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CHAPTER 1

Field
With Ω an arbitrary set, a non-empty collection of F of subsets of Ω is a field (also
known as an algebra) on Ω if

(F1) ∅ ∈ F

(F2) Closed under complementarity: If E ∈ F , then Ec ∈ F

(F3) Closed under union: If E ∈ F and F ∈ F , then E ∪ F ∈ F

By de Morgan’s Laws, (F2) and (F3) automatically imply

(F3b) Closed under intersection: If E ∈ F and F ∈ F , then E ∩ F ∈ F

Furthermore, (F3) implies the seemingly more general statement:

(F4) Closed under finite union: If E1, . . . , En ∈ F , then ∪ni=1Ei ∈ F

while (F3b) implies the seemingly more general statement:

(F4b) Closed under finite intersection: If E1, . . . , En ∈ F , then ∩ni=1Ei ∈ F

σ-Field
With Ω an arbitrary set, a non-empty collection of F of subsets of Ω is a σ-field
(also known as an σ-algebra) on Ω if

(F1) ∅ ∈ F

(F2) Closed under complementarity: If E ∈ F , then Ec ∈ F

(F3) Closed under countable union: With I a countable index set, if Ei ∈ F for
each i ∈ I , then ∪i∈IEi ∈ F
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Probability measures
Consider an arbitrary non-empty set Ω equipped with a σ-field F . A probability
(measure) P on F (or on (Ω,F)) is a mapping P : F → [0, 1] such that

(P1) P [∅] = 0 and P [Ω] = 1

(P2) σ-additivity: With I a countable index set, if Ei ∈ F for each i ∈ I , then

P [∪i∈IEi] =
∑
i∈I

P [Ei]

whenever the subsets {Ei, i ∈ I} are pairwise disjoint, namely

Ei ∩ Ej = ∅, i 6= j
i, j ∈ I

Probability models
A probability space (triple) is a triple (Ω,F ,P) where

• Ω is the sample space, i.e., the collection of all outcomes (samples) gener-
ated by the experiment E .

• Events are collections of outcomes. The collection of events whose like-
lihood of occurrence can be defined is a σ-field F on Ω. In many cases
of interest one is forced for mathematical reasons to take F to be strictly
smaller than P(Ω).

• The “likelihood” of occurrence to events in F is assigned through a proba-
bility measure P defined on F .

Discrete probability models
A case of particular importance arises when Ω is countable, in which case it is
customary to take F = P(Ω) where P(Ω) denotes the power set of Ω (some-
times also denoted 2Ω). In that setting, specifying P on (Ω,P(Ω)) is equivalent to
specifying

{P [{ω}] , ω ∈ Ω} .
This is a straightforward consequence of the σ-additivity of probability measures
and the fact that

F = ∪ω∈F{ω}, F ∈ P(Ω).
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Uniform probability assignments
Let Ω be an arbitrary set to be used as the sample space of a probabilistic experi-
ment E where outcomes are equally likely to occur – According to E an element
of Ω is selected at random as the saying goes, or more accurately, uniformly.

• Uniform probability measure on a discrete set with |Ω| < ∞ assigns the
same probability of occurrence to any outcome. Thus, take P [{ω}] = p for
all ω ∈ Ω, so that

P [F ] =
∑
ω∈F

P [{ω}] = |F |p, F ∈ P(Ω)

whence
p =

1

|Ω|
upon taking F = Ω. Finally we get

P [F ] =
|F |
|Ω|

, F ∈ P(Ω).

• What happens when Ω is countable with |Ω| = ∞? We should still have
P [{ω}] = p for all ω ∈ Ω. In that case it still follows that

P [F ] = |F |p, F ∈ P(Ω)
|F | <∞.

Therefore, we get

|F |p ≤ 1,
F ∈ P(Ω)
|F | <∞

and this implies p = 0 (because we can select a sequence {Fn, n =
1, 2, . . .} of subsets of Ω such that |Fn| = n for all n = 1, 2, . . .). A contra-
diction immediately arises since

1 = P [Ω] =
∑
ω∈Ω

p = 0!

It is not possible to have a uniform probability measure on a discrete set
with |Ω| =∞!
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• What happens when Ω is uncountable? For the purpose of defining proba-
bility measures on non-countable sets Ω, in general it is not possible to take
F = P(Ω). In other words, in the non-countable case, it is not possible to
assign a likelihood of occurrence (through a probability measure satisfying
the axioms (P1)-(P2)) to every subset of Ω! The difficulties involved will
be on two examples to be discussed shortly, namely infinite coin tosses of a
fair coin and selecting a point at random in the interval [0, 1].

Simple consequences of the definitions (F1)-(F5) and (P1)-(P2)

• Complementarity:

P [Ec] = 1− P [E] , E ∈ F

• Generalizing additivity:

P [E ∪ F ] = P [E] + P [F ]− P [E ∩ F ] , E, F ∈ F

• Monotonicity:

P [E] ≤ P [F ] ,
E ⊆ F
E,F ∈ F

Bounds
The following elementary bounds are often used; they can be established by in-
duction:

• Boole’s inequality (also known as union bound): With countable index set
I ,

P [∪i∈IEi] ≤
∑

i∈I
P [Ei]

• Bonferroni’s inequality: With finite index set I ,

P [∪i∈IEi] ≥
∑

i∈I
P [Ei]−

∑
i,j∈I: i<j

P [Ei ∩ Ej]

Continuity properties of P
Consider a sequence {En, n = 1, 2, . . .} of events in F .
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• If the sequence is monotone increasing in the sense that

En ⊆ En+1, n = 1, 2, . . .

then
lim
n→∞

P [Ei] = P [∪∞i=1Ei] .

We have a continuity result for P if we define limn→∞Ei ≡ ∪∞i=1Ei in the
sense that limn→∞ P [Ei] = P [limn→∞Ei].

• If the sequence is monotone decreasing in the sense that

En+1 ⊆ En, n = 1, 2, . . .

then
lim
n→∞

P [Ei] = P [∩∞i=1Ei] .

We have a continuity result for P if we define limn→∞Ei ≡ ∩∞i=1Ei in the
sense that limn→∞ P [Ei] = P [limn→∞Ei].

The sequence {En, n = 1, 2, . . .} is monotone increasing (resp. decreasing)
if and only if the complementary sequence {Ec

n, n = 1, 2, . . .} is monotone de-
creasing (resp. increasing).

Independence
Consider {Ei, i ∈ I} where I is an arbitrary index set.

• Pairwise independence: The events {Ei, i ∈ I} are said to be pairwise
independent if the conditions

P [Ei ∩ Ej] = P [Ei]P [Ej] ,
i 6= j
i, j ∈ I

hold. When I is finite, this is a set of |I|(|I|−1)
2

conditions.

• Mutual independence (with I finite): The events {Ei, i ∈ I} are said to be
mutually independent if

P [∩j∈JEj] =
∏
j∈J

P [Ej] ,
J ⊂ I
|J | > 0

This represents 2|I| − (|I|+ 1) conditions.
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• Mutual independence (with I arbitrary): The events {Ei, i ∈ I} are said to
be mutually independent if for each finite subset J ⊆ I with 0 < |J | < ∞,
the events {Ej, j ∈ J} are mutually independent, namely

P [∩j∈JEj] =
∏
j∈J

P [Ej] ,
J ⊆ I

0 < |J | <∞.

Borel-Cantelli lemmas
Let {An, n = 1, 2, . . .} be a collection of events in F . We write

[An i.o. ] = ∩∞n=1 (∪m≥nAm)

• If
∞∑
n=1

P [An] <∞,

then it is always the case that

P [An i.o. ] = 0

• When the events {An, n = 1, 2, . . .} are mutually independent, if

∞∑
n=1

P [An] =∞,

then
P [An i.o. ] = 1.

Limsup and liminf, and limits
Let {An, n = 1, 2, . . .} be a collection of events in F . Define

lim sup
n→∞

An = ∩∞n=1 (∪m≥nAm) = ∩∞n=1Ān

with
Ān = ∪m≥nAm, n = 1, 2, . . .

Similarly,
lim inf
n→∞

An = ∪∞n=1 (∩m≥nAm) = ∪∞n=1An
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with
An = ∩m≥nAm, n = 1, 2, . . .

We have the memnonic notation

lim sup
n→∞

An = [An infinitely often (i.o.) ]

and
lim inf
n→∞

An = [ eventually all An]

Obviously, for each n = 1, 2, . . . we have

An ⊆ Ān

with
Ān+1 ⊆ Ān [Monotone decreasing]

and
An ⊆ An+1 [Monotone increasing]

By continuity of P it follows that

P
[
lim sup
n→∞

An

]
= lim

n→∞
P
[
Ān
]

and
P
[
lim inf
n→∞

An

]
= lim

n→∞
P [An]

The collection {An, n = 1, 2, . . .} will be said to converge if

lim sup
n→∞

An = lim inf
n→∞

An,

in which case
lim
n→∞

An ≡ lim sup
n→∞

An = lim inf
n→∞

An

and
lim
n→∞

P [An] = P
[

lim
n→∞

An

]
.

This holds without any monotonicity assumption on the collection {An, n =
1, 2, . . .}.
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Conditional probabilities
With A and B events in F such that P [B] > 0, define the conditional probability
of A given B by

P [A|B] =≡ P [A ∩B]

P [B]
.

When P [B] = 0 it is customary to take P [A|B] to be arbitrary in [0, 1].
However, when P [B] > 0 define the mapping QB : F → [0, 1] by

QB(A) ≡ P [A ∩B]

P [B]
, A ∈ F .

It is easy to show that QB : F → R+ is a probability measure onF . Incidentally it
is this fact that is often invoked to justify that P [ · |B] be selected as a probability
measure on F when P [B] = 0.

The relation
P [A|B]P [B] = P [A ∩B] , A ∈ F

is always true regardless of P [B] > 0 or not.

Three easy consequences
With I a countable index set, let {Bi, i ∈ I} be events in F that form a partition
of Ω, i.e.,

Bi ∩Bj = ∅, i, j ∈ I
i 6= j

and ∪i∈I Bi = Ω

• Law of total probabilities: Because A = ∪i∈I(A ∩Bi), we have

P [A] =
∑
i∈I

P [A ∩Bi]

=
∑
i∈I

P [A|Bi]P [Bi] , A ∈ F .(1)

Put differently,

P [A] =
∑
i∈I

QBi
(A)P [Bi] , A ∈ F .
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• Bayes’ rule (From prior probabilities to posterior probabilities): Consider
any event A in F such that P [A] > 0. For each k in I , we have

P [Bk|A] =
P [Bk ∩ A]

P [A]

=
P [A ∩Bk]∑
i∈I P [A ∩Bi]

=
P [A|Bk]P [Bk]∑
i∈I P [A|Bi]P [Bi]

.(2)

• Modeling sequential decision making: If I is a finite set, say I = {1, . . . , n},
we have

P [A1 ∩ . . . ∩ An] =
n∏
i=2

P [Ai|A1 ∩ . . . ∩ Ai−1] · P [A1] .
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Associated σ-fields
Let I denote an index set (not necessarily countable). If {Fi, i ∈ I} is a collection
of σ-fields on Ω, then the σ-field ∧i∈IFi defined by

∧i∈IFi ≡ {E ∈ P(Ω) : E ∈ Fi, i ∈ I}

is also a σ-field on Ω (sometimes referred to as the intersection σ-field). It is the
largest σ-field on Ω that is contained in each of the σ-fields {Fi, i ∈ I}.

