mathbb{P}\left[K_{i} \cap S=\emptyset\right] \\
& =\sum_{T \in \mathcal{P}_{K}: T \cap S=\emptyset} \mathbb{P}\left[K_{i}=T\right] \\
& =\sum_{T \in \mathcal{P}_{K}: T \cap S=\emptyset} \frac{1}{\binom{P}{K}} \\
& =\frac{\left|\left\{T \in \mathcal{P}_{K}: T \cap S=\emptyset\right\}\right|}{\binom{P}{K}} \tag{1.1}
\end{align*}
$$

with

$$
\left|\left\{T \in \mathcal{P}_{K}: T \cap S=\emptyset\right\}\right|= \begin{cases}\binom{P-|S|}{K} & \text { if }|S|+K \leq P \\ 0 & \text { if } P<|S|+K\end{cases}
$$

Collecting we find,

$$
\mathbb{P}\left[K_{i} \cap S=\emptyset\right]= \begin{cases}\frac{\binom{P-|S|}{K}}{\binom{P}{K}} & \text { if }|S|+K \leq P \\ 0 & \text { if } P<|S|+K\end{cases}
$$

1.b. Here we have $2 K \leq P$. Using the law of total probabilities we get

$$
\begin{align*}
\mathbb{P}\left[K_{i} \cap K_{j}=\emptyset\right] & =\mathbb{E}\left[\mathbf{1}\left[K_{i} \cap K_{j}=\emptyset\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{E}\left[\mathbf{1}\left[K_{i}=S\right] \mathbf{1}\left[K_{i} \cap K_{j}=\emptyset\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{E}\left[\mathbf{1}\left[K_{i}=S\right] \mathbf{1}\left[S \cap K_{j}=\emptyset\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{E}\left[\mathbf{1}\left[K_{i}=S\right]\right] \mathbb{E}\left[\mathbf{1}\left[S \cap K_{j}=\emptyset\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{P}\left[K_{i}=S\right] \mathbb{P}\left[S \cap K_{j}=\emptyset\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{P}\left[K_{i}=S\right] q(|S|) \\
& =q(K) \sum_{S \in \mathcal{P}_{K}} \mathbb{P}\left[K_{i}=S\right] \tag{1.2}
\end{align*}
$$

upon invoking the independence of the random sets $K_{i}$ and $K_{j}$ and using Part 1.a. In conclusion,

$$
\begin{equation*}
\mathbb{P}\left[\chi_{i j}=1\right]=\mathbb{P}\left[K_{i} \cap K_{j}=\emptyset\right]=q(K) . \tag{1.3}
\end{equation*}
$$

1.c. Pick $b_{2}, \ldots, b_{n}$ elements in $\{0,1\}$, and write

$$
\chi_{1 j}=1 \quad \text { if and only if } \quad K_{1} \cap K_{j}={ }_{b_{j}} \emptyset
$$

With this notation we find

$$
\begin{align*}
\mathbb{P}\left[\chi_{1 j}=b_{j}, j=2, \ldots, n\right] & =\mathbb{P}\left[K_{1} \cap K_{j}=b_{j} \emptyset, j=2, \ldots, n\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{E}\left[\mathbf{1}\left[K_{1}=S\right] \mathbf{1}\left[K_{1} \cap K_{j}=b_{j} \emptyset, j=2, \ldots, n\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{E}\left[\mathbf{1}\left[K_{1}=S\right] \mathbf{1}\left[S \cap K_{j}=b_{j} \emptyset, j=2, \ldots, n\right]\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{P}\left[K_{1}=S\right] \mathbb{P}\left[S \cap K_{j}=_{b_{j}} \emptyset, j=2, \ldots, n\right] \\
& =\sum_{S \in \mathcal{P}_{K}} \mathbb{P}\left[K_{1}=S\right] \prod_{j=2}^{n} q(K)^{b_{j}}(1-q(K))^{1-b_{j}} \\
& =q(K)^{b}(1-q(K))^{n-1-b} \tag{1.4}
\end{align*}
$$

under the enforced i.i.d. assumptions, with

$$
b=b_{2}+\ldots+b_{n}
$$

1.d. It is clear from Part 1.c the rvs $\chi_{12}, \chi_{13}, \ldots, \chi_{1 n}$ are mutually independent.
2. $\qquad$
2.a. Yes as the needed sample path properties of $\left\{N_{t}^{\star}, t \geq 0\right\}$ are inherited from those of $\left\{N_{t}, t \geq 0\right\}$.
2.b. Fix $n=1,2, \ldots$ and $0<t_{1}, \ldots<t_{n}$. For $x_{1}, \ldots, x_{n}$ arbitrary non-negative integers, we have

