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RANDOM PROCESSES
IN COMMUNICATION AND CONTROL

ANSWER KEY TO FINAL EXAM

1.

Let PK denote the collection of subsets of {1, . . . , P} of size exactly K. Obviously,

|PK | =
(
P

K

)
1.a. Pick a non-empty subset S of {1, . . . , P}. By the uniform assumption on Ki we
have

P [Ki = T ] =
1(
P
K

) , T ∈ PK

so that

q(S) = P [Ki ∩ S = ∅]
=

∑
T∈PK : T∩S=∅

P [Ki = T ]

=
∑

T∈PK : T∩S=∅

1(
P
K

)
=
|{T ∈ PK : T ∩ S = ∅}|(

P
K

) (1.1)

with

|{T ∈ PK : T ∩ S = ∅}| =


(
P−|S|
K

)
if |S|+K ≤ P

0 if P < |S|+K.

Collecting we find,

P [Ki ∩ S = ∅] =


(P−|S|K )

(PK)
if |S|+K ≤ P

0 if P < |S|+K.
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1.b. Here we have 2K ≤ P . Using the law of total probabilities we get

P [Ki ∩Kj = ∅] = E [1 [Ki ∩Kj = ∅]]
=

∑
S∈PK

E [1 [Ki = S]1 [Ki ∩Kj = ∅]]

=
∑
S∈PK

E [1 [Ki = S]1 [S ∩Kj = ∅]]

=
∑
S∈PK

E [1 [Ki = S]]E [1 [S ∩Kj = ∅]]

=
∑
S∈PK

P [Ki = S]P [S ∩Kj = ∅]

=
∑
S∈PK

P [Ki = S] q(|S|)

= q(K)
∑
S∈PK

P [Ki = S] (1.2)

upon invoking the independence of the random sets Ki and Kj and using Part 1.a. In
conclusion,

P [χij = 1] = P [Ki ∩Kj = ∅] = q(K). (1.3)

1.c. Pick b2, . . . , bn elements in {0, 1}, and write

χ1j = 1 if and only if K1 ∩Kj =bj ∅

With this notation we find

P [χ1j = bj, j = 2, . . . , n] = P
[
K1 ∩Kj =bj ∅, j = 2, . . . , n

]
=

∑
S∈PK

E
[
1 [K1 = S]1

[
K1 ∩Kj =bj ∅, j = 2, . . . , n

]]
=

∑
S∈PK

E
[
1 [K1 = S]1

[
S ∩Kj =bj ∅, j = 2, . . . , n

]]
=

∑
S∈PK

P [K1 = S]P
[
S ∩Kj =bj ∅, j = 2, . . . , n

]
=

∑
S∈PK

P [K1 = S]
n∏
j=2

q(K)bj (1− q(K))1−bj

= q(K)b (1− q(K))n−1−b (1.4)

under the enforced i.i.d. assumptions, with

b = b2 + . . .+ bn.

1.d. It is clear from Part 1.c the rvs χ12, χ13, . . . , χ1n are mutually independent.
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2.

2.a. Yes as the needed sample path properties of {N?
t , t ≥ 0} are inherited from those

of {Nt, t ≥ 0}.

2.b. Fix n = 1, 2, . . . and 0 < t1, . . . < tn. For x1, . . . , xn arbitrary non-negative integers,
we have

P
[
N?
t1

= x1, N
?
t2
−N?

t1
= x2, . . . , N

?
tn −N

?
tn−1

= xn
]

= P
[
NY t1 = x1, NY t2 −NY t1 = x2, . . . , NY tn −NY tn−1 = xn

]
= E

[
1
[
NY t1 = x1, NY t2 −NY t1 = x2, . . . , NY tn −NY tn−1 = xn

]]
= E

[
E
[
1
[
Nyt1 = x1, Nyt2 −Nyt1 = x2, . . . , Nytn −Nytn−1 = xn

]]
y=Y

]
= E

[
P
[
Nyt1 = x1, Nyt2 −Nyt1 = x2, . . . , Nytn −Nytn−1 = xn

]
y=Y

]
= E

[
P [Nyt1 = x1]y=Y

n∏
j=2

P
[
Nytj −Nytj−1

= xj
]
y=Y

]

= E

[
(λY t1)x1

x1!
e−λY t1

n∏
j=2

(λY (tj − tj−1))xj

xj!
e−λY (tj−tj−1)

]
(1.5)

as we make use of the fact that the Poisson process {Nt, t ≥ 0} has mutually independent
increments. However, the process {N?

t , t ≥ 0} does not have mutually independent
increments. It only has mutually independent increments conditionally on the value of
Y !

