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RANDOM PROCESSES
IN COMMUNICATION AND CONTROL

ANSWER KEY TO FINAL EXAM

Let Pg denote the collection of subsets of {1,..., P} of size exactly K. Obviously,

-3

l.a. Pick a non-empty subset S of {1,..., P}. By the uniform assumption on K; we
have

1
PIK, =T = ——, TePg

P\
)
so that

¢(S) = P[K,NS =0

= > P[K =T]
TEPK: TNS=0
- ¥ 1
TePK: TNS=0 (I]z)
|{T€PKZ TﬂSZQH
(1)

("B it S|+ K <P

(1.1)

with

HT € P : TNS =0} =
0 it P <|S|+ K.

Collecting we find,

if |S|+K <P

0 if P<|S|+K.
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1.b. Here we have 2K < P. Using the law of total probabilities we get

PIK,NK; =0 = EQ1[K;NK; =0]
E[1[K; =S|1[K;NK; = 0]

(]

SeEPK
E[1[K; = S|1[SNK; = 0]

(]

%)

EPk

E1[K;=S]E[1[SNK; =0]

(]

%)

EPk

I
(]

P[K; = S|P[SN K, = 0]

9]

SV

= ) PIK; = S]q(S])
SeEPK
= q(K) ) P[K; =] (1.2)
SeEPK

upon invoking the independence of the random sets K; and K; and using Part 1.a. In
conclusion,

Plxi; =1 =P[K;NK; =0] = q(K). (1.3)
1.c. Pick by, ..., b, elements in {0, 1}, and write

xi; =1 ifandonlyif KiNK;=, 0

J

With this notation we find

Plxiy=b;, j=2,...,n] = P[KiNK;=y,0, j=2,....n]

- S;KE[l[Klzg]l[fQﬂKj:bj@ajz2"">””

= S E[[K =S1[SNEK; =, 0, j=2,...,n]]
SEPK

_ ip[KIZS]P[Sij:bj@,j=2,---an}
SEPK

— 527; P[K, = S] ﬁzq(K)bf (1—q(K))'™
€PK j=

— q(K)b(l—q(K);nlb (1.4)

under the enforced i.i.d. assumptions, with

b=0by+ ...+ b,

1.d. It is clear from Part 1.c the rvs xi2, X13, - - ., X1» are mutually independent.



ENEE 620/FALL 2011

2.

2.a. Yes as the needed sample path properties of { /N, ¢ > 0} are inherited from those
of {Nt7 t 2 O}

2.b. Fixn=1,2,...and 0 < ty,... < t,. For xy,...,x, arbitrary non-negative integers,
we have

P [Ny =1, N, — N} =x,..., N} — N} =u,]
= P [NYtl = I17NYt2 - NYtl = T2, .. 7NYtn - NYtn—l = xn]
= E[1[Nyy =21, Ny, — Nyt, = 22,..., Nys, — Nyp,_, = 2] ]
= [E _E [1 [Nytl = thth — Nytl = T2,... )Nytn — Nytn71 = xnﬂyzy}

— E|P [Ny =21, Nysa = Nyty = @2, -+, Nyt = Nyt = 2]y |

= E|P[Ny, = xl]y:Y HP [Nytj — Nyt = xj]y:Y]
L i=2

_ & ()\Ytl)gcl oYt H ()‘Y(tj — tj*1>)mj e—AY(tj_tjl)] (15)

1! !
1 =2 7

as we make use of the fact that the Poisson process {V;, ¢ > 0} has mutually independent
increments. However, the process {N}, t > 0} does not have mutually independent
increments. It only has mutually independent increments conditionally on the value of
Y!
It should be clear that for each ¢ > 0 we have
AYt)*
PN =z]=E [#e"\w} , x=0,1,...
x!

and if Y is a non-degenerate rv, there is now way that this pmf is a Poisson pmf for some
deterministic parameter \*!

2.c. Fix 0 < s <t. By the enforced independence, we have

E[Ny] = E[Ny{]
_ EfE,]
— E[\Yt)] = ME[Y] (1.6)

In a similar way, we find

E[N:N}] = E[Ny,Ny
= E |E[NyNy,_y (1.7)
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with
E [NysNy ] = E [Nys (Nyt - NyS)] + E [st}
E [Nys] E [Nyt — Nys] + E [st}

= Ays- Ay(t — s) + E[Ny] + (ys)?

= Ays- Ayt — s) + Ays + (Oys)?

= Ays- Ayt + A\ys (1.8)
Therefore,

E[N;] = Nst-E [Y?] + AsE[Y].

3.

Note that the rvs {1[U, < B], k= 1,2,...} are not i.i.d. but only conditionally i.i.d.
given B!