$$
\begin{align*}
\mathbb{P} & {\left[N_{t_{1}}^{\star}=x_{1}, N_{t_{2}}^{\star}-N_{t_{1}}^{\star}=x_{2}, \ldots, N_{t_{n}}^{\star}-N_{t_{n-1}}^{\star}=x_{n}\right] } \\
& =\mathbb{P}\left[N_{Y t_{1}}=x_{1}, N_{Y t_{2}}-N_{Y t_{1}}=x_{2}, \ldots, N_{Y t_{n}}-N_{Y t_{n-1}}=x_{n}\right] \\
& =\mathbb{E}\left[\mathbf{1}\left[N_{Y t_{1}}=x_{1}, N_{Y t_{2}}-N_{Y t_{1}}=x_{2}, \ldots, N_{Y t_{n}}-N_{Y t_{n-1}}=x_{n}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\mathbf{1}\left[N_{y t_{1}}=x_{1}, N_{y t_{2}}-N_{y t_{1}}=x_{2}, \ldots, N_{y t_{n}}-N_{y t_{n-1}}=x_{n}\right]\right]_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbb{P}\left[N_{y t_{1}}=x_{1}, N_{y t_{2}}-N_{y t_{1}}=x_{2}, \ldots, N_{y t_{n}}-N_{y t_{n-1}}=x_{n}\right]_{y=Y}\right] \\
& =\mathbb{E}\left[\mathbb{P}\left[N_{y t_{1}}=x_{1}\right]_{y=Y} \prod_{j=2}^{n} \mathbb{P}\left[N_{y t_{j}}-N_{y t_{j-1}}=x_{j}\right]_{y=Y}\right] \\
& =\mathbb{E}\left[\frac{\left(\lambda Y t_{1}\right)^{x_{1}}}{x_{1}!} e^{-\lambda Y t_{1}} \prod_{j=2}^{n} \frac{\left(\lambda Y\left(t_{j}-t_{j-1}\right)\right)^{x_{j}}}{x_{j}!} e^{-\lambda Y\left(t_{j}-t_{j-1}\right)}\right] \tag{1.5}
\end{align*}
$$

as we make use of the fact that the Poisson process $\left\{N_{t}, t \geq 0\right\}$ has mutually independent increments. However, the process $\left\{N_{t}^{\star}, t \geq 0\right\}$ does not have mutually independent increments. It only has mutually independent increments conditionally on the value of $Y$ !

It should be clear that for each $t>0$ we have

$$
\mathbb{P}\left[N_{t}^{\star}=x\right]=\mathbb{E}\left[\frac{(\lambda Y t)^{x}}{x!} e^{-\lambda Y t}\right], \quad x=0,1, \ldots
$$

and if $Y$ is a non-degenerate rv, there is now way that this pmf is a Poisson pmf for some deterministic parameter $\lambda^{\star}$ !
2.c. Fix $0<s \leq t$. By the enforced independence, we have

$$
\begin{align*}
\mathbb{E}\left[N_{t}^{\star}\right] & =\mathbb{E}\left[N_{Y t}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[N_{y t}\right]_{y=Y}\right] \\
& =\mathbb{E}[\lambda(Y t)]=\lambda t \mathbb{E}[Y] \tag{1.6}
\end{align*}
$$

In a similar way, we find

$$
\begin{align*}
\mathbb{E}\left[N_{s}^{\star} N_{t}^{\star}\right] & =\mathbb{E}\left[N_{Y s} N_{Y t}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[N_{y s} N_{y t}\right]_{y=Y}\right] \tag{1.7}
\end{align*}
$$

with

$$
\begin{align*}
\mathbb{E}\left[N_{y s} N_{y t}\right] & =\mathbb{E}\left[N_{y s}\left(N_{y t}-N_{y s}\right)\right]+\mathbb{E}\left[N_{y s}^{2}\right] \\
& =\mathbb{E}\left[N_{y s}\right] \mathbb{E}\left[N_{y t}-N_{y s}\right]+\mathbb{E}\left[N_{y s}^{2}\right] \\
& =\lambda y s \cdot \lambda y(t-s)+\mathbb{E}\left[N_{y s}\right]+(\lambda y s)^{2} \\
& =\lambda y s \cdot \lambda y(t-s)+\lambda y s+(\lambda y s)^{2} \\
& =\lambda y s \cdot \lambda y t+\lambda y s \tag{1.8}
\end{align*}
$$

Therefore,

$$
\mathbb{E}\left[N_{t}^{\star}\right]=\lambda^{2} s t \cdot \mathbb{E}\left[Y^{2}\right]+\lambda s \mathbb{E}[Y] .
$$

3. 