Let G denote a collection of subsets of Ω, so G ⊆ P(Ω). The notation σ(G) will
be used to denote the smallest σ-field on Ω that contains G: The σ-field σ(G) can
be interpreted as

σ(G) ≡ ∧a∈AGa
where {Ga, a ∈ A} is the non-empty collection of all the σ-fields on Ω which
contain G, namely

G ⊆ Gα, a ∈ A.
This collection is not empty because P(Ω) is a σ-field that contains G.

Fact: Let G1 and G2 denote two collection of subsets of Ω such that G1 ⊆ G2, then
it holds that

σ (G1) ⊆ σ (G2) .

Terminology: Consider G and F two collections of subsets of Ω with G ⊆ F . If
F is a σ-field on Ω and

F = σ (G) ,

then we say that G generates F , or equivalently, G is a generating family (or a
generator) for F .

Example 1: Infinite coin tosses
The experiment E consists in repeating a coin toss under ”identical and indepen-
dent conditions” with a fair coin (so that the likelihood of occurrence of Head is
the same as that of Tail). It is convenient to take the sample space Ω to be {0, 1}N0 ,
i.e.,

Ω = {ω = (ω1, ω2, . . .) : ωk ∈ {0, 1}, k = 1, 2, . . .}
with the understanding that ωk = 1 (resp. ωk = 0) if the kth toss yields Head
(resp. Tail).

Note that Ω has the same cardinality as the unit interval [0, 1] (hence is un-
countable). How should we construct F (and P)?
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• It is natural to require that for any n = 1, 2, . . ., any collection of outcomes
determined by the first n tosses should be an event in F – After all one
should expect that the model we are seeking to construct would also contain
a model for each of the finite toss experiments. In particular, with any given
binary sequence (b1, . . . , bn) of length n, consider

Fn(b1, . . . , bn) ≡
{
ω = (ω1, ω2, . . .) ∈ Ω :

ωk = bk
k = 1, . . . , n

}
.(3)

It is plain that F must at least contain these events, i.e.,

Fn(b1, . . . , bn) ∈ F(4)

Fairness (which is essentially a uniformity condition) requires that

P [Fn(b1, . . . , bn)] = 2−n(5)

since P [Fn(b1, . . . , bn)] should not depend on (b1, . . . , bn) and there are 2n

distinct sets of the form (3). Note also that

∪(b1,...,bn)∈{0,1}nFn(b1, . . . , bn) = Ω.

• It is therefore natural to take

F = σ

(
Fn(b1, . . . , bn) :

b1, . . . , bn ∈ {0, 1}
n = 1, 2, . . .

)
= σ (G)

where the generator G is the collection

G ≡
{
Fn(b1, . . . , bn) :

b1, . . . , bn ∈ {0, 1}
n = 1, 2, . . .

}
.

• The σ-field F so defined is very large/rich but does not coincide with P(Ω).
It does however contain some events that do not depend on a given finite
number of tosses, e.g.,

F =

{
ω = (ω1, ω2, . . .) ∈ Ω :

A even number of tosses needed
before observing Head

}
= ∪∞k=1E2k
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where for each k = 1, . . . we have defined

Ek ≡

ω = (ω1, ω2, . . .) ∈ Ω :
ω1 = . . . = ωk−1 = 0

and
ωk = 1

 .

Note that Ek = Fk(0, . . . , 0, 1).

• Measure Theory tells us that that there exists a unique probability measure
P on F so that (5) holds for all n = 1, 2, . . ..

Example 2: Selecting a point at random in the interval [0, 1]
A particularly important case is that of equipping the non-countable interval [0, 1]
into a measurable space on which probabilities can be defined through a proba-
bility measure. This corresponds to the random experiment where you select at
random a point in the finite interval [0, 1], so here Ω = [0, 1]. Intuitively we could
proceed as follows to define F and P (denoted here λ for Lebesgue measure).

A well-known fact of topology on R: Any open subset U in R can be expressed as
the union of a countable collection of non-overlapping open intervals, i.e., there
exists a countable collection {Ji, i ∈ I} of open intervals of R such that

U = ∪i∈IJi with Jk ∩ J` = ∅, k 6= `
k, ` ∈ I(6)

To define the appropriate σ-fieldF and the probability measure λ on it, it is natural
to proceed as follows:

(i) For any interval Iα,β = [α, β] ⊆ Ω, set

λ([α, β]) = β − α.

(ii) Thus, with α = β, λ({α}) = 0 for all α in Ω.

(iii) It follows that
λ((α, β)) = β − α

by continuity of probability measures applied to the sequence of open inter-
vals {(α− 1

n
, β + 1

n
), n = 1, 2, . . .}.
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(iv) Union of countable collections of open intervals should be in F . Therefore,
by the well-known fact (6) we see that every open set U ⊆ (0, 1) is in F
with

λ(U) =
∑
i∈J

λ(Ji)

where the notation and the assumptions are the ones used in (6).

(v) Therefore, since a set F of [0, 1] is closed if and only F c is open, we con-
clude that every closed set F ⊆ (0, 1) is also in F with λ(F ) = 1− λ(F c).

(vi) Any countable union of open subsets should be in F

(vii) Any countable intersection of closed subsets should be in F

(viii) .....

This leads to defining F as

F = σ (I([0, 1]))

where I([0, 1]) denotes the collection of all open intervals contained in [0, 1].
The σ-field σ (I([0, 1])) is called the Borel σ-field on [0, 1] and is denoted by
B([0, 1]). However, by the well-known fact (6) it follows readily that we have also
the characterization

B([0, 1]) = σ (O([0, 1]))

where O([0, 1]) denotes the collection of all open sets contained in [0, 1].

Borel σ-fields
More generally, with I denoting an interval (closed or open or neither, finite or
not), we define

B(I) ≡ σ (O(I))

where O(I) denotes the collection of all open sets contained in I . The σ-field
σ (O(I)) is called the Borel σ-field on I and is denoted by B(I).

This notion can be further extended: With A denoting a subset of Rp for some
positive integer p, we write

B(A) ≡ σ (O(A))

where O(A) denotes the collection of all open sets contained in A. In particular,

B(Rp) ≡ σ (O(Rp))
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where O(Rp) denotes the collection of all open sets contained in Rp.
Note that the general definition of a Borel σ-field uses the collection of open

sets as a generator for in higher-dimensions there are no intervals!

Definitions and some simple facts
Consider mappings g : Ωa → Ωb and h : Ωb → Ωc where Ωa, Ωb and Ωc are
arbitrary sets (possibly identical).

Let B be a collection of subsets of Ωb (so B ⊆ P(Ωb)). With

g−1(B) ≡
{
g−1(Fb) : Fb ∈ B

}
,

it is always the case that

g−1 (σ(B)) = σ
(
g−1(B)

)
.(7)

Proof. The collection g−1 (σ(B)) is a σ-field on Ωa, and it contains g−1(B), hence
the inclusion

σ
(
g−1(B)

)
⊆ g−1 (σ(B)) .

To establish the reverse inclusion, consider the collection Bg of subsets of Ωb

defined by
Bg ≡

{
Fb ⊆ Ωb : g−1(Fb) ∈ σ

(
g−1(B)

)}
.

It is plain that Bg is a σ-field on Ωb; as it obviously contains B, it must also contain
σ (B) and the inclusion

g−1 (σ(B)) ⊆ σ
(
g−1(B)

)
.

follows.

Define the mapping h ◦ g : Ωa → Ωc obtained by composing g with h through

(h ◦ g)(ωa) = h(g(ωa)), ω ∈ Ωa

If C be a collection of subsets of Ωc (so C ⊆ P(Ωc)), then

(h ◦ g)−1(C) = g−1
(
h−1 (C)

)
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Borel mappings
Consider an arbitrary set S equipped with a σ-field S. A mapping g : S → Rp is
said to be a Borel mapping if the conditions

g−1(B) ∈ S, B ∈ B(Rp)(8)

are all satisfied where

g−1(B) ≡ {s ∈ S : g(s) ∈ B} .

Fact: If g : S → Rp and h : Rp → Rq are Borel mappings, then the composition
mapping h ◦ g : S → Rq is also a Borel mapping.

Proof. This is a simple consequence of the fact that

(h ◦ g)−1 (B) = g−1
(
h−1 (B)

)
, B ∈ B(Rq).

Thus, h−1 (B) is an element of B(Rq) by the Borel measurability of h, whence
(h ◦ g)−1 (B) s an element of B(Rp) by the Borel measurability of g.

An important fact: Let G denote a collection of subsets of Rp which generates
the Borel σ-field B(Rp), i.e.,

B(Rp) = σ (G) .(9)

It holds that the mapping g : S → Rp is a Borel mapping if and only if the weaker
set of conditions

g−1(E) ∈ S, E ∈ G(10)

holds.

Proof. One implication is trivial since the conditions (10) constitute a subset of
the conditions (8). To prove the reverse implication consider the collection Eg
given by

Eg ≡
{
E ⊆ Rp : g−1(E) ∈ S

}
.

The collection Eg is a σ-field on Rp because S is a σ-field on S. Under condition
(10) we note the inclusion G ⊆ Eg, hence σ (G) ⊆ Eg and the conditions (8) all
hold since σ (G) = B(Rp) by assumption.

There are many generators known for the Borel σ-field B(Rp). For instance, we
have (9) with
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• G = Ropen(Rp) where Ropen(Rp) is the collection of all finite open rectan-
gles, i.e.,

Ropen(Rp) ≡
{
I1 × . . .× Ip,

Ik ∈ I(R)
k = 1, . . . , p

}
where

I(R) = {(a, b) : a, b ∈ R}

Use the following fact: For any open set U in Rp there exists a countable family of
open rectangles {Ri, i ∈ I} inRopen(Rp) with countable I such that U = ∪i∈IRi.
It is the analog of a similar fact encountered in one dimension.

• G = RSW(Rp) where RSW(Rp) is the collection of all closed Southwest
rectangles, i.e.,

RSW(Rp) ≡

I1 × . . .× Ip,
Ik = (−∞, ak]

ak ∈ R
k = 1, . . . , p

 .

It follows from the discussion above that a mapping g : S → Rp is a Borel
mapping if the seemingly weaker conditions{

s ∈ S : g(s) ∈
p∏
i=1

(−∞, ak]

}
∈ S, (a1, . . . , ap) ∈ Rp

all hold. Equivalently, a mapping g : S → Rp is a Borel mapping if

{s ∈ S : gk(s) ≤ ak, k = 1, . . . , p} ∈ S, (a1, . . . , ap) ∈ Rp

where it is understood that

g(s) = (g1(s), . . . , gp(s)) , s ∈ S.

It is now plain that for each k = 1, . . . , p, the component mapping gk : S → R
is also a Borel mapping – Just take a` = ∞ for all ` = 1, . . . , k different from k.
Conversely, since

{s ∈ S : gk(s) ≤ ak, k = 1, . . . , p} = ∩pk=1 {s ∈ S : gk(s) ≤ ak}
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for arbitrary (a1, . . . , ap) in Rp, we see that the mapping g : S → Rp is a Borel
mapping if and only if each of the component mappings g1 : S → R, . . . , gp :
S → R is a Borel mapping.