3.a. Fixn=1,2,... and 6 in R. By independence we get
E [ewsn] - E '61‘022211[@53]]
E |E [ ¢ Zio 10<B] ‘ B”
— E[E|“Zitlistp_p] |
B=b
E

:E :ewzzzll[Uksm]B:J (1.9)

where for each b in [0, 1], we have

H ei91[Uk<b]]
k=1

n
— HE 201 Uk<b]
k=1
n

= H 1—b—|—be’9

k=1

= (1 — b+ bele) (1.10)

upon making use of the enforced independence assumptions.
As a result,

TES (1 i2\"
E|e"™n = E|(1—- B+ Be'»
0

- E (1_51_51‘2) ] (1.11)
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Since

1—ein
lim B ( T ) = —1B0,
n—00 =

Bl—e¢n)
mlo—— 1€> = B
n—00 n =

lim E [ew%ﬂ} =E [6“39] .

n—oo

it follows that ting that

so that

Upon identifying E [eiBe] as the characteristic function of B, we conclude that % —, B
by the characterization of distributional convergence in terms of characteristic functions.

3.b. By an easy preconditioning argument, we get

(s

- E (%iungB]—B)

E

— E|E %jéuwgm—3>ﬁ3
k=1

_ E|E %il[ljkgb]—b> B=b
k=1 Beb

_ ElE %il[ngb]—b>
k=1 B—b

- =[(*57),)

E[B(1 - B)]

_ o (1.12)

by standard calculations since for each b in [0, 1] it is plain that the rvs {1 [U, < b], n =
1,2,...} are i.i.d. Bernoulli rvs with first second moment b and variance b(1 — b).

Therefore,
2
lim E (&—B> =0,
n—oo n
S, L2 . s P
whence =» = ,, B and the conclusion == — ,, B follows.

4.
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4.a. Obviously, since 0 < D < 1, we have P[D <t] =0if ¢t < 0and P[D <t] = 1if
1 < t. Thus, fix ¢ in [0, 1]. Using the independence of the rvs U and V' we note that

PID<t] = EL[U-V|<1]
= EEQ[U-V]|<{|V]
= EP[|U—v| <tV =1v],_]
EP|U —v| <t],_v]
where for each v in [0, 1],
PlU—-v|<t] = Plo—t<U<v+1]

= min(t +v,1) — max(v —t,0)
min(t +v,1 —t+t) — max(v — t,t — t)
(t + min(v, 1 — t)) — (max(v,t) —t)

= 2t+min(v,1 —¢) — max(v, t). (1.13)
Therefore,
P[D <t]=2t+E[min(V,1 —1t)] — E[max(V,t)].
Next,
1-t 1
E [min(V,1 —1t)] = / vdv +/ (1 —t)dv
0 1-t
)2
T )
2
1—¢
= —5 (1.14)
Similarly,
E max(V,t)] = / tdv + / vdv
_ el t?
B 2
1 2
- e (1.15)

Collecting we conclude that

P[D<t] = 2t+E[min(V,1—t)] — E [max(V,t)]
1—t> 1+4¢2

— 9 _
+2 2

= 2t —t*
= 1—(1-1)> (1.16)
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4.b. Obviously we need only consider s in [0, 1], in which case we have
P[S>s] = P[D>s,1—-D > s
= Pls<D<1-—¢]. (1.17)
First, we see that we need s < 1 — s. Hence,

1
P[S>S]:O, §<S§1

while on the range 0 < s < %, we get

P[S>s] = Pls<D<1-—s¢]
= (1-(1-(1=9)P) = (1~ (1)
- (1—5)2—82
= 1-—2s. (1.18)

Collecting we conclude that
P[S <s] =min(1,2s5), 0<s<1.
In short, S is uniformly distributed on the interval [0, 3].
4.c. Since
E [max(D,1 — D) +E[min(D,1 - D)]=E[D+ (1 — D)] =1,

we conclude that

E[max(D,1 —D)] = 1-EI[S]
%
= 1- / 2sds
0
1 3
= 1—-=-. 1.19
11 (1.19)
5.
First some easy observations: For each n = 1,2, ..., write
and
Sn o= (G4 +&)+2(&+. + &)
Note that

Sn = 51 +3 (En - 51) + 2€n+1-
5.a. For eachn =1,2,..., we have
Sy, ~ N(0,9n — 4)

since the sum of mutually independent Gaussian rvs is normally distributed with E [S,,] =
0 and Var[S,| =1+9(n—1)+4=9n— 4.