Note that the rvs $\left\{\mathbf{1}\left[U_{k} \leq B\right], k=1,2, \ldots\right\}$ are not i.i.d. but only conditionally i.i.d. given $B$ !
3.a. Fix $n=1,2, \ldots$ and $\theta$ in $\mathbb{R}$. By independence we get

$$
\begin{align*}
\mathbb{E}\left[e^{i \theta S_{n}}\right] & =\mathbb{E}\left[e^{i \theta \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq B\right]}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[e^{i \theta \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq B\right]} \mid B\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[e^{i \theta \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq b\right]} \mid B=b\right]_{B=b}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[e^{i \theta \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq b\right]}\right]_{B=b}\right] \tag{1.9}
\end{align*}
$$

where for each $b$ in $[0,1]$, we have

$$
\begin{align*}
\mathbb{E}\left[e^{i \theta \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq b\right]}\right] & =\mathbb{E}\left[\prod_{k=1}^{n} e^{i \theta 1\left[U_{k} \leq b\right]}\right] \\
& =\prod_{k=1}^{n} \mathbb{E}\left[e^{i \theta 1\left[U_{k} \leq b\right]}\right] \\
& =\prod_{k=1}^{n}\left(1-b+b e^{i \theta}\right) \\
& =\left(1-b+b e^{i \theta}\right)^{n} \tag{1.10}
\end{align*}
$$

upon making use of the enforced independence assumptions.
As a result,

$$
\begin{align*}
\mathbb{E}\left[e^{i \theta \frac{S_{n}}{n}}\right] & =\mathbb{E}\left[\left(1-B+B e^{i \frac{\theta}{n}}\right)^{n}\right] \\
& =\mathbb{E}\left[\left(1-B\left(1-e^{i \frac{\theta}{n}}\right)\right)^{n}\right] \\
& =\mathbb{E}\left[\left(1-\frac{B}{n} \frac{1-e^{i \frac{\theta}{n}}}{\frac{1}{n}}\right)^{n}\right] \tag{1.11}
\end{align*}
$$

Since

$$
\lim _{n \rightarrow \infty} B\left(\frac{1-e^{i \frac{\theta}{n}}}{\frac{1}{n}}\right)=-i B \theta
$$

it follows that ting that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{B}{n} \frac{1-e^{i \frac{\theta}{n}}}{\frac{1}{n}}\right)^{n}=e^{i B \theta}
$$

so that

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i \theta \frac{S_{n}}{n}}\right]=\mathbb{E}\left[e^{i B \theta}\right]
$$

Upon identifying $\mathbb{E}\left[e^{i B \theta}\right]$ as the characteristic function of $B$, we conclude that $\frac{S_{n}}{n} \Longrightarrow{ }_{n} B$ by the characterization of distributional convergence in terms of characteristic functions.
3.b. By an easy preconditioning argument, we get

$$
\begin{align*}
\mathbb{E}\left[\left(\frac{S_{n}}{n}-B\right)^{2}\right] & =\mathbb{E}\left[\left(\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq B\right]-B\right)^{2}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left.\left(\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq B\right]-B\right)^{2} \right\rvert\, B\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left.\left(\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq b\right]-b\right)^{2} \right\rvert\, B=b\right]_{B=b}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left(\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}\left[U_{k} \leq b\right]-b\right)^{2}\right]_{B=b}\right] \\
& =\mathbb{E}\left[\left(\frac{b(1-b)}{n}\right)_{B=b}\right] \\
& =\frac{\mathbb{E}[B(1-B)]}{n} \tag{1.12}
\end{align*}
$$

by standard calculations since for each $b$ in $[0,1]$ it is plain that the $\operatorname{rvs}\left\{\mathbf{1}\left[U_{n} \leq b\right], n=\right.$ $1,2, \ldots\}$ are i.i.d. Bernoulli rvs with first second moment $b$ and variance $b(1-b)$.

