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Chapter 1

Limits in R

We begin with a few standard definitions. We refer to a mapping a : N0 → R as a
(R-valued) sequence; sometimes we also use the notation {an, n = 1, 2, . . .}.

A sequence a : N0 → R converges to a? in R if for every ε > 0, there exists
an integer n?(ε) such that

|an − a?| ≤ ε, n ≥ n?(ε).(1.1)

We shall write limn→∞ an = a?, and refer to the scalar a? as the limit of the
sequence.

Sometimes it is desirable to make sense of the situations where values of the
sequence become either unboundedly large or unboundely negative, in which case
we shall write limn→∞ an = ∞ and limn→∞ an = −∞, respectively. A precise
definition of such occurences is as follows: We write limn→∞ an = ∞ to signify
that for every M > 0, there exists a finite integer n?(M) in N0 such that

an > M, n ≥ n?(M).(1.2)

It is natural to define limn→∞ an = −∞ as limn→∞ (−an) =∞.
If there exists a? in R∪{±∞} such that limn→∞ an = a?, we shall simply say

that the sequence a : N0 → R converges or is convergent (without any reference
to its limit). Sometimes we shall also say that the sequence a : N0 → R converges
in R to indicate that the limit a? is an element of R (thus finite).

Applying the definition (1.1) requires that the limit be known. Often this infor-
mation is not available, and yet the need remains to check whether the sequence
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converges. The notion of Cauchy sequence, which is instrumental in that respect,
is built around the following observation: If the sequence a : N0 → R converges
to a? in R, then for every ε > 0, there exists a finite integer n?(ε) such that (1.1)
holds, hence for n,m ≥ n?(ε) we have

|an − am| ≤ |an − a?|+ |a? − am| ≤ ε+ ε = 2ε.

This observation is turned into the following definition.

A sequence a : N0 → R is said to be a Cauchy sequence if for every ε > 0,
there exists an integer n?(ε) such that

|an − am| ≤ ε, m, n ≥ n?(ε).(1.3)

As observed earlier, a convergent sequence a : N0 → R in R is always a
Cauchy sequence. It is a deep fact concerning the topological properties of R that
being a Cauchy sequence is sufficient for convergence of the sequence in R.

Theorem 1.0.1 (Cauchy criterion) A sequence a : N0 → R is convergent in R if
and only if it is a Cauchy sequence.

This provides a criterion for convergence which does not require knowledge
of the limit.

1.1 Accumulation points
Since not all sequences converge, it is important to understand how can non-
convergence occur. To that end, consider a sequence a : N0 → R. A subsequence
of the sequence a : N0 → R is any sequence of the form N0 → R : k → ank
where

nk < nk+1, k = 1, 2, . . .

This forces limk→∞ nk =∞.

An accumulation point for the sequence a : N0 → R is defined as any a? in
R ∪ {±∞} such that

lim
k→∞

ank = a?
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for some subsequence N0 → R : k → ank .

A convergent sequence a : N0 → R has exactly one accumulation point,
namely its limit. In fact, were the sequence not be convergent, it must necessarily
have distinct accumulation points, in which case there is a smallest and a largest.
The next definition formalizes this observation.

Consider a sequence a : N0 → R. The quantities

Ā = lim sup
n→∞

An = inf
n≥1

(
sup
m≥n

am

)
and

A = lim inf
n→∞

An,= sup
n≥1

(
inf
m≥n

am

)
are known as the limsup and liminf of the sequence a : N0 → R.

The following notation is found to be convenient to discuss liminf and limsup
quantities: For each n = 1, 2, . . ., we define the quantities

Ān = sup
m≥n

am and An = inf
m≥n

am(1.4)

Note that An ≤ Ān, and the sequences n → Ān and n → An are non-increasing
and non-decreasing, respectively. Therefore, Ā = limn→∞ Ān and A = limn→∞An

both exist, but are possibly infinite. Moreover, we always have A ≤ Ā.

Theorem 1.1.1 Consider a sequence a : N0 → R. If it converges to a?, then
Ā = A = a?. Conversely, if Ā = A = a? for some a? in R ∪ {±∞}, then the
sequence converges to a?.