5.b. There a number of ways to solve this question:
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A long way Fix #in R. Foreachn =1,2,...,
E [€i95n} ) [eio(fl+3(§2+---+§n)+2§n+1)i|
E [eiagl] E [€i30(52+...+5n)} .E [eizegnﬂ} (1_21>

under the enforced independence assumptions so that
E [e?"] = @¢(0)E [¢?="] D¢ (26). (1.22)

However, the Central Limit Theorem (applied to the i.i.d. rvs {&,, n=1,2,...}) gives

n—o0

on S 2
lim E {ezgevn—ll] = 67(3?
while the continuity of characteristic functions at # = 0 implies

) 0 . 0
Jilgo@g(m>—l and 7}1_{210(1)5(2 n—l)_l‘

Together, upon combining these observations, we get

L Sn 2
lim E [e”«%] — ¢, heR

n—o0

E [ ieinl] o ( 0 )E {61395"11} o (2 0 )
e Vn— — Jn—1

¢ vn—1 ¢ vn—1
for each n = 1,2,... by virtue of (1.22). In other words,

Sy,
vn—1
where U is a standard Gaussian rv, and this is of course equivalent to

S
_n —,, 3U.
NG

Thus we can take L = 3U and the sequence b : Ny — (0, 00) to be b, = y/n.

since

=, 3U

A clever way For eachn =1,2,..., we note that
Sn = §1+3(£2++€n)+2€n+1
=x 3(&+...+&) (1.23)

(where =4 denotes equal in distribution). Why? Because the rv & +2&,,4 is independent
of the rv & + ... + &, and has the same distribution as 3¢ (which is also independent of
the rv & + ... +&,). Since

V(i +.. . +&) = U
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by the standard Central limit Theorem, whence

V(3 (& + ... +&)) =, 3U

effortlessly!

6.

6.a. There are many ways to solve this problem

Using MMSE theory for Gaussian rvs Here the usual conditioning argument yields
E [A*B*] =E [A’E [B*|A]]

with
E [B?|A] = (E [B*|A] - E[B|A]®) + E [B|A].
As a result,

E [A*B*] =E [A* (E [B%|4] — E[B|A]*)] + E [A’E [B|A]?] . (1.24)

We now use the fact that the rvs A and B are jointly Gaussian. Therefore, since the
MMSE and LMMSE estimators coincide in this case, the Orthogonality Principle readily
gives

. p
E[B|A] =~vA with = et (1.25)
and the error rv B — E [B|A4] is independent of the rv A. Tt is now plain® that

E[B*A] - (E[B|A])* = E[(B-E[B|A)’|4]
= E[(B-E[B|4])’]

= E [(B — VA)Q}
= =2y +7%?
= B % (1.26)
so that )
E [A2 (E [B%|A] — E [B|A]?)] = (52 - %) E [A2]. (1.27)
Next,
E [A’E[B|A]’] = E [A? (vA)?] = +*E [A*] (1.28)

'Recall that E [B|A] is simply the mean of the conditional distribution of B given A.
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with E [A%] = 3a*. Collecting we conclude from (1.24) that
E[A’B?] = E[A?(E[B?A] - E[B|AP)] +E [A’E[B|A]’]
2
_ <@2 - %) E[42] + +E [A"
2
— (52_%) 2 4 34204
o
2
= (62 — —2) o® + 3p?
oY
= B%a® + 2% (1.29)

Using a representation for bivariate Gaussian rvs Recall that the pair (A, B)’
can be represented as

A = oU

2
= B-U+\/62—p—2-v
(6] (6

where U and V are i.i.d. standard Gaussian rvs. It is now a simple exercise to compute

p P’ 2
E[A’B? = E |a’U? (—-Uﬂ/ﬁ?——Q-V)
(0% 0]
p p p* p
U* | U +2= 52——2~Uv+(ﬁ2——>v2
« (0] (0]

= p’E[UY] + o (52 — g—z> E [U%V?] (1.30)

= o’E

as w euse the fact that E[U?V] = E[U3|E[V] = 0 by independence. since E[U?] = 3
and E [U?V?] = E[U?]E[V?] = 1, it follows that

and we get the desired answer!

A pedestrian way Another way to approach the problem was to recall that

E [ei(aA+bB)} _ efé(a,b)R(a,b)” a,beR

and the answer can now be obtained by noting that

2 2
E [A’B?] = 0 0

= o5 [ i(aA-i—bB)}

a:b:O.
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6.b. For each n =10,1,..., we have

and
E[(Y.)] = E [(X.)"] = 3¢(0)"

Next for each n =0,1,... and k =1,2,..., we find

E [YnYn-i-k] = E [(Xn)Q (Xn+k)2}
= ¢(0)* + 2c(k)? (1.31)

upon using Part 6.a with A = X,, and B = X,,,, (so that a? = 32 = ¢(0) and p = c(k)).

The sequence {Y,, n =0,1,...} is wide-sense stationary. It is also strictly stationary
because the Gaussian sequence {X,, n = 0,1,...}, being wide-sense stationary, it is
necessarily strictly stationary, hence the sequence {p(X,), n =0,1,...} is also strictly
statioanry for any mapping ¢ : R — R (and in particular, p(z) = z?).