Therefore,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(\frac{S_{n}}{n}-B\right)^{2}\right]=0
$$

whence $\frac{S_{n}}{n} \xrightarrow{L^{2}}{ }_{n} B$ and the conclusion $\frac{S_{n}}{n} \xrightarrow{P}{ }_{n} B$ follows.
4.
4.a. Obviously, since $0 \leq D \leq 1$, we have $\mathbb{P}[D \leq t]=0$ if $t<0$ and $\mathbb{P}[D \leq t]=1$ if $1<t$. Thus, fix $t$ in $[0,1]$. Using the independence of the rvs $U$ and $V$ we note that

$$
\begin{aligned}
\mathbb{P}[D \leq t] & =\mathbb{E}[\mathbf{1}[|U-V| \leq t]] \\
& =\mathbb{E}[\mathbb{E}[\mathbf{1}[|U-V| \leq t] \mid V]] \\
& =\mathbb{E}\left[\mathbb{P}[|U-v| \leq t \mid V=v]_{v=V}\right] \\
& =\mathbb{E}\left[\mathbb{P}[|U-v| \leq t]_{v=V}\right]
\end{aligned}
$$

where for each $v$ in $[0,1]$,

$$
\begin{align*}
\mathbb{P}[|U-v| \leq t] & =\mathbb{P}[v-t \leq U \leq v+t] \\
& =\min (t+v, 1)-\max (v-t, 0) \\
& =\min (t+v, 1-t+t)-\max (v-t, t-t) \\
& =(t+\min (v, 1-t))-(\max (v, t)-t) \\
& =2 t+\min (v, 1-t)-\max (v, t) . \tag{1.13}
\end{align*}
$$

Therefore,

$$
\mathbb{P}[D \leq t]=2 t+\mathbb{E}[\min (V, 1-t)]-\mathbb{E}[\max (V, t)]
$$

Next,

$$
\begin{align*}
\mathbb{E}[\min (V, 1-t)] & =\int_{0}^{1-t} v d v+\int_{1-t}^{1}(1-t) d v \\
& =\frac{(1-t)^{2}}{2}+t(1-t) \\
& =\frac{1-t^{2}}{2} \tag{1.14}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\mathbb{E}[\max (V, t)] & =\int_{0}^{t} t d v+\int_{t}^{1} v d v \\
& =t^{2}+\frac{1-t^{2}}{2} \\
& =\frac{1+t^{2}}{2} \tag{1.15}
\end{align*}
$$

Collecting we conclude that

$$
\begin{align*}
\mathbb{P}[D \leq t] & =2 t+\mathbb{E}[\min (V, 1-t)]-\mathbb{E}[\max (V, t)] \\
& =2 t+\frac{1-t^{2}}{2}-\frac{1+t^{2}}{2} \\
& =2 t-t^{2} \\
& =1-(1-t)^{2} \tag{1.16}
\end{align*}
$$

4.b. Obviously we need only consider $s$ in $[0,1]$, in which case we have

$$
\begin{align*}
\mathbb{P}[S>s] & =\mathbb{P}[D>s, 1-D>s] \\
& =\mathbb{P}[s<D<1-s] . \tag{1.17}
\end{align*}
$$

First, we see that we need $s<1-s$. Hence,

$$
\mathbb{P}[S>s]=0, \quad \frac{1}{2}<s \leq 1
$$

while on the range $0 \leq s \leq \frac{1}{2}$, we get

$$
\begin{align*}
\mathbb{P}[S>s] & =\mathbb{P}[s<D<1-s] \\
& =\left(1-(1-(1-s))^{2}\right)-\left(1-(1-s)^{2}\right) \\
& =(1-s)^{2}-s^{2} \\
& =1-2 s \tag{1.18}
\end{align*}
$$

Collecting we conclude that

$$
\mathbb{P}[S \leq s]=\min (1,2 s), \quad 0 \leq s \leq 1
$$

In short, $S$ is uniformly distributed on the interval $\left[0, \frac{1}{2}\right]$.
4.c. Since

$$
\mathbb{E}[\max (D, 1-D)]+\mathbb{E}[\min (D, 1-D)]=\mathbb{E}[D+(1-D)]=1
$$

we conclude that

$$
\begin{align*}
\mathbb{E}[\max (D, 1-D)] & =1-\mathbb{E}[S] \\
& =1-\int_{0}^{\frac{1}{2}} 2 s d s \\
& =1-\frac{1}{4}=\frac{3}{4} . \tag{1.19}
\end{align*}
$$

5. 