Most (if not all) mappings Rp → Rq encountered in applications are Borel
mappings. Furthermore, any continuous mapping Rp → Rq can be shown to be a
Borel mapping!
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Random variables
Given a probability triple (Ω,F ,P), a mapping X : Ω→ Rp is a random variable
(rv) if

X−1 (B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F , B ∈ B(Rp).

In other words, the mapping X : Ω→ Rp is a rv if it is a Borel mapping X : Ω→
Rp – Here S = Ω and S = F . We shall often write [X ∈ B] in lieu of X−1 (B)
and P [X ∈ B] for P [[X ∈ B]].

In view of the earlier discussion the mapping X : Ω→ Rp is a rv if and only

{ω ∈ Ω : Xk(ω) ≤ ak, k = 1, . . . , p} ∈ F , (a1, . . . , ap) ∈ Rp

where it is understood that

X(ω) = (X1(ω), . . . , Xp(ω)) , ω ∈ Ω.

This last condition can also be rewritten as

∩pk=1 [Xk ≤ ak] ∈ F , (a1, . . . , ap) ∈ Rp

It is now plain that for each k = 1, . . . , p, the component mapping Xk : Ω → R
is also a rv – Just take a` = ∞ for all ` = 1, . . . , k different from k. Here as
well, we conclude that the mapping X : Ω→ Rp is a rv if and only if each of the
component mappings X1 : Ω→ R, . . . , Xp : Ω→ R is a rv.

Probability distribution functions
The probability distribution (function) FX : Rp → [0, 1] of the rv X is defined by

FX(x) ≡ P [X ∈ (−∞, x1]× . . .× (−∞, xp]]
= P [X1 ≤ x1, . . . , Xp ≤ xp] , x = (x1, . . . , xp) ∈ Rp.(11)

with the notation X = (X1, . . . , Xp).
It turns out that there is as much probabilistic information in the probability

distribution FX : Rp → [0, 1] of the rv X as in

{P [X ∈ B] , B ∈ B(Rp)}

In fact, knowledge of FX : Rp → R allows a unique reconstruction of

{P [X ∈ B] , B ∈ B(Rp)} .

Properties of FX (Case p = 1): It is easy to see that the following properties
hold:
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• Monotonicity:
FX(x) ≤ FX(y), x, y ∈ R

• Right-continuous:

lim
y↓x

FX(y) = FX(x), x ∈ R

• Left limit exists:

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ R

• Behavior at infinity: Monotonically

lim
x→−∞

FX(x) = 0 and lim
x→∞

FX(x) = 1

A probability distribution (function) on R is any mapping F : R → [0, 1] such
that

• Monotonicity:
F (x) ≤ F (y), x, y ∈ R

• Right-continuous:
lim
y↓x

F (y) = F (x), x ∈ R

• Left limit exists:
lim
y↑x

F (y) = F (x−) x ∈ R

• Behavior at infinity: Monotonically

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

Important fact: Any rv X : Ω→ R generates a probability distribution function
FX : R → [0, 1]. Conversely, for any probability distribution function F : R →
[0, 1], there exists a probability triple (Ω̃, F̃ , P̃) and a rv X̃ : Ω̃→ R defined on it
such that

P̃
[
X̃ ≤ x

]
= F (x), x ∈ R
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This is the basis of Monte-Carlo simulation. There exists a multi-dimensional
analog to this fact.

Proof. Take Ω̃ = [0, 1], F̃ = B([0, 1]) and P̃ = λ. Define the rv X̃ : Ω̃ → R by
setting

X̃(ω̃) = F−(ω̃), ω̃ ∈ [0, 1]

where F− : [0, 1]→ [−∞,∞] is the generalized inverse of F given by

F−(u) = inf (x ∈ R : u ≤ F (x)) , 0 ≤ u ≤ 1.

with the understanding that F−(u) =∞ if the defining set is empty, i.e., F (x) < u
for all x in R.

Discrete distributions
A rv X : Ω → Rp is a discrete rv if there exists a countable subset S ⊆ Rp such
that

P [X ∈ S] = 1.

Note that
P [X ∈ B] =

∑
x∈S∩B

P [X = x] , B ∈ B(Rp).

It is often more convenient to characterize the distributional properties of the rv
X through its probability mass function (pmf) of the rv X given by

pX ≡ (pX(x), x ∈ S)

with
pX(x) = P [X = x] , x ∈ S.

Well-known examples of discrete rvs (and of their distributions) include:

(i) Bernoulli Ber(p) (with 0 ≤ p ≤ 1)

(ii) Binomial Bin(n; p) (with n = 1, 2, . . . and 0 ≤ p ≤ 1)

(iii) Poisson Poi(λ) (with λ > 0)

(iv) Geometric Geo(p) (with 0 ≤ p ≤ 1)
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Absolutely continuous distributions
A rv X : Ω→ Rp is an (absolutely) continuous rv if there exists a Borel mapping
fX : Rp → R+ such that

P [Xi ≤ xi, i = 1, . . . , p] =

∫ x

−∞
fX(ξ)dξ, x = (x1, . . . , xp) ∈ Rp.

Well-known examples of continuous rvs (and of their distributions) include:

(i) Uniform U(a, b) (with a < b in R)

(ii) Exponential Exp(λ) (with λ > 0)

(iii) Gaussian N(m,σ2) (with m,σ in R)

(iv) Cauchy C(m, a) (with m, a in R)

Properties of FX when p ≥ 1

• Monotonicity needs to be modified and now reads

P [xk < Xk ≤ yk] ≥ 0,
xk < yk
xk, yk ∈ R
k = 1, . . . , p

with the understanding that the quantity P [xk < Xk ≤ yk] is expressed solely
in terms of FX : Rp → [0, 1].

• Right-continuous:

lim
y↓x

FX(y) = FX(x), x ∈ Rp

with the understanding that yk ↓ xk for each k = 1, . . . , p.

• Left limit exists:

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ Rp

with the understanding that yk ↑ xk for each k = 1, . . . , p.
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• Behavior at infinity:

lim
min(xk, k=1,...,p)→−∞

FX(x) = 0

and
lim

min(xk, k=1,...,p)→∞
FX(x) = 1

Independence of rvs
Consider a collection of rvs {Xi, i ∈ I}which are all defined on some probability
triple (Ω,F ,P). Assume that for each i in I , the rv Xi is a Rpi-valued rv for some
positive integer pi.

With I finite, we shall say that the rvs {Xi, i ∈ I} are mutually independent
if for each selection of Bi in B(Rpi) for each i in I , the events

{[Xi ∈ Bi], i ∈ I}

are mutually independent. It is easy to see that this is equivalent to requiring

P [∩i∈I [Xi ∈ Bi]] =
∏
i∈I

P [Xi ∈ Bi] ,
Bi ∈ B(Rpi)

i ∈ I.

More generally, with I arbitrary (and possibly uncountable), the rvs {Xi, i ∈
I} are said to be mutually independent if for every finite subset J ⊆ I , the rvs
{Xj, j ∈ J} are mutually independent!

Product spaces
Some facts: Consider two arbitrary sets Ωa and Ωb (possibly identical). LetA and
B denote non-empty collections of subsets of Ωa and Ωb, respectively. While the
collection A × B is usually not a σ-field on Ωa × Ωb, even when A and B are
themselves σ-fields, it can be shown that

σ (A× B) = σ (σ (A)× σ (B)) .

Consider the probability triples (Ω1,F1,P1), . . . , (Ωp,Fp,Pp). Their Cartesian
product is the set Ω defined by

Ω ≡ Ω1 × . . .× Ωn.
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We introduce the collection F1 × . . .×Fp of subsets of Ω given by

F1 × . . .×Fp =

{
F1 × . . .× Fp,

Fk ∈ Fk,
k = 1, . . . , p

}
.

We write
F1 ⊗ . . .⊗Fp = ⊗pk=1Fk = σ (F1 × . . .×Fp) .

Note that
σ (F1 × . . .×Fp) = σ (σ (F1)× . . .× σ (Fp)) .

The product probability measure P is defined on ⊗pk=1Fk as follows: For any
rectangle

R = F1 × . . .× Fp,
Fk ∈ Fk

k = 1, . . . , p

set

P [R] =

p∏
k=1

Pk[Fk].(12)

So far, P is defined only on F1 × . . .×Fp. However, Measure Theory guarantees
that there exists a unique probability measure on the σ-field

σ (σ (F1)× . . .× σ (Fp))

such that (12) holds.

An important modeling fact: Under P, the events

E1 = A1 × Ω2 × . . .× Ωp

E2 = Ω1 × A2 × . . .× Ωp

... =
...

Ep = Ω1 × Ω2 × . . .× Ap

are mutually independent with

P [Ek] = Pk[Ak], k = 1, . . . , p.

Taking limits
Consider the sequence of R-valued rvs {Xn, n = 1, 2, . . .} which are all defined
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on the same probability triple (Ω,F ,P). The following mappings Ω→ [−∞,∞]
are rvs in the extended sense:

The supremum mapping Ω→ [−∞,∞] defined by

ω → sup
n≥1

Xm(ω), ω ∈ Ω

The infimum mapping Ω→ [−∞,∞] defined by

ω → inf
n≥1

Xm(ω), ω ∈ Ω.

The limsup mapping Ω→ [−∞,∞] defined by

ω → lim sup
n→∞

Xn(ω), ω ∈ Ω.

The liminf mapping Ω→ [−∞,∞] defined by

ω → lim inf
n→∞

Xn(ω), ω ∈ Ω.

It follows that

Ω? ≡
[
lim inf
n→∞

Xn = lim sup
n→∞

Xn

]
∈ F

and on Ω?, it holds that limn→∞Xn exists (possibly as an element in [−∞,∞]),
and is the common value assumed by lim infn→∞Xn and lim supn→∞Xn.

When P [Ω?] = 1 it is customary to say that the sequence {Xn, n = 1, 2, . . .}
converges almost surely (a.s.) (under P), and we write

lim
n→∞

Xn P-a.s.

In that case, for any rv X : Ω→ R such that

X(ω) = lim
n→∞

Xn(ω), ω ∈ Ω?

we shall write
lim
n→∞

Xn = X P-a.s.

Such a rv X always exists when P [Ω?] = 1 but is not unique. Existence is imme-
diate since we can always take

X(ω) ≡


lim infn→∞Xn(ω) = lim supn→∞Xn(ω) if ω ∈ Ω?

Z(ω) if ω 6∈ Ω?

where Z : Ω→ R is some arbitrary rv, and non-uniqueness is obvious.



c©1997-2016 by Armand M. Makowski 25

Simple rvs
A rv X : Ω→ R is a simple variable if

X =
∑
k∈I

ak1 [Ak]

where (i) I is a finite index set, (ii) {ak, k ∈ I} are scalars (not necessarily
distinct) and (iii) the subsets {Ak, k ∈ I} form an F-partition of Ω, i..e., the
subsets {Ak, k ∈ I} are all in F with

∪k∈IAk = Ω and Ak ∩ A` = ∅ k 6= `
`, k ∈ I.