Note that if a, b : N0 → R are two sequences such that

an ≤ bn, n = 1, 2, . . .

then Ā ≤ B̄ and A ≤ B. The following arguments will often be made on the
basis of this observation: Consider a sequence {pn, n = 1, 2, . . .} where for each
n = 1, 2, . . ., pn is the probability of some event so that

0 ≤ pn ≤ 1, n = 1, 2, . . .(1.5)
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If we show that
1 ≤ lim inf

n→∞
pn,(1.6)

then we necessarily have convergence of the sequence with limn→∞ pn = 1: In-
deed, we always have lim supn→∞ pn ≤ 1 as a result of (1.5), whence

lim inf
n→∞

pn = lim sup
n→∞

pn = 1

upon using (1.6). In a similar vein, if we show lim supn→∞ pn = 0, then we
necessarily have convergence of the sequence with limn→∞ pn = 0.

1.2 Two important facts
In addition to the Cauchy convergence criterion, here are two facts that are often
found useful in studying convergence. A sequence a : N0 → R is said to be
non-decreasing (resp. non-increasing) if

an ≤ an+1 (resp. an+1 ≤ an), n = 1, 2, . . .

A sequence that is either non-decreasing or non-increasing is called a monotone
sequence.

Theorem 1.2.1 A monotone sequence a : N0 → R always converges and we have
limn→∞ an = sup (an, n = 1, 2, . . .) (resp. limn→∞ an = inf (an, n = 1, 2, . . .))
if the sequence is non-decreasing (resp. non-increasing).

A sequence a : N0 → R is said to be bounded if there exists some B > 0 such
that

sup (|an|, n = 1, 2, . . .) ≤ B.

Theorem 1.2.2 (Bolzano-Weierstrass) For any bounded sequence a : N0 → R,
there exists a convergent subsequence N0 → R : k → ank with limk→∞ ank = a?

for some a? in R.

1.3 Cesaro convergence
With any sequence a : N0 → R we associate the Cesaro sequence ā : N0 → R
given by

ān =
1

n
(a1 + . . .+ an) , n = 1, 2, . . .
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Theorem 1.3.1 (Cesaro convergence) If the sequence a : N0 → R converges to
a?, then the Cesaro sequence ā : N0 → R also converges with limit a?.

Proof. First we assume the convergent sequence a : N0 → R to have a finite limit
a? in R. Note that

ān − a? =
1

n

n∑
k=1

(ak − a?) , n = 1, 2, . . .

Now, for every ε > 0, there exists an integer n?(ε) such that

|an − a?| ≤
ε

2
, n ≥ n?(ε).

On that range, with B(ε) =
∑n?(ε)

k=1 |ak − a?|, we have

|ān − a?| ≤
1

n

n∑
k=1

|ak − a?|

=
1

n

n?(ε)∑
k=1

|ak − a?|+
1

n

n∑
k=n?(ε)+1

|ak − a?|

≤ B(ε)

n
+
n− n?(ε)

n
· ε

≤ B(ε)

n
+ ε(1.7)

Since limn→∞
1
n

= 0, it follows that for every ε > 0, there exists a finite
integer n??(ε) such that

1

n
<

ε

B(ε)
, n ≥ n??(ε).

Just take n??(ε) = dB(ε)
ε
e. As a result,

|ān − a?| ≤ ε+ ε = 2ε, n ≥ max(n?(ε), n??(ε))

and the proof is now complete since ε is arbitrary. We leave it as an exercise to
show the result when a? = ±∞.
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However, the converse is not true: Take the sequence a : N0 → R given by

an = (−1)n, n = 1, 2, . . .

This sequence does not converge and yet limn→∞ ān = 0. This example nicely
illustrate the smoothing effect of averaging. It might be tempting to conjecture
that such averaging always produces a convergent sequence. However, this is not
so as the following example shows: Consider the sequence a→ R given by

an = (−1)k,
22k ≤ n < 22k+1

k = 0, 1, . . .

It is plain that lim infn→∞ an = −1 while lim supn→∞ an = 1, and so the se-
quence a→ R does not converge. However, it is also not Cesaro convergent.