First some easy observations: For each $n=1,2, \ldots$, write

$$
\Xi_{n}=\xi_{1}+\ldots+\xi_{n}
$$

and

$$
\begin{align*}
S_{n} & =\left(\xi_{1}+\ldots+\xi_{n}\right)+2\left(\xi_{2}+\ldots+\xi_{n+1}\right) \\
& =\xi_{1}+3\left(\xi_{2}+\ldots+\xi_{n}\right)+2 \xi_{n+1} \tag{1.20}
\end{align*}
$$

Note that

$$
S_{n}=\xi_{1}+3\left(\Xi_{n}-\xi_{1}\right)+2 \xi_{n+1}
$$

5.a. For each $n=1,2, \ldots$, we have

$$
S_{n} \sim \mathrm{~N}(0,9 n-4)
$$

since the sum of mutually independent Gaussian rvs is normally distributed with $\mathbb{E}\left[S_{n}\right]=$ 0 and $\operatorname{Var}\left[S_{n}\right]=1+9(n-1)+4=9 n-4$.
5.b. There a number of ways to solve this question:

A long way $\operatorname{Fix} \theta$ in $\mathbb{R}$. For each $n=1,2, \ldots$,

$$
\begin{align*}
\mathbb{E}\left[e^{i \theta S_{n}}\right] & =\mathbb{E}\left[e^{i \theta\left(\xi_{1}+3\left(\xi_{2}+\ldots+\xi_{n}\right)+2 \xi_{n+1}\right)}\right] \\
& =\mathbb{E}\left[e^{i \theta \xi_{1}}\right] \cdot \mathbb{E}\left[e^{i 3 \theta\left(\xi_{2}+\ldots+\xi_{n}\right)}\right] \cdot \mathbb{E}\left[e^{i 2 \theta \xi_{n+1}}\right] \tag{1.21}
\end{align*}
$$

under the enforced independence assumptions so that

$$
\begin{equation*}
\mathbb{E}\left[e^{i \theta S_{n}}\right]=\Phi_{\xi}(\theta) \mathbb{E}\left[e^{i 3 \theta \Xi_{n-1}}\right] \Phi_{\xi}(2 \theta) \tag{1.22}
\end{equation*}
$$

However, the Central Limit Theorem (applied to the i.i.d. rvs $\left\{\xi_{n}, n=1,2, \ldots\right\}$ ) gives

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i 3 \theta \frac{\Xi_{n-1}}{\sqrt{n-1}}}\right]=e^{-\frac{(3 \theta)^{2}}{2}}
$$

while the continuity of characteristic functions at $\theta=0$ implies

$$
\lim _{n \rightarrow \infty} \Phi_{\xi}\left(\frac{\theta}{\sqrt{n-1}}\right)=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} \Phi_{\xi}\left(2 \frac{\theta}{\sqrt{n-1}}\right)=1
$$

Together, upon combining these observations, we get

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[e^{i \theta \frac{S_{n}}{\sqrt{n-1}}}\right]=e^{-\frac{9 \theta^{2}}{2}}, \quad \theta \in \mathbb{R}
$$

since

$$
\mathbb{E}\left[e^{i \theta \frac{S_{n}}{\sqrt{n-1}}}\right]=\Phi_{\xi}\left(\frac{\theta}{\sqrt{n-1}}\right) \mathbb{E}\left[e^{i 3 \theta \theta \frac{\Xi_{n-1}}{\sqrt{n-1}}}\right] \Phi_{\xi}\left(2 \frac{\theta}{\sqrt{n-1}}\right)
$$

for each $n=1,2, \ldots$ by virtue of (1.22). In other words,

$$
\frac{S_{n}}{\sqrt{n-1}} \Longrightarrow{ }_{n} 3 U
$$

where $U$ is a standard Gaussian rv, and this is of course equivalent to

$$
\frac{S_{n}}{\sqrt{n}} \Longrightarrow_{n} 3 U
$$

Thus we can take $L=3 U$ and the sequence $b: \mathbb{N}_{0} \rightarrow(0, \infty)$ to be $b_{n}=\sqrt{n}$.
A clever way For each $n=1,2, \ldots$, we note that

$$
\begin{align*}
S_{n} & =\xi_{1}+3\left(\xi_{2}+\ldots+\xi_{n}\right)+2 \xi_{n+1} \\
& =\text { st } 3\left(\xi_{1}+\ldots+\xi_{n}\right) \tag{1.23}
\end{align*}
$$