This representation is not necessarily unique. In many arguments it is custom-
ary to assume that the values {ak, k ∈ I} are distinct scalars and that the events
{Ak, k ∈ I} forming theF-partition are all non-empty, in which case {X(ω), ω ∈
Ω} = {ak, k ∈ I} and

Ak = [X = ak] , k ∈ I.

We refer to this representation as the generic representation of the simple rv. There
is no loss of generality in using the generic representation as will shortly become
apparent.

Fact: For any rv X : Ω → R+, there exists a monotonically increasing sequence
of simple rvs {Xn, n = 1, 2, . . .} such that

Xn ≤ Xn+1 ≤ X, n = 1, 2, . . .

and
lim
n→∞

Xn = X.

For instance, for each n = 1, 2, . . ., define the simple rv Xn : Ω→ R+ by

Xn =
n−1∑
m=0

2n−1∑
k=0

(
m+ k2−n

)
1
[
m+ k2−n < X ≤ m+ (k + 1)2−n

]
(13)

Expectation of rvs
Consider a probability triple (Ω,F ,P), and let X : Ω → R denote an R-valued
rv defined on this probability triple. The operation of expectation associates with
every R-valued rv X : Ω→ R a value in [−∞,∞], denoted E [X]; this value can
be interpreted as an average value forX as weighted by its probability distribution
FX . The definition given shortly is guided by the following considerations:
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(i) When defined, the quantity E [X] is uniquely determined by the probability
distribution FX : R→ [0, 1] of the rv X .

(ii) The expectation of the indicator function of an event [X ∈ B] should coin-
cide with its probability, namely

E [1 [X ∈ B]] = P [X ∈ B] , B ∈ B(R).

(iii) The expectation of an R+-valued rv is always well defined (although it could
be infinite) while the value of a bounded rv is also well defined

(iv) When defined, the quantity E [X] is defined independently of the type of
distribution FX , say discrete or absolute continuous, but its definition will
coincide with the usual elementary definitions given in elementary courses
in Probability Theory.

(v) The operation is expected to be linear under very broad conditions, namely
for R-valued rvs X and Y , we have

E [αX + βY ] = αE [X] + βE [Y ] , α, β ∈ R

whenever the involved quantities on the right handsome are well defined.

(vi) The operation is monotone in that E [X] ≥ 0 if X ≥ 0. More generally,
for two rvs X and Y such that X ≤ Y , it is desired that E [X] ≤ E [Y ]
whenever these expectations are well defined

The expectation operation is basically defined as a Lebesgue-Stieltjes integral
(either under P or under PX). We shall write alternatively,

E [X] =

∫
Ω

X(ω)dP(ω)

and
E [X] =

∫
R
xdFX(x).

Important special cases
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(i) Moments: With r = 1, 2, . . ., we define the rth moment of X by

mr ≡ E [Xr]

while for any r ≥ 0 the absolute moment of X is well defined and give by

µr ≡ E [|X|r] .

(ii) Transforms: For Rp-valued rv X ,

– The characteristic function of X:

ΦX(θ) ≡ E
[
eiθ

′X
]
, θ ∈ Rp

– The moment generating function of X:

MX(t′X) ≡ E
[
et

′X
]
, t ∈ Rp

– The probability generating function of X of a N-valued rv X ,

GX(z) = E
[
zX
]
, z ∈

Defining expectations
It is a three step process:

• Step 1: For indicator rvs and for simple rvs

• Step 2: For non-negative rvs through an approximation argument in terms
of simple rvs

• Step 3: For arbitrary rvs by noting the decomposition

X = X+ −X−.

Simple rvs

A. Indicator rvs: With X = 1 [A] for some A in F , set

E [X] = E [1 [A]] ≡ P [A] .
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B. Simple rvs: With simple rv X given by

X =
∑
k∈I

ak1 [Ak] ,

we have
E [X] ≡

∑
k∈I

akP [Ak] .

This definition is independent of the representation used: If the simple rv X :
Ω→ R admits the two representations

X =
∑
k∈I

ak1 [Ak] and X =
∑
`∈J

b`1 [B`] ,

then ∑
k∈I

akP [Ak] =
∑
`∈J

b`P [B`]

and E [X] is this common value.

Proof: There is no loss of generality in a assuming that there are no duplications
in the set of values {ak, k ∈ I}. Since {ak, k ∈ I} = {b`, ` ∈ J}, for each k in
I we must have ∑

`∈J : b`=ak

b`P [B`] = ak ·

( ∑
`∈J : b`=ak

P [B`]

)
= akP [Ak](14)

as we use the fact that
∪`∈J : b`=akB` = Ak.

C. Linearity: If X and Y are simple rvs, then for every scalars α and β, the rv
αX + βY is a simple rv and we have

E [αX + βY ] = αE [X] + βE [Y ]

D. Monotonicity: If X and Y are simple rvs such that X ≤ Y , then

E [X] ≤ E [Y ] .
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In particular, if X ≥ 0, then E [X] ≥ 0.

E. If X is a simple rv, then we have the inequality

|E [X]| ≤ E [|X|] .

Proof: With X =
∑

k∈I ak1 [Ak], elementary algebra shows that∣∣∣∣∣∑
k∈I

akP [Ak]

∣∣∣∣∣ ≤∑
k∈I

|ak|P [Ak] .

F. If X is a simple rv with X ≥ 0, then E [X] = 0 implies X = 0 P-a.s.

Proof: The condition X ≥ 0 implies ak ≥ 0 for all k in I . Now, if∑
k∈I

akP [Ak] = 0,

then for all k in I we must have akP [Ak] = 0. Thus, either P [Ak] = 0 > 0
in which case ak = 0, or P [Ak] = 0. The set A0 = ∪k∈I: P[Ak]=0P [Ak] has
probability measure zero, i.e., P [A0] = 0, and X = 0 on the event Ω−A0 (which
has probability measure 1) – Thus, X = 0 P-a.s.

Non-negative rvs
Consider a rvX : Ω→ R+ and let the monotone sequence of simple rvs {Xn, n =
1, 2, . . .} given by (13) and which approximate X from below. We define

E [X] ≡ lim
n→∞

E [Xn] .

Note that E [X] always exists as an element in [0,+∞] due to the fact that the
sequence {E [Xn] , n = 1, 2, . . .} is increasing in R+.

The limit is independent of the approximating sequence: If {Xn, n = 1, 2, . . .}
and {Yn, n = 1, 2, . . .} are two monotone sequences of simple R+-valued rvs
which approximate X from below, i.e.,

Xn ≤ Xn+1 ≤ X and Yn ≤ Yn+1 ≤ X, n = 1, 2, . . .
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with
lim
n→∞

Xn = X and lim
n→∞

Yn = X.

Then,
lim
n→∞

E [Xn] = lim
n→∞

E [Yn] ,

and the common value is E [X].

H. For non-negative rvs X and Y (so both E [X] and E [Y ] exist in [0,∞]), the
comparison X ≤ Y implies

E [X] ≤ E [Y ] .

Proof: For each n = 1, 2, . . ., define the simple “staircase” rvs Xn, Yn : Ω→ R+

defined according to (13), namely

Xn =
n−1∑
m=0

2n−1∑
k=0

(
m+ k2−n

)
1
[
m+ k2−n < X ≤ m+ (k + 1)2−n

]
(15)

and

Yn =
n−1∑
m=0

2n−1∑
k=0

(
m+ k2−n

)
1
[
m+ k2−n < X ≤ m+ (k + 1)2−n

]
(16)

For each n = 1, 2, . . ., we have Xn ≤ Yn whence E [Xn] ≤ E [Yn]. Let n go to
infinity in this inequality. We conclude by noting that limn→∞ E [Xn] = E [X]
and limn→∞ E [Yn] = E [Y ].

General case
Consider a rv X : Ω→ R. We introduce the R+-valued rvs X+ and X− given by

X+ ≡ max (0, X) and X− ≡ max (0,−X) .

It is plain that
X = X+ −X− and |X| = X+ +X−.

Note that E [X+] and E [X−] are both well defined (possibly infinite).
We now define

E [X] ≡ E
[
X+
]
− E

[
X−
]

provided at least one of the quantities E [X+] and E [X−] is finite. Thus, three
cases are possible:
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We have (i) E [X] finite if both E [X+] and E [X−] are finite, (ii) E [X] = ∞
if E [X+] = ∞ and E [X−] is finite, and (iii) E [X] = −∞ if E [X−] = ∞ and
E [X+] is finite. When E [X+] = E [X−] = ∞, the expectation of X does not
exist.

In general, E [X] exists and is finite if and only if E [|X|] is finite. In particular,
when X is bounded, i.e., there exists a constant M > 0 such that |X| ≤M P-a.s.,
then

|Xn| ≤M P− a.s.

for every n = 1, 2, . . ., it is plain that E [X] exists and is finite with −M ≤
E [X] ≤M .

G. If E [X] exists, then for any scalar α in R, E [αX] exists and

E [αX] = αE [X] .

H. If both E [|X|] <∞ and E [|Y |] <∞, then

E [X + Y ] = E [X] + E [Y ]

K. If both E [X] and E [Y ] exist, then X ≤ Y implies

E [X] ≤ E [Y ]

Proof: It is a simple consequence of the observation that X+ ≤ Y + and Y − ≤
X−.

L. If E [X] exists, then
|E [X] | ≤ E [|X|] .

Proof: Note that
E [X] = E

[
X+
]
− E

[
X−
]

so that
|E [X] | ≤ E

[
X+
]

+ E
[
X−
]

= E [|X|] .

M. If E [X] exists, then for every A in F , E [1 [A]X] exists; it is finite if E [X] is
finite.
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N. If X = 0 a.s., then E [X] = 0

P. If X = Y a.s. with E [|X|] <∞, then E [|Y |] <∞ and E [X] = E [Y ]

Q. If X ≥ 0 and E [X] = 0, then X = 0 a.s.

As pointed earlier, with rv X : Ω→ Rp we have

E : (Ω,F ,P)
∫

Ω
X(ω)dP(ω)

EX : (Rp,B(Rp),PX)
∫
R xdPX(x).

The expectation operation is basically defined as a Lebesgue-Stieltjes integral (ei-
ther under P or under PX). We shall write alternatively (with p = 1),

E [X] =

∫
Ω

X(ω)dP(ω)

and
E [X] =

∫
R
xdPX(x) =

∫
R
xdFX(x).

Change of variable formula
Consider an Rp-valued rvX : Ω→ Rp. With Borel mapping g : Rp → R, it holds
that

E [g(X)] =

∫
Rp

g(x)dFX(x)

with the understanding that if one of the quantities is well defined, so is the other
and their values coincide.