1.4 Series
Starting with a sequence a : N0 → R, we define the partial sums

sn = a1 + . . .+ an, n = 1, 2, . . .

where sn is known as the nth partial sum. We refer to the sequence s : N0 → R :
n→ sn as the sequence of partial sums associated with the sequence a : N0 → R.
It is customary to say that the series

∑∞
n=1 an converges if the sequence s : N0 →

R converges to some s? in R, in which case we often write
∑∞

n=1 an as its limit.
This amounts to the following: For every ε > 0 there exists a finite integer n?(ε)
such that

|sn − s?| < ε, n ≥ n?(ε).

The series s : N0 → R is said to be absolutely convergent if the series as-
sociated with the sequence of absolute values N0 → R+ : n → |an| does itself
converge in R.

A series which is absolutely convergent is also convergent in the usual sense
since ∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ,
m = n+ 1, . . .
n = 1, 2, . . .

However, the converse is not true as is easily seen through the example

an =
(−1)n

n
, n = 1, 2, . . .
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A series which is convergent in the usual sense but not absolutely convergent is
said to be conditionally convergent.

When the sequence a : N0 → R assumes only non-negative values, i.e., an ≥
0 for all n = 1, 2, . . ., then the sequence s : N0 → R+ of partial sums is non-
decreasing, so that limn→∞ sn always exists, possibly infinite. When this limit is
finite, it is easy to establish the following fact.

Lemma 1.4.1 For any sequence a : N0 → R whose sequence of partial sums
converges in R, we have limn→∞ an = 0

Proof. Since the sequence of partial sums s : N0 → R converges in R, it is a
Cauchy sequence: For every ε > 0, there exists a finite integer n?(ε) such that

|sn − sm| ≤ ε, n,m ≥ n?(ε).

Selecting m = n+ 1 with n ≥ n?(ε), we get |an+1| = |sn − sn+1| ≤ ε whenever
n ≥ n?(ε), and the conclusion limn→∞ an = 0 follows.

Many tests exist to check the convergence of series. The most basic one is the
Comparison Test given next.

Theorem 1.4.1 (Comparison Test) Consider two sequences a, b : N0 → R+ such
that

0 ≤ an ≤ bn, n = 1, 2, . . .

If
∑∞

n=1 bn converges in R, then
∑∞

n=1 an also converges n R with

0 ≤
∞∑
n=1

an ≤
∞∑
n=1

bn.

On the other hand, if
∑∞

n=1 an =∞, then we necessarily have
∑∞

n=1 bn =∞.

Geometric series play a pivotal role in determining the convergence of series
through the Comparison Test. The geometric series with reason ρ is the series
associated with the sequence a : N0 → R given by

an = ρn, n = 1, 2, . . .
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It well known that

sn = a1 + . . .+ an =


ρ

1−ρ (1− ρn) if ρ 6= 1

n if ρ = 1

Therefore,
lim
n→∞

sn =
ρ

1− ρ
if |ρ| < 1.

This observation constitutes the basis for two criteria for convergence of series,
namely the criteria of Cauchy and d’ Alembert, also known as the Root Test and
Ratio Test, respectively.

Theorem 1.4.2 (Ratio Test) Consider a sequence a : N0 → R. Assume that the
limit

lim
n→∞

|an+1|
|an|

= R

exists (possibly infinite). Then,

∞∑
n=1

|an| <∞ if R < 1(1.8)

and
∞∑
n=1

|an| =∞ if 1 < R.(1.9)

Theorem 1.4.3 (Root Test) Consider a sequence a : N0 → R. Assume that the
limit

lim
n→∞

n
√
|an| = R

exists. Then,
∞∑
n=1

|an| <∞ if R < 1(1.10)

and
∞∑
n=1

|an| =∞ if 1 < R.(1.11)
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1.5 Power series
In a number of places we shall need to understand the behavior of series that
belong to the class of power series. With any sequence a : N0 → R we associate
the formal power series

∞∑
n=1

anz
n, z ∈ C.

A natural question arises as to when such formal series are in fact convergent. In
particular, we define the domain of convergence of the power series as the set C
given by

C = {z ∈ C :
∞∑
n=0

|an||z|n <∞}.

This region is determined by the asymptotic behavior of the sequence a : N0 → R.
This is the content of the following well-known result which is a consequence of
the Root Test (applied to the sequence {anzn, n = 0, 1, . . .}).