It should be clear that for each t > 0 we have

P [N?
t = x] = E

[
(λY t)x

x!
e−λY t

]
, x = 0, 1, . . .

and if Y is a non-degenerate rv, there is now way that this pmf is a Poisson pmf for some
deterministic parameter λ?!

2.c. Fix 0 < s ≤ t. By the enforced independence, we have

E [N?
t ] = E [NY t]

= E
[
E [Nyt]y=Y

]
= E [λ(Y t)] = λtE [Y ] (1.6)

In a similar way, we find

E [N?
sN

?
t ] = E [NY sNY t]

= E
[
E [NysNyt]y=Y

]
(1.7)
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with

E [NysNyt] = E [Nys (Nyt −Nys)] + E
[
N2
ys

]
= E [Nys]E [Nyt −Nys] + E

[
N2
ys

]
= λys · λy(t− s) + E [Nys] + (λys)2

= λys · λy(t− s) + λys+ (λys)2

= λys · λyt+ λys (1.8)

Therefore,
E [N?

t ] = λ2st · E
[
Y 2
]

+ λsE [Y ] .

3.

Note that the rvs {1 [Uk ≤ B] , k = 1, 2, . . .} are not i.i.d. but only conditionally i.i.d.
given B!

3.a. Fix n = 1, 2, . . . and θ in R. By independence we get

E
[
eiθSn

]
= E

[
eiθ

∑n
k=1 1[Uk≤B]

]
= E

[
E
[
eiθ

∑n
k=1 1[Uk≤B]

∣∣∣B]]
= E

[
E
[
eiθ

∑n
k=1 1[Uk≤b]

∣∣∣B = b
]
B=b

]
= E

[
E
[
eiθ

∑n
k=1 1[Uk≤b]

]
B=b

]
(1.9)

where for each b in [0, 1], we have

E
[
eiθ

∑n
k=1 1[Uk≤b]

]
= E

[
n∏
k=1

eiθ1[Uk≤b]

]

=
n∏
k=1

E
[
eiθ1[Uk≤b]

]
=

n∏
k=1

(
1− b+ beiθ

)
=

(
1− b+ beiθ

)n
(1.10)

upon making use of the enforced independence assumptions.
As a result,

E
[
eiθ

Sn
n

]
= E

[(
1−B +Bei

θ
n

)n]
= E

[(
1−B

(
1− ei

θ
n

))n]
= E

[(
1− B

n

1− ei θn
1
n

)n]
. (1.11)
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Since

lim
n→∞

B

(
1− ei θn

1
n

)
= −iBθ,

it follows that ting that

lim
n→∞

(
1− B

n

1− ei θn
1
n

)n

= eiBθ

so that
lim
n→∞

E
[
eiθ

Sn
n

]
= E

[
eiBθ

]
.

Upon identifying E
[
eiBθ

]
as the characteristic function of B, we conclude that Sn

n
=⇒n B

by the characterization of distributional convergence in terms of characteristic functions.

3.b. By an easy preconditioning argument, we get

E

[(
Sn
n
−B

)2
]

= E

( 1

n

n∑
k=1

1 [Uk ≤ B]−B

)2


= E

E
( 1

n

n∑
k=1

1 [Uk ≤ B]−B

)2 ∣∣∣B


= E

E
( 1

n

n∑
k=1

1 [Uk ≤ b]− b

)2 ∣∣∣B = b


B=b


= E

E
( 1

n

n∑
k=1

1 [Uk ≤ b]− b

)2

B=b


= E

[(
b(1− b)

n

)
B=b

]
=

E [B(1−B)]

n
(1.12)

by standard calculations since for each b in [0, 1] it is plain that the rvs {1 [Un ≤ b] , n =
1, 2, . . .} are i.i.d. Bernoulli rvs with first second moment b and variance b(1− b).

Therefore,

lim
n→∞

E

[(
Sn
n
−B

)2
]

= 0,

whence Sn
n

L2

→ n B and the conclusion Sn
n

P→ n B follows.

4.
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4.a. Obviously, since 0 ≤ D ≤ 1, we have P [D ≤ t] = 0 if t < 0 and P [D ≤ t] = 1 if
1 < t. Thus, fix t in [0, 1]. Using the independence of the rvs U and V we note that

P [D ≤ t] = E [1 [|U − V | ≤ t]]

= E [E [1 [|U − V | ≤ t] |V ]]

= E [P [|U − v| ≤ t|V = v]v=V ]

= E [P [|U − v| ≤ t]v=V ]

where for each v in [0, 1],

P [|U − v| ≤ t] = P [v − t ≤ U ≤ v + t]

= min(t+ v, 1)−max(v − t, 0)

= min(t+ v, 1− t+ t)−max(v − t, t− t)
= (t+ min(v, 1− t))− (max(v, t)− t)
= 2t+ min(v, 1− t)−max(v, t). (1.13)

Therefore,
P [D ≤ t] = 2t+ E [min(V, 1− t)]− E [max(V, t)] .