Proof: If g : Rp → R is of the form

g(x) = 1 [x ∈ B] , x ∈ Rp

for some Borel set B in B(Rp), then

E [g(X)] = P [X ∈ B] = PX [B] = EX [g(·)] =

∫
Rp

g(x)dFX(x)
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Assume now that g : Rp → R is simple in the sense that

g(x) =
∑
i∈I

gi1 [x ∈ Bi] , x ∈ Rp

Then,

E [g(X)] = E

[∑
i∈I

gi1 [X ∈ Bi]

]
=

∑
i∈I

giE [1 [X ∈ Bi]]

=
∑
i∈I

giP [X ∈ Bi]

=
∑
i∈I

gi

∫
Rp

1 [Bi] (x)dFX(x)

=

∫
Rp

g(x)dFX(x)(17)

If g : Rp → R+, then we generate the sequence of simple mappings {gn, n =
1, 2, . . .} where for each n = 1, 2, . . ., the Borel mapping gn : Rp → R is given
by

gn(x) =
n−1∑
m=0

2n−1∑
k=0

k

2n
1

[
k

2n
< x ≤ k + 1

2n

]
, x ∈ Rp

We already have

E [gn(X)] =

∫
Rp

gn(x)dFX(x), n = 1, 2, . . .

and the conclusion
E [g(X)] =

∫
Rp

g(x)dFX(x),

follows by the Monotone Convergence Theorem (under P and PX).

In the general case g : Rp → R, write

g(x) = g(x)+ − g(x)−, x ∈ Rp
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and by linearity, we get

E [g(X)] = E
[
g(X)+

]
− E

[
g(X)−

]
Convergence results for expectations
Consider a sequence {X, Y, Z,Xn, n = 1, 2, . . .} of R-valued rvs.

Monotone Convergence Theorem
With Y ≤ Xn ≤ Xn+1 for all n = 1, 2, . . . where E [Y ] > −∞, we have

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
(18)

monotonically. With X ≥ Xn ≥ Xn+1 for all n = 1, 2, . . . where E [X] <∞, we
have

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
(19)

monotonically

An important consequence of the Monotone Convergence Theorem is as follows:
Let {Xn, n = 1, 2, . . .} denote a sequence of R+-valued rvs. It follows from the
Monotone Convergence Theorem that

E

[
∞∑
n=1

Xn

]
=
∞∑
n=1

E [Xn]

This is because, with

Sn =
n∑
k=1

Xk, n = 1, 2, . . .

non-negativity implies 0 ≤ Sn ≤ Sn+1 for all n = 1, 2, . . ., whence

lim
n→∞

E [Sn] = E
[

lim
n→∞

Sn

]
by (18). By linearity, we have

E [Sn] =
n∑
k=1

E [Xk]

so that limn→∞ E [Sn] =
∑∞

n=1 E [Xn], while limn→∞ Sn =
∑∞

n=1 Xn.



c©1997-2016 by Armand M. Makowski 35

Fatou’s Lemma
With Xn ≥ Y for all n = 1, 2, . . . where E [Y ] > −∞, we have

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E [Xn] .(20)

With Xn ≤ Y for all n = 1, 2, . . . where E [Y ] <∞, we have

lim sup
n→∞

E [Xn] ≤ E
[
lim sup
n→∞

Xn

]
.(21)

Counterexample: Take Ω = R, F = B(R) and the rvs {Xn, n = 1, 2, . . .} are
given by

Xn(ω) =


0 if ω /∈ [ 1

n
, 2
n
]

−n if ω ∈ [ 1
n
, 2
n
]
,

ω ∈ Ω
n = 2, 3, . . .

Bounded Convergence Theorem
Assume that there exists a rv X : Ω → R such that limn→∞Xn = X . If there
exists M > 0 such that for each n = 1, 2, . . .,

|Xn| ≤M,

then
E
[

lim
n→∞

Xn

]
= lim

n→∞
E [Xn] = E [X] .(22)

Dominated Convergence Theorem
Assume that there exists a rv X : Ω → R such that limn→∞Xn = X . If there
exists a rv Y : Ω→ R+ such that

|Xn| ≤ Y

for all n = 1, 2, . . . with E [Y ] <∞, then

E
[

lim
n→∞

Xn

]
= lim

n→∞
E [Xn] = E [X](23)

Independence and expectations
Consider two rvs X, Y : Ω→ R+ which are assumed to be independent.
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• If X and Y are simple rvs, then the product rv XY is also a simple rv and
the relation

E [XY ] = E [X]E [Y ]

holds

• If X and Y are non-negative rvs, then E [X] and E [Y ] are always defined
(although possibly infinite) and the relation

E [XY ] = E [X]E [Y ]

still holds.

• In the general case,
E [XY ] = E [X]E [Y ]

whenever E [|X|] and E [|Y |] are finite.

Fact: Consider rvs the X1 : Ω → Rp1 , . . ., Xk : Ω → Rpk which are mutually
independent. With Borel mappings g1 : Rp1 → R, . . ., gk : Rpk → R, define the
rvs

Y` = g`(X`), ` = 1, . . . , k.

The R-valued rvs Y1, . . . , Yk are mutually independent, and

E

[
k∏
`=1

Y`

]
=

k∏
`=1

E [Y`]

whenever E [|Y`|] <∞ for all ` = 1, . . . , k.
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A definition
Let D be a σ-field on Ω contained in F , i.e., D ⊆ F . A rv Rp-valued rv X : Ω→
Rp is said to be D-measurable if

[X ∈ B] ∈ D, B ∈ B(Rp).

This definition is often used when the σ-field D is itself generated by some rv
Y : Ω→ Rq; this σ-field is denoted σ(Y ) and is defined

σ(Y ) ≡
{
Y −1(C) : C ∈ B(Rq)

}
as expected.

Important fact: Assume the σ-field D to be generated by some rv Y : Ω → Rq,
so that D = σ(Y ):

(i) For any Borel mapping g : Rq → R, the rv X = g(Y ) is D-measurable.
(ii) Conversely, any D-measurable rv X : Ω → R can be written in the form

X = g(Y ) for some Borel mapping g : Rq → R.

(i) The conclusion is immediate from the fact that

[X ∈ B] = [g(Y ) ∈ B]

= [Y ∈ g−1(B)] ∈ D, B ∈ B(R).(24)

since Y isD-measurable and g−1(B) belongs to B(Rp) by the Borel measurability
of g.

(ii) Conversely, assume that the rv X : Ω → R is D-measurable. The proof
proceeds in three standard steps:

• First assume that X = 1 [D] for some D in σ(Y ), in which case D =
[Y ∈ C] for some C in B(Rq). It is now plain that X = gC(Y ) with Borel
mapping gC : Rq → R given by

gC(y) =


0 if y /∈ C

0 if y ∈ C.
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The desired conclusion is readily seen to hold for simple D-measurable rvs
of the form

X =
∑
i∈I

ai1 [Di]

where I is a countable index, {ai, i ∈ I} are scalars and {Di, i ∈ I}
form a D-partition of Ω. Indeed, we have X = g(Y ) with Borel mapping
g : Rq → R given by

g(y) =
∑
i∈I

aigCi

where for each i in I , we have Di = [Y ∈ Ci] for Ci in B(Rp).

• For any non-negative D-measurable rv X : Ω → R+, we introduce the
usual sequence of simple rvs {Xn, n = 1, 2, . . .} given by

Xn =
n−1∑
m=0

2n−1∑
k=0

k

2n
1

[
k

2n
< X ≤ k + 1

2n

]
, n = 1, 2, . . .

with limn→∞Xn = X . Obviously, the simple rvs {Xn, n = 1, 2, . . .} are
all D-measurable, hence by the last part of the proof, for each n = 1, 2, . . .,
there exists a Borel mapping gn : Rq → R such that

Xn = gn(Y ), n = 1, 2, . . .

and that

X(ω) = lim
n→∞

Xn(ω) = lim
n→∞

gn(Y (ω)), ω ∈ Ω.

Now define the subset L ⊆ Rq by

L ≡ {y ∈ Rq : limn→∞ gn(y) exists in R}

The set L is a Borel subset of Rq, whence the mapping g : Rq → R given
by

g(y) ≡


limn→∞ gn(y) if y ∈ L

0 if y /∈ L

is a Borel mapping Rq → R . By construction it is plain that X = g(Y )
since Y (ω) lies in L for each ω in Ω.
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• The case of any D-measurable rv X : Ω → R is handled in the usual
manner: Just write

X = X+ −X−

and apply the last conclusion to each of the rvs X+ and X−. In particular,
there exist Borel mappings g+ : Rq → R and g− : Rq → R such that
X+ = g+(Y ) and X− = g−(Y ). The desired Borel mapping g : Rq → R is
simply

g(y) = g+(y)− g−(y), y ∈ Rq.

Conditional distributions and condition expectations
Let D be an event in F , and let X : Ω→ R be an R-valued. With P [D] > 0, we
can define the conditional probability distribution of X given D, namely

P [X ≤ x|D] =
P [[X ≤ x] ∩D]

P [D]
, x ∈ R.

It is now possible to define the conditional expectation of X given D; it is
simply the expectation of the rv X evaluated under the conditional probability
measure QD : F → [0, 1]; it will be denoted E [X|D]. It is easy to see from the
definition of expectation that

E [X|D] =
E [1 [D]X]

P [D]
.

This quantity exists as soon as E [X] is well defined. This fact and the last expres-
sion for it can be seen by the usual three step process: First for indicator rvs and
simple rvs, then for non-negative rvs and finally for arbitrary rvs (by the standard
decomposition).

When P [D] = 0, it is will be convenient to take QD : F → [0, 1] to be an
arbitrary probability measure on (Ω,F) – To be revisited. However, regardless of
the choice we will always have

E [1 [D]X] = E [X|D] · P [D] .(25)

Consider an F-partition {Di, i ∈ I} where I is a countable index set, i.e.,

Di ∩Dj = ∅, i 6= j
i, j ∈ I
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and
∪i∈IDi = Ω.

It is plain that ∑
i∈I

1 [Di] = 1.(26)

Throughout the events in the partition are assumed to be non-empty.
Set D = σ (Di, i ∈ I). Note that any element D of D is necessarily of the

form
D = ∪j∈JDj(27)

for some countable subset J ⊆ I (possibly empty if D = ∅ or J = I if D = Ω).
The decomposition ∑

j∈IJ

1 [Di] = 1 [D] .(28)

will be used on several occasions.

Fact: Consider a rvX : Ω→ Rp which isD-measurable whereD = σ (Di, i ∈ I).
For each i in I , the rvX is constant on the eventDi so that the set {X(ω), ω ∈ Ω}
is a countable set of points in Rp.

Proof: For each x in Rp, the D-measurability of X implies that [X = x] is
an element in D. The result immediately follows since any element D of D is
necessarily of the form (27) for some countable subset J ⊆ I .

An important definition
Consider a rv X : Ω→ Rp. For each B in B(Rp) define the rv

P [X ∈ B|D] ≡
∑
i∈I

P [X ∈ B|Di]1 [Di]

=
∑
i∈I

QDi
[X ∈ B]1 [Di] .(29)

This defines the conditional probability of [X ∈ B] given D. This rv is clearly a
D-measurable rv in the sense that

[P [X ∈ B|D] ∈ C] ∈ D, C ∈ B (R)
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as we note that

[P [X ∈ B|D] ∈ C] = ∪i∈I ([P [X ∈ B|D] ∈ C] ∩Di)

= ∪i∈I ([P [X ∈ B|Di] ∈ C] ∩Di)

= ∪i∈I: P[X∈B|Di]∈CDi.