(where $=_{s t}$ denotes equal in distribution). Why? Because the rv $\xi_{1}+2 \xi_{n+1}$ is independent of the $\operatorname{rv} \xi_{2}+\ldots+\xi_{n}$ and has the same distribution as $3 \xi$ (which is also independent of the $\operatorname{rv} \xi_{2}+\ldots+\xi_{n}$ ). Since

$$
\sqrt{n}\left(\xi_{1}+\ldots+\xi_{n}\right) \Longrightarrow_{n} U
$$

by the standard Central limit Theorem, whence

$$
\sqrt{n}\left(3\left(\xi_{1}+\ldots+\xi_{n}\right)\right) \Longrightarrow_{n} 3 U
$$

effortlessly!
6.
6.a. There are many ways to solve this problem

Using MMSE theory for Gaussian rvs Here the usual conditioning argument yields

$$
\mathbb{E}\left[A^{2} B^{2}\right]=\mathbb{E}\left[A^{2} \mathbb{E}\left[B^{2} \mid A\right]\right]
$$

with

$$
\mathbb{E}\left[B^{2} \mid A\right]=\left(\mathbb{E}\left[B^{2} \mid A\right]-\mathbb{E}[B \mid A]^{2}\right)+\mathbb{E}[B \mid A]^{2}
$$

As a result,

$$
\begin{equation*}
\mathbb{E}\left[A^{2} B^{2}\right]=\mathbb{E}\left[A^{2}\left(\mathbb{E}\left[B^{2} \mid A\right]-\mathbb{E}[B \mid A]^{2}\right)\right]+\mathbb{E}\left[A^{2} \mathbb{E}[B \mid A]^{2}\right] \tag{1.24}
\end{equation*}
$$

We now use the fact that the rvs $A$ and $B$ are jointly Gaussian. Therefore, since the MMSE and LMMSE estimators coincide in this case, the Orthogonality Principle readily gives

$$
\begin{equation*}
\mathbb{E}[B \mid A]=\gamma A \quad \text { with } \quad \gamma=\frac{\rho}{\alpha^{2}}, \tag{1.25}
\end{equation*}
$$

and the error rv $B-\mathbb{E}[B \mid A]$ is independent of the rv $A$. It is now plain ${ }^{1}$ that

$$
\begin{align*}
\mathbb{E}\left[B^{2} \mid A\right]-(\mathbb{E}[B \mid A])^{2} & =\mathbb{E}\left[(B-\mathbb{E}[B \mid A])^{2} \mid A\right] \\
& =\mathbb{E}\left[(B-\mathbb{E}[B \mid A])^{2}\right] \\
& =\mathbb{E}\left[(B-\gamma A)^{2}\right] \\
& =\beta^{2}-2 \gamma \rho+\gamma^{2} \alpha^{2} \\
& =\beta^{2}-\frac{\rho^{2}}{\alpha^{2}} \tag{1.26}
\end{align*}
$$

so that

$$
\begin{equation*}
\mathbb{E}\left[A^{2}\left(\mathbb{E}\left[B^{2} \mid A\right]-\mathbb{E}[B \mid A]^{2}\right)\right]=\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) \mathbb{E}\left[A^{2}\right] \tag{1.27}
\end{equation*}
$$

Next,

$$
\begin{equation*}
\mathbb{E}\left[A^{2} \mathbb{E}[B \mid A]^{2}\right]=\mathbb{E}\left[A^{2}(\gamma A)^{2}\right]=\gamma^{2} \mathbb{E}\left[A^{4}\right] \tag{1.28}
\end{equation*}
$$

[^0]with $\mathbb{E}\left[A^{4}\right]=3 \alpha^{4}$. Collecting we conclude from (1.24) that
\[

$$
\begin{align*}
\mathbb{E}\left[A^{2} B^{2}\right] & =\mathbb{E}\left[A^{2}\left(\mathbb{E}\left[B^{2} \mid A\right]-\mathbb{E}[B \mid A]^{2}\right)\right]+\mathbb{E}\left[A^{2} \mathbb{E}[B \mid A]^{2}\right] \\
& =\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) \mathbb{E}\left[A^{2}\right]+\gamma^{2} \mathbb{E}\left[A^{4}\right] \\
& =\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) \alpha^{2}+3 \gamma^{2} \alpha^{4} \\
& =\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) \alpha^{2}+3 \rho^{2} \\
& =\beta^{2} \alpha^{2}+2 \rho^{2} . \tag{1.29}
\end{align*}
$$
\]