Theorem 1.5.1 With
R = lim sup

n→∞

n
√
|an|,

we have
∞∑
n=1

|an||z|n <∞ if |z| < R−1

and
∞∑
n=1

|an||z|n =∞ if R−1 < |z|

The open disk {z ∈ C : |z| < R−1} is therefore contained in C.
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Chapter 2

Probability distribution functions
and their transforms

A number of developments concerning rvs and their probability distribution func-
tions are sometimes best handled through transforms associated with them. There
are a number of such transforms with varying ranges of applications. Here we
focus mainly on the notion of characteristic function.

2.1 Definitions

With any rv X : Ω→ R, we associate its characteristic function ΦX : R→ C
given by

ΦX(θ) := E
[
eiθX

]
, θ ∈ R.(2.1)

The definition (2.1) is well posed since for each θ in R, the rvs Ω→ R : ω →
cos (θX(ω)) and Ω→ R : ω → sin (θX(ω)) are both bounded. As a result, their
expected values E [cos (θX)] and E [sin (θX)] are well defined. This fact allows
us to make sense of (2.1) in the usual way by linearity through

E
[
eiθX

]
= E [cos (θX) + i sin (θX)] = E [cos (θX)] + iE [sin (θX)] .

Characteristic functions are akin to Fourier transforms. In fact, if the rv X
admits a probability density function fX : R→ R+, then

ΦX(θ) =

∫
R
eiθxfX(x)dx, θ ∈ R.

13
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Much of the discussion makes use of the elementary relation

eiθx − 1 =

∫ x

0

iθeiθsds, x, θ ∈ R(2.2)

so that the bounds ∣∣eiθx − 1
∣∣ ≤ ∫ x

0

∣∣iθeiθs∣∣ ds ≤ |θ|x(2.3)

hold.1 Obviously, the characteristic function ΦX of the rv X is determined by its
probability distribution function FX : R→ [0, 1].

2.2 Basic properties
Here are some simple properties.

Theorem 2.2.1 Consider a rv X : Ω→ R with characteristic function ΦX : R→
C given by (2.1). It satisfies the following properties:

(i) Boundedness: We have

|ΦX(θ)| ≤ ΦX(0) = 1 θ ∈ R.(2.4)

(ii) Uniform continuity on R: We have

lim
δ→0

sup (|ΦX(θ + δ)− ΦX(θ)| , θ ∈ R) = 0.(2.5)

(iii) Positive semi-definiteness: For every n = 1, 2, . . ., we have

n∑
k=1

n∑
`=1

ΦX(θk − θ`)zkz?` ≥ 0(2.6)

with arbitrary z1, . . . , zn in C.

1With ab in R, we have
|a+ ib| =

√
a2 + b2 ≤ |a|+ |b|.
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Proof. (i) It is plain that ΦX(0) = 1. Next,

|ΦX(θ)| ≤ E
[∣∣eiθX∣∣] = 1, θ ∈ R.

(ii) Fix θ and δ in R. Since

ei(θ+δ)X − eiθX = eiθX
(
eiδX − 1

)
,

it follows that

|ΦX(θ + δ)− ΦX(θ)| =
∣∣E [ei(θ+δ)X]− E

[
eiθX

]∣∣
=

∣∣E [(eiδX − 1
)
eiθX

]∣∣
≤ E

[∣∣(eiδX − 1
)
eiθX

∣∣]
= E

[∣∣eiδX − 1
∣∣] ,

so that

sup (|ΦX(θ + δ)− ΦX(θ)| , θ ∈ R) ≤ E
[∣∣eiδX − 1

∣∣] .(2.7)

Uniform continuity follows if we can show that

lim
δ→0

E
[∣∣eiδX − 1

∣∣] = 1.

This last statement is a simple consequence of the Bounded Convergence Theo-
rem.

(iii) Fix n = 1, 2, . . . and pick arbitrary z1, . . . , zn in C: It is plain that

n∑
k=1

n∑
`=1

ΦX(θk − θ`)zkz?`

=
n∑
k=1

n∑
`=1

E
[
ej(θk−θ`)X

]
zkz

?
`

= E

[
n∑
k=1

n∑
`=1

ej(θk−θ`)Xzkz
?
`

]

= E

[
n∑
k=1

n∑
`=1

ejθkXe−θ`Xzkz
?
`

]
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= E

[(
n∑
k=1

ejθkXzk

)(
n∑
`=1

ejθ`Xz`

)?]