We also observe that

E [P [X ∈ B|D]] = E

[∑
i∈I

P [X ∈ B|Di]1 [Di]

]
=

∑
i∈I

P [X ∈ B|Di]E [1 [Di]]

=
∑
i∈I

P [X ∈ B|Di]P [Di]

= P [X ∈ B]

by the law of total probability.

Consider a rv X : Ω → R We can now also define the conditional expectation of
X given D as

E [X|D] ≡
∑
i∈I

E [X|Di]1 [Di]

where E [X|Di] is the expectation of X under the conditional probability distri-
bution of X given Di.

The rv E [X|D] is clearly a D-measurable rv in the sense that

[E [X|D] ∈ C] ∈ D, C ∈ B (R) .

Indeed we have

[E [X ∈ B|D] ∈ C] = ∪i∈I ([E [X ∈ B|D] ∈ C] ∩Di)

= ∪i∈I ([E [X ∈ B|Di] ∈ C] ∩Di)

= ∪i∈I: E[X∈B|Di]∈CDi.

Consider two F-partitions of Ω, say {Di, i ∈ I} and {D′k, k ∈ K}. We say that
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the partition {D′k, k ∈ K} is a refinement of {Di, i ∈ I} if for every i in I it
holds that

Di = ∪k∈Ki
D′k

for some non-empty subset Ki ⊆ K – Note that {Ki, i ∈ I} is a partition of
K. The inclusion D ⊆ D′ obviously holds where D = σ(Di, i ∈ I) and D′ =
σ(D′k, k ∈ K).

Iterated conditioning (I)
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D]] = E [X](30)

Proof: It suffices to consider X : Ω→ R+. We have

E [E [X|D]] = E

[∑
i∈I

E [X|Di]1 [Di]

]
=

∑
i∈I

E [E [X|Di]1 [Di]]

=
∑
i∈I

E [X|Di]P [Di]

=
∑

i∈I: P[Di]>0

E [1 [Di]X]

P [Di]
P [Di]

=
∑

i∈I: P[Di]>0

E [1 [Di]X]

= E

 ∑
i∈I: P[Di]>0

1 [Di]

X


= E [X](31)

upon using (28) together with the fact that
∑

i∈I: P[Di]=0 1 [Di] = 0 P-a.s.

Iterated conditioning (II)
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D] |D′] = E [X|D] P-a.s.(32)
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Proof: It suffices to consider X : Ω→ R+. With

E [X|D] =
∑
i∈I

E [X|Di]1 [Di] ,

we have

E [E [X|D] |D′] = E

[∑
i∈I

E [X|Di]1 [Di] |D′
]

=
∑
i∈I

E [X|Di]E [1 [Di] |D′] .(33)

For each i in I it holds

E [1 [Di] |D′] =
∑
k∈K

E [1 [Di] |D′k]1 [D′k]

=
∑

k∈K: P[D′
k]>0

P [Di ∩D′k]
P [D′k]

1 [D′k] P-a.s.

=
∑

k∈Ki: P[D′
k]>0

P [D′k]

P [D′k]
1 [D′k]

=
∑

k∈Ki: P[D′
k]>0

1 [D′k]

=
∑
k∈Ki

1 [D′k] P-a.s.

= 1 [Di] .(34)

We have used repeatedly the fact that

P
[
∪k∈Ki: P[D′

k]=0D
′
k

]
=

∑
k∈Ki: P[D′

k]=0

P [D′k] = 0.

From this fact we conclude that

E [E [X|D] |D′] =
∑
i∈I

E [X|Di]1 [Di] = E [X|D] P-a.s.
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Iterated conditioning (III)
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D′] |D] = E [X|D] P-a.s.(35)

Proof: It suffices to consider X : Ω→ R+. With

E [X|D′] =
∑
k∈K

E [X|D′k]1 [D′k]

=
∑

k∈K: P[D′
k]>0

E [X|D′k]1 [D′k] P-a.s.(36)

since
P
[
∪k∈K: P[D′

k]=0D
′
k

]
=

∑
k∈K: P[D′

k]=0

P [D′k] = 0.

It follows that

E

[∑
k∈K

E [X|D′k]1 [D′k] |D

]
= E

 ∑
k∈K: P[D′

k]>0

E [X|D′k]1 [D′k]
∣∣∣D
 .

Therefore, we have

E [E [X|D′] |D] = E

[∑
k∈K

E [X|D′k]1 [D′k]
∣∣∣D]

= E

 ∑
k∈K: P[D′

k]>0

E [X|D′k]1 [D′k]
∣∣∣D


=
∑

k∈K: P[D′
k]>0

E [X|D′k]E [1 [D′k] |D] .(37)

For each k in K such that P [D′k] > 0, we have

E [X|D′k] =
E [1 [D′k]X]

P [D′k]
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and

E [1 [D′k] |D] =
∑
i∈I

P [D′k|Di]1 [Di]

=
∑

i∈I: P[Di]>0

E [1 [D′k] |Di]1 [Di] P-a.s.

=
∑

i∈I: P[Di]>0

P [D′k ∩Di]

P [Di]
1 [Di] P-a.s.(38)

Note that for each i in I , we have

P [D′k ∩Di] =


P [D′k] if k ∈ Ki

0 if k 6∈ Ki.

With this in mind, collecting earlier expressions we conclude that

E [E [X|D′] |D]

=
∑

k∈K: P[D′
k]>0

 ∑
i∈I: P[Di]>0

P [D′k ∩Di]

P [Di]
1 [Di]

E [X|D′k] P-a.s.

=
∑

k∈K: P[D′
k]>0

 ∑
i∈I: P[Di]>0

P [D′k ∩Di]

P [Di]
1 [Di]

 E [1 [D′k]X]

P [D′k]

=
∑

i∈I: P[Di]>0

 ∑
k∈K: P[D′

k]>0

P [D′k ∩Di]

P [Di]
· E [1 [D′k]X]

P [D′k]

1 [Di]

=
∑

i∈I: P[Di]>0

 ∑
k∈Ki: P[D′

k]>0

P [D′k ∩Di]

P [Di]
· E [1 [D′k]X]

P [D′k]

1 [Di]

=
∑

i∈I: P[Di]>0

 ∑
k∈Ki: P[D′

k]>0

P [D′k]

P [Di]
· E [1 [D′k]X]

P [D′k]

1 [Di]

=
∑

i∈I: P[Di]>0

1

P [Di]

 ∑
k∈Ki: P[D′

k]>0

E [1 [D′k]X]

1 [Di]
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=
∑

i∈I: P[Di]>0

1

P [Di]
E


 ∑
k∈Ki: P[D′

k]>0

1 [D′k]

X

1 [Di]

=
∑

i∈I: P[Di]>0

E [1 [Di]X]

P [Di]
1 [Di]

= E [X|D] P-a.s.(39)

as we use the fact noted earlier that∑
k∈Ki: P[D′

k]>0

1 [D′k] = 1 [Di] P-a.s.

for each i in I .

An important fact
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [1 [D]E [X|D]] = E [1 [D]X] , D ∈ D,

or equivalently,

E [1 [D] (X − E [X|D])] = 0, D ∈ D.(40)

Proof: Given the structure of the σ-field D, it suffices to show this equality for
D = Di as i ranges over I , namely

E [1 [Di]E [X|D]] = E [1 [Di]X] ,

Since

E [X|D] =
∑
j∈I

E [X|Dj]1 [Dj](41)

we get

E [1 [Di]E [X|D]] = E

[
1 [Di]

(∑
j∈I

E [X|Dj]1 [Dj]

)]
=

∑
j∈I

E [X|Dj]E [1 [Di]1 [Dj]]

= E [X|Dj]P [Di](42)
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since P [Di ∩Dj] = δijP [Di]. If P [Di] > 0, then

E [X|Dj]P [Di] =
E [1 [Di]X]

P [Di]
· P [Di] = E [1 [Di]X]

as desired. On the other hand, if P [Di] = 0, then E [1 [Di]E [X|D]] = 0 while
E [1 [Di]X] = 0, again as desired.

Another important fact
Consider rvs X,Z : Ω → R with E [|X|] < ∞ and E [|XZ|] < ∞. If Z is a
D-measurable rv, then

E [ZX|D] = ZE [X|D] P-a.s.

We begin by noting that

E [ZX|D] =
∑
i∈I

E [ZX|Di]1 [Di]

=
∑

i∈I: P[Di]>0

E [1 [Di]ZX]

P [Di]
1 [Di] P-a.s.(43)

First consider the case when Z is an indicator rv, say Z = 1 [D] with D =
∪j∈JDj for some J ⊆ I . Pick i in I with P [Di] > 0. Since 1 [D] =

∑
j∈J 1 [Dj]

we then have

E [1 [Di]ZX] = E [1 [Di]1 [D]X]

= E [1 [Di ∩D]X]

=
∑
j∈J

E [1 [Di ∩Dj]X]

=


E [1 [Di]X] if i ∈ J

0 if i /∈ J .
(44)

It follows that

E [ZX|D] =
∑

i∈I: P[Di]>0

E [1 [Di]ZX]

P [Di]
1 [Di]
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=
∑

i∈I: P[Di]>0

E [1 [Di]X]

P [Di]
δ(i ∈ J)1 [Di]

=

 ∑
i∈I: P[Di]>0

E [1 [Di]X]

P [Di]
1 [Di]

1 [D]

= E [X|D]1 [D] .(45)

This establishes the result when Z is the indicator rv of a D-measurable event.
If Z is a simple D-measurable rv, say

Z =
∑
k∈K

bk1 [Dk]

then the result follows by linearity of expectation.
When Z ≥ 0, write

ZX = Z(X+ −X−) = ZX+ − ZX−

and recall that the usual staircase approximations {Zn, n = 1, 2, . . .} to the rv Z
are simple non-negative rvs which areD-measurable with limn→∞ Zn = Z. Since
the result holds for simple non-negative rvs which are D-measurable, we get

E [ZnX|D] = ZnE [X|D] , n = 1, 2, . . .

Letting n go to infinity in these relations yield the result by the Dominated Con-
vergence Theorem applied to each of the terms E [ZnX1 [Di]] for each i in I .

In the general case, write ZX = (Z+ − Z−)X = Z+X − Z−X , and note
that both rvs Z+ and Z− are D-measurable rvs. The proof then proceeds in
the usual manner by applying the previous step to both terms E [Z+X1 [Di]] and
E [Z−X1 [Di]] for each i in I .

A uniqueness result
Let Z : Ω→ R be a D-measurable rv such that E [|Z|] <∞. If

E [1 [D]Z] = 0, D ∈ D

then Z = 0 P-a.s.

Proof: Apply the condition to the D-measurable events D+ = [Z > 0] and
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D− = [Z < 0], hence E [1 [D+]Z] = 0 and E [1 [D−]Z] = 0. Noting that
1 [D+]Z ≥ 0 and −1 [D−]Z ≥ 0, we get

1 [D±]Z = 0 P-a.s.

and the conclusion follows from the obvious decomposition Z = Z1 [D−] +
Z1 [Z+].

Conditioning with respect to a discrete rv
We briefly discuss how F-partitions are induced by discrete rvs, and how this
ultimately relates to conditional expectations with respect to such rvs: Consider
a discrete rv Y : Ω → Rq. By definition there exists a countable subset S ⊆ Rp

such that P [Y ∈ S] = 1. For ease of notation, with I countable we shall use the
representation S = {yi, i ∈ I} where the elements are distinct and each of the
events {[Y = yi], i ∈ I} is non-empty. So far we can only assert that the event

ΩY ≡ ∪i∈I [Y = yi]

has probability one, or equivalently, that the complement Ωc
Y has zero probability.