Using a representation for bivariate Gaussian rvs Recall that the pair $(A, B)^{\prime}$ can be represented as

$$
\begin{aligned}
A & =\alpha U \\
B & =\frac{\rho}{\alpha} \cdot U+\sqrt{\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}} \cdot V
\end{aligned}
$$

where $U$ and $V$ are i.i.d. standard Gaussian rvs. It is now a simple exercise to compute

$$
\begin{align*}
\mathbb{E}\left[A^{2} B^{2}\right] & =\mathbb{E}\left[\alpha^{2} U^{2}\left(\frac{\rho}{\alpha} \cdot U+\sqrt{\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}} \cdot V\right)^{2}\right] \\
& =\alpha^{2} \mathbb{E}\left[U^{2}\left(\frac{\rho^{2}}{\alpha^{2}} U^{2}+2 \frac{\rho}{\alpha} \sqrt{\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}} \cdot U V+\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) V^{2}\right)\right] \\
& =\rho^{2} \mathbb{E}\left[U^{4}\right]+\alpha^{2}\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right) \mathbb{E}\left[U^{2} V^{2}\right] \tag{1.30}
\end{align*}
$$

as w euse the fact that $\mathbb{E}\left[U^{3} V\right]=\mathbb{E}\left[U^{3}\right] \mathbb{E}[V]=0$ by independence. since $\mathbb{E}\left[U^{4}\right]=3$ and $\mathbb{E}\left[U^{2} V^{2}\right]=\mathbb{E}\left[U^{2}\right] \mathbb{E}\left[V^{2}\right]=1$, it follows that

$$
\mathbb{E}\left[A^{2} B^{2}\right]=3 \rho^{2}+\alpha^{2}\left(\beta^{2}-\frac{\rho^{2}}{\alpha^{2}}\right)
$$

and we get the desired answer!
A pedestrian way Another way to approach the problem was to recall that

$$
\mathbb{E}\left[e^{i(a A+b B)}\right]=e^{-\frac{1}{2}(a, b) \boldsymbol{R}(a, b)^{\prime}}, \quad a, b \in \mathbb{R}
$$

and the answer can now be obtained by noting that

$$
\mathbb{E}\left[A^{2} B^{2}\right]=\left.\frac{\partial^{2}}{\partial a^{2}} \frac{\partial^{2}}{\partial b^{2}} \mathbb{E}\left[e^{i(a A+b B)}\right]\right|_{a=b=0}
$$

6.b. For each $n=0,1, \ldots$, we have

$$
\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[\left(X_{n}\right)^{2}\right]=c(0)
$$

and

$$
\mathbb{E}\left[\left(Y_{n}\right)^{2}\right]=\mathbb{E}\left[\left(X_{n}\right)^{4}\right]=3 c(0)^{2}
$$

Next for each $n=0,1, \ldots$ and $k=1,2, \ldots$, we find

$$
\begin{align*}
\mathbb{E}\left[Y_{n} Y_{n+k}\right] & =\mathbb{E}\left[\left(X_{n}\right)^{2}\left(X_{n+k}\right)^{2}\right] \\
& =c(0)^{2}+2 c(k)^{2} \tag{1.31}
\end{align*}
$$

upon using Part 6.a with $A=X_{n}$ and $B=X_{n+k}$ (so that $\alpha^{2}=\beta^{2}=c(0)$ and $\left.\rho=c(k)\right)$.
The sequence $\left\{Y_{n}, n=0,1, \ldots\right\}$ is wide-sense stationary. It is also strictly stationary because the Gaussian sequence $\left\{X_{n}, n=0,1, \ldots\right\}$, being wide-sense stationary, it is necessarily strictly stationary, hence the sequence $\left\{\varphi\left(X_{n}\right), n=0,1, \ldots\right\}$ is also strictly statioanry for any mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ (and in particular, $\varphi(x)=x^{2}$ ).


[^0]:    ${ }^{1}$ Recall that $\mathbb{E}[B \mid A]$ is simply the mean of the conditional distribution of $B$ given $A$.