Next,

E [min(V, 1− t)] =

∫ 1−t

0

vdv +

∫ 1

1−t
(1− t)dv

=
(1− t)2

2
+ t(1− t)

=
1− t2

2
. (1.14)

Similarly,

E [max(V, t)] =

∫ t

0

tdv +

∫ 1

t

vdv

= t2 +
1− t2

2

=
1 + t2

2
. (1.15)

Collecting we conclude that

P [D ≤ t] = 2t+ E [min(V, 1− t)]− E [max(V, t)]

= 2t+
1− t2

2
− 1 + t2

2
.

= 2t− t2

= 1− (1− t)2. (1.16)
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4.b. Obviously we need only consider s in [0, 1], in which case we have

P [S > s] = P [D > s, 1−D > s]

= P [s < D < 1− s] . (1.17)

First, we see that we need s < 1− s. Hence,

P [S > s] = 0,
1

2
< s ≤ 1

while on the range 0 ≤ s ≤ 1
2
, we get

P [S > s] = P [s < D < 1− s]
=

(
1− (1− (1− s))2

)
−
(
1− (1− s)2

)
= (1− s)2 − s2

= 1− 2s. (1.18)

Collecting we conclude that

P [S ≤ s] = min(1, 2s), 0 ≤ s ≤ 1.

In short, S is uniformly distributed on the interval [0, 1
2
].

4.c. Since

E [max(D, 1−D)] + E [min(D, 1−D)] = E [D + (1−D)] = 1,

we conclude that

E [max(D, 1−D)] = 1− E [S]

= 1−
∫ 1

2

0

2sds

= 1− 1

4
=

3

4
. (1.19)

5.

First some easy observations: For each n = 1, 2, . . ., write

Ξn = ξ1 + . . .+ ξn.

and

Sn = (ξ1 + . . .+ ξn) + 2 (ξ2 + . . .+ ξn+1)

= ξ1 + 3 (ξ2 + . . .+ ξn) + 2ξn+1. (1.20)

Note that
Sn = ξ1 + 3 (Ξn − ξ1) + 2ξn+1.

5.a. For each n = 1, 2, . . ., we have

Sn ∼ N(0, 9n− 4)

since the sum of mutually independent Gaussian rvs is normally distributed with E [Sn] =
0 and Var[Sn] = 1 + 9(n− 1) + 4 = 9n− 4.

5.b. There a number of ways to solve this question:



ENEE 620/FALL 2011

A long way Fix θ in R. For each n = 1, 2, . . .,

E
[
eiθSn

]
= E

[
eiθ(ξ1+3(ξ2+...+ξn)+2ξn+1)

]
= E

[
eiθξ1

]
· E
[
ei3θ(ξ2+...+ξn)

]
· E
[
ei2θξn+1

]
(1.21)

under the enforced independence assumptions so that

E
[
eiθSn

]
= Φξ (θ)E

[
ei3θΞn−1

]
Φξ (2θ) . (1.22)

However, the Central Limit Theorem (applied to the i.i.d. rvs {ξn, n = 1, 2, . . .}) gives

lim
n→∞

E
[
e
i3θ

Ξn−1√
n−1

]
= e−

(3θ)2

2

while the continuity of characteristic functions at θ = 0 implies

lim
n→∞

Φξ

(
θ√
n− 1

)
= 1 and lim

n→∞
Φξ

(
2

θ√
n− 1

)
= 1.

Together, upon combining these observations, we get

lim
n→∞

E
[
e
iθ Sn√

n−1

]
= e−

9θ2

2 , θ ∈ R

since

E
[
e
iθ Sn√

n−1

]
= Φξ

(
θ√
n− 1

)
E
[
e
i3θ

Ξn−1√
n−1

]
Φξ

(
2

θ√
n− 1

)
for each n = 1, 2, . . . by virtue of (1.22). In other words,

Sn√
n− 1

=⇒n 3U

where U is a standard Gaussian rv, and this is of course equivalent to

Sn√
n

=⇒n 3U.

Thus we can take L = 3U and the sequence b : N0 → (0,∞) to be bn =
√
n.

A clever way For each n = 1, 2, . . ., we note that

Sn = ξ1 + 3 (ξ2 + . . .+ ξn) + 2ξn+1

=st 3 (ξ1 + . . .+ ξn) (1.23)

(where =st denotes equal in distribution). Why? Because the rv ξ1+2ξn+1 is independent
of the rv ξ2 + . . .+ ξn and has the same distribution as 3ξ (which is also independent of
the rv ξ2 + . . .+ ξn). Since

√
n (ξ1 + . . .+ ξn) =⇒n U
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by the standard Central limit Theorem, whence

√
n (3 (ξ1 + . . .+ ξn)) =⇒n 3U

effortlessly!