Nothing precludes the set of values

{Y (ω), ω /∈ ΩY }

to form an uncountable set. Only when that set is empty, will the collection {[Y =
yi], i ∈ I} be an F-partition of Ω.

To remedy this difficulty, with b an element not in S, now define the rv Yb :
Ω→ Rq given by

Yb(ω) ≡


Y (ω) if ω ∈ ΩY

b if ω /∈ ΩY .

The collection {[Y = b], [Y = yi], i ∈ I} is now an F-partition of Ω. The
following facts are easy consequences from the following observation

P [Y 6= Yb] ≤ P [Ωc
Y ] = 0.

• The rvs Y and Yb have the same probability distribution under P.

• If X : Ω → Rp is another rv, the pairs (X, Y ) and (X, Yb) have the same
probability distribution under P.
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• Consider a Borel mapping h : Rp × Rq → R such that E [|h(X, Y )|] <∞.
With

Sb = {yi,∈ I; b} = S ∪ {b},

and Db = σ([Y = b], [Y = yi], i ∈ I), we note that

E [h(X, Yb)|Db]
=

∑
y∈Sb

E [h(X, Yb)|Yb = y]1 [Yb = y]

=
∑
y∈S

E [h(X, Yb)|Yb = y]1 [Yb = y] + E [h(X, Yb)|Yb = b]1 [Yb = b]

=
∑
y∈S

E [1 [Yb = y]h(X, Yb)]

P [Yb = y]
1 [Yb = y] + E [h(X, Yb)|Yb = b]1 [Yb = b]

=
∑
y∈S

E [1 [Yb = y]h(X, y)]

P [Yb = y]
1 [Yb = y] + E [h(X, Yb)|Yb = b]1 [Yb = b]

=
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y] + E [h(X, Yb)|Yb = b]1 [Yb = b]

It follows that

E [h(X, Yb)|Db] =
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y] P-a.s.

• In light of this last calculation, with Borel mapping h : Rp × Rq → R such
that E [|h(X, Y )|] <∞, for distinct values b 6= c in Rq, we have

E [h(X, Yb)|Db] = E [h(X, Yc)|Dc] P-a.s.

where we use the notation Db = σ([Y = b], [Y = yi], i ∈ I) and Dc =
σ([Y = c], [Y = yi], i ∈ I).

In other words, although the two conditional expectation rvs are not nec-
essarily identical (as mappings Ω → R), they are equal to each other ex-
cept on a set of zero probability measure (under P). As this notion de-
fines an equivalence relation on rvs,1 we write E [h(X, Y )|Y ] (or sometimes
E [h(X, Y )|σ(Y )]) to denote any representative in the equivalence class.

1The rvs U, V : Ω→ Rp are P-equivalent if U = V P-a.s., namely P [U 6= V ] = 0.
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• One standard representative in that class of P-equivalent rvs is given by∑
y∈S

E [h(X, Y )|Y = y]1 [Y = y](46)

Note that all the terms in (46) are well defined in terms of Y ! It is conve-
nient to use this expression when representing the conditional expectation
of h(X, Y ) given the discrete rv Y .

• Next, observe that∑
y∈S

E [h(X, Y )|Y = y]1 [Y = y]

=
∑
y∈S

E [1 [Y = y]h(X, Y )]

P [Y = y]
1 [Y = y]

=
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y]

=
∑
y∈S

E [h(X, y)|Y = y]1 [Y = y](47)

This last expression suggests introducing the mapping ĥ : Rq → R given
by

ĥ(y) =


E [h(X, y)|Y = y] if y ∈ S

h?(y) if y /∈ S
(48)

where h? : Rq → R is an arbitrary Borel mapping such that E [|h?(Y )|] <
∞. This definition is always well posed, and produces a Borel mapping
Rq → R.

With this notation we conclude that∑
y∈S

E [h(X, Y )|Y = y]1 [Y = y]

=
∑
y∈S

E [h(X, y)|Y = y]1 [Y = y]

=
∑
y∈S

ĥ(y)1 [Y = y]
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=
∑
y∈S

ĥ(Y )1 [Y = y]

= ĥ(Y )

(∑
y∈S

1 [Y = y]

)
= ĥ(Y ) P-a.s.(49)

since ∑
y∈S

1 [Y = y] = 1 [Y ∈ S] = 1 P-a.s.

• Symbolically, this last discussion can be summarized as follows:

E [h(X, Y )|Y ] = (E [h(X, Y )|Y = y])y=Y

= (E [h(X, y)|Y = y])y=Y P-a.s.(50)

Consider the rvs X : Ω→ Rp and Y : Ω→ Rq under the following assumptions:
(i) The rvs are independent, and (ii) the rv Y : Ω→ Rq is a discrete rv.

• With Borel mapping h : Rp×Rq → R such that E [|h(X, Y )|] <∞, define
the mapping ĥ : Rq → R given by

ĥ(y) = E [h(X, y)] , y ∈ Rq.

This definition is always well posed, and produces a Borel mapping Rq →
R. It holds that

E [h(X, Y )|Y ] = ĥ(Y ) P-a.s.

• An important special case: With Borel mapping g : Rp → R such that
E [|g(X)|] <∞, we have

E [g(X)|Y ] = E [g(X)] P-a.s.

as expected.

The general definition of conditional expectations
Let D be a sub-σ-field of F . Consider a rv X : Ω→ R such that E [|X|] <∞.
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(i) (Existence) There exists a D-measurable rv Z : Ω → R with E [|Z|] < ∞
such that

E [1 [D] (X − Z)] = 0, D ∈ D(51)

(ii) (Uniqueness) If the D-measurable rvs Z1, Z2 : Ω→ R with E [|Z1|] <∞
and E [|Z2|] <∞ both satisfy (51), then Z1 = Z2 P-a.s.

Existence is a consequence of the celebrated Radon-Nikodym Theorem. Condi-
tion (51) is often used in the equivalent form

E [1 [D]X] = E [1 [D]Z] , D ∈ D(52)

The D-measurable rvs with finite expectation satisfying (51) form an equivalence
class (under the P-a.s. equivalence); any one of its representatives will be denoted
by E [X|D].

As a general rule, in order to establish that two D-measurable rvs are repre-
sentative of the conditional expectations E [X|D], one typically proceeds as fol-
lows: Two D-measurable rvs Z1 and Z2 are identified with E [|Z1|] < ∞ and
E [|Z2|] <∞ such that

E [1 [D]Zi] = E [1 [D]X] ,
i = 1, 2
D ∈ D

It follows that
E [1 [D] (Z1 − Z2)] = 0, D ∈ D

whence Z1 and Z2 are both representatives of E [X|D] with Z1 = Z2 P-a.s.

Properties of conditional expectations
Many of the properties of conditional expectations are given below. They are
stated here under finiteness assumptions on the expectations of the rvs involved.
However, the assumptions can be somewhat weakened when the rvs are non-
negative or when the expectations are simply assumed to exist.

It is noteworthy that in spite of an existential definition (51), all these proper-
ties (some of which have already been established when the σ-field is generated
by an F-partition under a constructive definition) will be seen to be direct conse-
quences of the constraint (51). As the reader will note, in this more abstract setting
the proofs are much simpler than the proofs based on the constructive approach.

When everything is said and done, we can interpret the conditional expec-
tation of X given D (through any of its representatives) as providing a form of
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expectation of the rv X , not with respect to the probability measure P, but with
respect to the conditional probability distribution of X given D. Therefore it is
not surprising that the operation that associates with X , the conditional expecta-
tion of X given D behaves essentially like a regular expectation. In particular,
one expects versions of the various convergence theorems (such as the Monotone
Convergence Theorem, the Dominated Convergence Theorem and the Bounded
Convergence Theorem) to hold for conditional expectations. Here we shall omit
a discussion of these topics.

Linearity
Consider rvs X, Y : Ω→ R with E [|X|] <∞ and E [|Y |] <∞. For any α and β
in R, we have

E [αX + βY |D] = αE [X|D] + βE [Y |D] P-a.s.

Proof: Pick D in D. By linearity and (52) we have

E [1 [D] · E [αX + βY |D]]

= E [1 [D] · (αX + βY )]

= αE [1 [D]X] + βE [1 [D]Y ]

= αE [1 [D] · E [X|D]] + β · E [1 [D]E [Y |D]]

= E [1 [D] · (αE [X|D] + βE [Y |D])]

The rv αE [X|D] + βE [Y |D] being D-measurable, we get the desired result by
the P-a.s. uniqueness of conditional expectation.

Monotonicity
Consider rvs X, Y : Ω → R with E [|X|] < ∞ and E [|Y |] < ∞. Whenever
X ≤ Y we have

E [X|D] ≤ E [Y |D] P-a.s.

Proof: Pick D in D. Using (52) we find

E [1 [D]E [X|D]] = E [1 [D]X]

≤ E [1 [D]Y ]

= E [1 [D]E [Y |D]](53)
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because X ≤ Y , and therefore

E [1 [D] (E [Y |D]− E [X|D])] ≥ 0.

Now pick the event D− = [E [Y |D] − E [X|D] < 0]. The event D− being
D-measurable event, the last inequality applies to yield

0 ≤ E [1 [D−] (E [Y |D]− E [X|D])] ≤ 0,

whence
E [1 [D−] (E [Y |D]− E [X|D])] = 0.

But 1 [D−] (E [Y |D]− E [X|D]) ≤ 0 by construction, and the zero expectation
constraint implies 1 [D−] (E [Y |D]− E [X|D]) = 0 P-a.s. Therefore,

E [Y |D]− E [X|D] = 1
[
Dc
−
]

(E [Y |D]− E [X|D]) P-a.s.

and the result follows since E [Y |D]− E [X|D] ≥ 0 on Dc
−.

Iterated conditioning (I) For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D]] = E [X](54)

When read from right to left this equality gives rise to the idea of preconditioning
as a way to compute certain expectations.

Proof: Use (51) with D = Ω.

Iterated conditioning (II): Let D and D′ be two sub-σ-fields of F with D ⊆ D′.
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D] |D′] = E [X|D] , P-a.s.(55)

Proof: Pick D in D′. Using (52) (for the rv E [X|D] and σ-field D′) we get

E [1 [D]E [E [X|D] |D′]] = E [1 [D]E [X|D]] .
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The conclusion follows from the fact that the rv E [X|D] is D-measurable, hence
D′-measurable.

Iterated conditioning (III): LetD andD′ be two sub-σ-fields of F withD ⊆ D′.
For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [E [X|D′] |D] = E [X|D] P-a.s.(56)

Proof: Pick D in D. We have

E [1 [D]E [E [X|D′] |D]] = E [1 [D]E [X|D′]]
= E [1 [D]X]

= E [1 [D]E [X|D]] .

Here we have used (52) three times, first for the rv E [X|D′] and the σ-field D,
then for the rv X and the σ-field D′, and finally for the rv X and the σ-field D.

An important property
For any rvs X,Z : Ω→ R with E [|X|] <∞ and E [|ZX|] <∞, we have

E [ZX|D] = ZE [X|D] P-a.s.

whenever the rv Z is D-measurable.

Proof: Pick D in D. Using (51) for the rvs ZX we get

E [1 [D]E [ZX|D]] = E [1 [D]ZX] .

Let Z be a simple D-measurable rv, say of the form

Z =
∑
k∈K

bk1 [Dk]

where the events {Dk, ∈ K} are all in D. The events {Dk ∩ D, ∈ K} are also
all in D, hence

E [1 [D]ZX] =
∑
k∈K

bkE [1 [D]1 [Dk]X]
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=
∑
k∈K

bkE [1 [D ∩Dk]X]

=
∑
k∈K

bkE [1 [D ∩Dk]E [X|D]]

= E

[(∑
k∈K

bk1 [D ∩Dk]

)
E [X|D]

]

= E

[
1 [D]

(∑
k∈K

bk1 [Dk]

)
E [X|D]

]
= E [1 [D]ZE [X|D]] .

It follows that
E [1 [D]E [ZX|D]] = E [1 [D]ZE [X|D]]

The rv ZE [X|D] being D-measurable, we have the desired result by the P-a.s.
uniqueness of conditional expectation.

Next the proof proceeds in the usual manner: Consider an non-negative D-
measurableZ and approximate it by a sequence of simple non-negativeD-measurable
{Zn, n = 1, 2, . . .} with limn→∞ Zn = Z monotonically from below. By the first
part of the proof we have

E [1 [D]E [ZnX|D]] = E [1 [D]ZnX] = E [1 [D]ZnE [X|D]] , n = 1, 2, . . .

Assume first the rv X : Ω→ R to be non-negative. Let n go to infinity. Applying
the Monotone Convergence Theorem we get

E [1 [D]ZX] = E [1 [D]ZE [X|D]] ,

whence
E [1 [D]E [ZX|D]] = E [1 [D]ZE [X|D]]

by the definition of conditional expectation. The desired result follows by unique-
ness since the rv ZE [X|D] is D-measurable. To remove the non-negativity con-
dition onX we use the decompositionX = X+−X−, and apply the earlier result
to each of the rvs E [ZX+|D] and E [ZX−|D].

Finally, to handle the case of an arbitrary D-measurable Z, we write

ZX = (Z+ − Z−)X = Z+X − Z−X

and apply the earlier result to rvs E [Z+X|D] and E [Z−X|D].
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Independence and conditional expectation (I): Consider a rv X : Ω → R with
E [|X|] <∞. If the rv X is independent of the σ-field D, then

E [X|D] = E [X] P-a.s.

Here, the independence of the rv X from the σ-field D means that for each D in
D, the rvs X and 1 [D] are independent.

Proof: By independence we note that

E [1 [D]X] = P [D]E [X] = E [1 [D]E [X]] , D ∈ D.

Therefore,
E [1 [D] (X − E [X])] = 0, D ∈ D

and the conclusion follows since the defining condition (51) holds for the constant
rv E [X] (which is clearly D-measurable).

Independence and conditional expectation (II): Consider a Borel mapping h :
Rp×Rq → R, and rvsX : Ω→ Rp and Y : Ω→ Rq such that E [|h(X, Y )|] <∞.
Define the mapping ĥ : Rq → R given by

ĥ(y) = E [h(X, y)] , y ∈ Rq.

This definition is always well posed, and produces a Borel mapping Rq → R.
If the rv X is independent of the σ-fieldD and the rv Y isD-measurable, then

E [h(X, Y )|D] = ĥ(Y ) P-a.s.

Proof: This conclusion is easy to check when

h(x, y) =
L∑
`=1

g`(x)h`(y),
x ∈ Rp,
y ∈ Rq(57)

where for each ` = 1, . . . , L the mappings g` : Rp → R and h` : Rq → R are
Borel with E [|g`(X)|] <∞ and E [|h`(Y )|] <∞. The independence of the rvsX
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and Y implies that of the rvs g`(X) and h`(Y ), whence the foregoing integrability
conditions imply that E [|g`(X)h`(Y )|] = E [|g`(X)|]E [|h`(Y )|] <∞.

Indeed, all the equalities being understood in the P-a.s. sense, we have

E [h(X, Y )|D] = E

[
L∑
`=1

g`(X)h`(Y )|D

]

=
L∑
`=1

E [g`(X)h`(Y )|D]

=
L∑
`=1

h`(Y )E [g`(X)|D]

=
L∑
`=1

h`(Y )E [g`(X)](58)

while here we have

ĥ(y) = E

[
L∑
`=1

g`(X)h`(y)

]

=
L∑
`=1

E [g`(X)]h`(y), y ∈ Rq.

Indeed,
E [h(X, Y )|D] = ĥ(Y ) P-a.s.

The general case is a consequence of the following fact: For every Borel mapping
h : Rp × Rq → R there exists a sequence {hn, n = 1, 2, . . .} of Borel mappings
Rp × Rq → R of the form (57) such that

lim
n→∞

hn(x, y) = h(x, y),
x ∈ Rp,
y ∈ Rq

Details are omitted.

More generally, without independence we have

E [h(X, Y )|D] = E

[
L∑
`=1

g`(X)h`(Y )|D

]
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=
L∑
`=1

E [g`(X)h`(Y )|D]

=
L∑
`=1

h`(Y )E [g`(X)|D]

=

(
L∑
`=1

h`(y)E [g`(X)|D]

)
y=Y

=

(
E

[
L∑
`=1

h`(y)g`(X)|D

])
y=Y

= (E [h(X, y)|D])y=Y(59)

The absolutely continuous case
Consider rvs X : Ω→ Rp and Y : Ω→ Rq. If the rv Y is absolutely continuous,
then

P [Y = y] = 0, y ∈ Rq

sine ∫
{y}

fY (η)dη = 0.

As a result, for each y in Rq we cannot define the conditional probabilities

P [X ∈ B|Y = y] =
P [X ∈ B, Y = y]

P [Y = y]
, B ∈ B(Rp)

A natural approach
With y in Rq. The ball centered at y with radius ε > 0 is denoted by Bε(y), i.e.,

Bε(y) ≡ {η ∈ Rq : ‖η − y‖ ≤ ε} .

Pick y in Rq such that fY (y) > 0 and assume there exists ε0 > 0 such that

P [Y ∈ Bε(y)] > 0, 0 < ε ≤ ε0.

The basic idea is as follows: Pick B in B(Rp). Whatever definition is given to
the conditional probability

P [X ∈ B|Y = y] ,
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it should be compatible with the limiting value

lim
ε↓0

P [X ∈ B|Y ∈ Bε(y)]

if it exists.
With this in mind we note that

P [X ∈ B|Y ∈ Bε(y)] =
P [[X ∈ B] ∩Bε(y)]

P [Bε(y)]

=

∫
B×Bε(y)

fXY (ξ, η)dξdη∫
Bε(y)

fY (η)dη

=

∫
B

(∫
Bε(y)

fXY (ξ, η)dη
)
dξ∫

Bε(y)
fY (η)dη

=

∫
B

(∫
Bε(y)

fXY (ξ, η)dη∫
Bε(y)

fY (η)dη

)
dξ(60)

Note that
lim
ε↓0

∫
Bε(y)

fXY (ξ, η)dη = 0, ξ ∈ Rp

and
lim
ε↓0

∫
Bε(y)

fY (η)dη = 0.

However, in many cases of interest in applications, we find that these limits have
the same rate of convergence so that the limit

lim
ε↓0

∫
Bε(y)

fXY (ξ, η)dη∫
Bε(y)

fY (η)dη

in fact exists. This is analogous to the situation handled by L’Hospital’s rule when
the indeterminate form 0

0
arises. Indeed note that under broad conditions it holds

lim
ε↓0

∫
Bε(y)

fXY (ξ, η)dη

λ(Bε(y))
= fXY (ξ, y), ξ ∈ Rp

and

lim
ε↓0

∫
Bε(y)

fY (η)dη

λ(Bε(y))
= fY (y).
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where λ(Bε(y)) denotes the Lebesgue measure of the ball Bε(y). It now follows
that

lim
ε↓0

∫
Bε(y)

fXY (ξ, η)dη∫
Bε(y)

fY (η)dη
= lim

ε↓0

∫
Bε(y)

fXY (ξ,η)dη

λ(Bε(y))∫
Bε(y)

fY (η)dη

λ(Bε(y))

=
fXY (ξ, y)

fY (y)
, ξ ∈ Rp(61)

This suggests

lim
ε↓0

P [X ∈ B|Y ∈ Bε(y)] = lim
ε↓0

∫
B

(∫
Bε(y)

fXY (ξ, η)dη∫
Bε(y)

fY (η)dη

)
dξ

=

∫
B

lim
ε↓0

(∫
Bε(y)

fXY (ξ, η)dη∫
Bε(y)

fY (η)dη

)
dξ

=

∫
B

fXY (ξ, y)

fY (y)
dξ(62)

assuming that the interchange of limit and integration is permissible.
With y in Rq, define the mapping fX|Y (·|y) : Rp → R+ by

fX|Y (x|y) ≡


fXY (x,y)
fY (y)

if fY (y) > 0

g(x) if fY (y) = 0

where the Borel mapping g : Rp → R+ is a probability density density, hence
satisfies ∫

Rp

g(x)dx = 1.

Consider a Borel mapping u : Rp → R such that that E [|u(X)|] <∞, and pick a
Borel set C in B(Rq). Note that

P [[Y ∈ C] ∩ [fY (Y ) = 0]] = 0

since
P [fY (Y ) = 0] =

∫
η ∈ Rq) : fY (η) = 0fY (η)dη = 0.



c©1997-2016 by Armand M. Makowski 63

With
C+
Y ≡ {η ∈ Rq : fY (η) > 0} ,

this becomes
P
[
Y /∈ C+

Y

]
= P [fY (Y ) = 0] = 0.

We find

E [1 [Y ∈ C]u(X)] = E [1 [Y ∈ C, fY (Y ) > 0]u(X)]

=

∫
Rp×(C∩C+

Y )

u(ξ)fXY (ξ, η)dξdη

=

∫
C∩C+

Y

(∫
Rp

u(ξ)fXY (ξ, η)dξ

)
dη

by Fubini’s Theorem.
If fY (η) > 0, then∫

Rp

u(ξ)fXY (ξ, η)dξ =

∫
Rp

u(ξ)fX|Y (ξ|η)fY (η)dξ

=

(∫
Rp

u(ξ)fX|Y (ξ|η)dξ

)
fY (η)

= û(η)fY (η)(63)

as we define û : Rq → R given by

û(y) =

∫
Rp

u(ξ)fX|Y (ξ|y)dξ, y ∈ Rp.

It can be shown that the mapping û→ R is well defined and Borel.
It follows that

E [1 [Y ∈ C]u(X)] =

∫
C∩C+

Y

û(η)fY (η)dη

=

∫
C

û(η)fY (η)dη

= E [1 [Y ∈ C] û(Y )] .(64)

Recalling that σ(Y ) = {Y ∈ C, C ∈ B(Rp)}, we conclude that

E [u(X)|σ(Y )] = û(Y ), P-a.s.