6.

6.a. There are many ways to solve this problem

Using MMSE theory for Gaussian rvs Here the usual conditioning argument yields

E
[
A2B2

]
= E

[
A2E

[
B2|A

]]
with

E
[
B2|A

]
=
(
E
[
B2|A

]
− E [B|A]2

)
+ E [B|A]2 .

As a result,

E
[
A2B2

]
= E

[
A2
(
E
[
B2|A

]
− E [B|A]2

)]
+ E

[
A2E [B|A]2

]
. (1.24)

We now use the fact that the rvs A and B are jointly Gaussian. Therefore, since the
MMSE and LMMSE estimators coincide in this case, the Orthogonality Principle readily
gives

E [B|A] = γA with γ =
ρ

α2
, (1.25)

and the error rv B − E [B|A] is independent of the rv A. It is now plain1 that

E
[
B2|A

]
− (E [B|A])2 = E

[
(B − E [B|A])2 |A

]
= E

[
(B − E [B|A])2]

= E
[
(B − γA)2]

= β2 − 2γρ+ γ2α2

= β2 − ρ2

α2
(1.26)

so that

E
[
A2
(
E
[
B2|A

]
− E [B|A]2

)]
=

(
β2 − ρ2

α2

)
E
[
A2
]
. (1.27)

Next,
E
[
A2E [B|A]2

]
= E

[
A2 (γA)2] = γ2E

[
A4
]

(1.28)

1Recall that E [B|A] is simply the mean of the conditional distribution of B given A.
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with E [A4] = 3α4. Collecting we conclude from (1.24) that

E
[
A2B2

]
= E

[
A2
(
E
[
B2|A

]
− E [B|A]2

)]
+ E

[
A2E [B|A]2

]
=

(
β2 − ρ2

α2

)
E
[
A2
]

+ γ2E
[
A4
]

=

(
β2 − ρ2

α2

)
α2 + 3γ2α4

=

(
β2 − ρ2

α2

)
α2 + 3ρ2

= β2α2 + 2ρ2. (1.29)

Using a representation for bivariate Gaussian rvs Recall that the pair (A,B)′

can be represented as

A = αU

B =
ρ

α
· U +

√
β2 − ρ2

α2
· V

where U and V are i.i.d. standard Gaussian rvs. It is now a simple exercise to compute

E
[
A2B2

]
= E

α2U2

(
ρ

α
· U +

√
β2 − ρ2

α2
· V

)2


= α2E

[
U2

(
ρ2

α2
U2 + 2

ρ

α

√
β2 − ρ2

α2
· UV +

(
β2 − ρ2

α2

)
V 2

)]

= ρ2E
[
U4
]

+ α2

(
β2 − ρ2

α2

)
E
[
U2V 2

]
(1.30)

as w euse the fact that E [U3V ] = E [U3]E [V ] = 0 by independence. since E [U4] = 3
and E [U2V 2] = E [U2]E [V 2] = 1, it follows that

E
[
A2B2

]
= 3ρ2 + α2

(
β2 − ρ2

α2

)
and we get the desired answer!

A pedestrian way Another way to approach the problem was to recall that

E
[
ei(aA+bB)

]
= e−

1
2

(a,b)R(a,b)′ , a, b ∈ R

and the answer can now be obtained by noting that

E
[
A2B2

]
=

∂2

∂a2

∂2

∂b2
E
[
ei(aA+bB)

] ∣∣∣
a=b=0

.



ENEE 620/FALL 2011

6.b. For each n = 0, 1, . . ., we have

E [Yn] = E
[
(Xn)2] = c(0)

and
E
[
(Yn)2] = E

[
(Xn)4] = 3c(0)2.

Next for each n = 0, 1, . . . and k = 1, 2, . . ., we find

E [YnYn+k] = E
[
(Xn)2 (Xn+k)

2]
= c(0)2 + 2c(k)2 (1.31)

upon using Part 6.a with A = Xn and B = Xn+k (so that α2 = β2 = c(0) and ρ = c(k)).
The sequence {Yn, n = 0, 1, . . .} is wide-sense stationary. It is also strictly stationary

because the Gaussian sequence {Xn, n = 0, 1, . . .}, being wide-sense stationary, it is
necessarily strictly stationary, hence the sequence {ϕ(Xn), n = 0, 1, . . .} is also strictly
statioanry for any mapping ϕ : R→ R (and in particular, ϕ(x) = x2).