= E

∣∣∣∣∣
n∑
k=1

ejθkXzk

∣∣∣∣∣
2
 ≥ 0.(2.8)

2.3 Bochner’s Theorem
Sometimes a function Φ : R → C arises in the discussion, and it is imperative to
know whether it is the characteristic function of some rv. The terminology given
next should facilitate the discussion.

A function Φ : R → C is said to be a characteristic function if there exists a
rv X : Ω :→ R such that

Φ(θ) = E
[
eθX
]

= ΦX(θ), θ ∈ R.

Alternatively, a function Φ : R→ C is said to be a characteristic function if there
exists a probability distribution F : R→ [0, 1] such that

Φ(θ) =

∫
R
eitxdF (x), θ ∈ R.

Not every function Φ : R :→ C is a characteristic function. That much is clear
from the basic properties derived in Theorem 2.2.1. Interestingly enough the three
properties given there turn out to be sufficient. This is a consequence of a deep
result of Harmonic Analysis, known as the Bochner-Herglotz Theorem [?, Thm.
6.5.2, p. 179].

Theorem 2.3.1 A function Φ : R → C is a characteristic function if it is (i)
bounded with |Φ(θ)| ≤ Φ(0) = 1 for all θ in R; (ii) uniformly continuous on R;
and (iii) positive semi-definite.



2.4. EASY ANALYTICAL FACTS 17

The property of positive semi-definiteness already implies the boundedness
property (i). It also implies uniform continuity if Φ : R→ C is continuous at θ =
0 [?, Thm. 6.5.1, p. 178]. This gives rise to the following sharp characterizzation.

Theorem 2.3.2 A function Φ : R → C is a characteristic function if and only if
it is positive semi-definite and continuous at θ = 0 with Φ(0) = 1.

2.4 Easy analytical facts
We begin with a simple fact that will prove useful in a number of places.

Theorem 2.4.1 Fix x and θ in R. For each k = 1, 2, . . ., the expansion

eiθx =
k∑
`=0

1

`!
(iθx)` +Rk(x; θ)(2.9)

holds with the remainder term given by

Rk(x; θ) = (iθ)k
∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt.(2.10)

Proof. The proof proceed by induction: Throughout θ and x in R are scalars held
fixed.

Basis step For k = 1, we use (2.2) to get

eiθx − 1 =

∫ x

0

iθeiθtdt

=

∫ x

0

iθ
(
eiθt − 1

)
dt+

∫ x

0

iθdt

= iθx+ iθ

∫ x

0

(
eiθt − 1

)
dt

= iθx+R1(x; θ)(2.11)

by direct inspection.
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Induction step Now assume that (2.10)-(2.10) holds for some k = 1, 2, . . .. It
is plain that

∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt

=

∫ x

0

(x− t)k−1

(k − 1)!

(∫ t

0

iθeiθsds

)
dt

=

∫ x

0

(∫ t

0

(x− t)k−1

(k − 1)!
iθeiθsds

)
dt

=

∫ x

0

(∫ x

s

(x− t)k−1

(k − 1)!
iθeiθsdt

)
ds

=

∫ x

0

(∫ x

s

(x− t)k−1

(k − 1)!
dt

)
iθeiθsds

=

∫ x

0

iθ
(x− s)k

k!
eiθsds(2.12)

since ∫ x

s

(x− t)k−1

(k − 1)!
dt =

[
−(x− t)k

k!

]x
s

=
(x− s)k

k!
, 0 ≤ s ≤ x.

Therefore, we have

Rk(x; θ) = (iθ)k
∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt

= (iθ)k+1

∫ x

0

(x− s)k

k!
eiθsds

= (iθ)k+1

∫ x

0

(x− s)k

k!

(
eiθs − 1

)
ds+ (iθ)k+1

∫ x

0

(x− s)k

k!
ds

= Rk+1(x; θ) + (iθ)k+1 xk+1

(k + 1)!
(2.13)

and the proof of the induction step is now completed.
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2.5 Characteristic functions and moments
Since the probability distribution function of the rv X can be recovered from its
characteristic function, it is not unreasonable to expect that there might be simple
ways to recover moments whenever they exist and are finite. This is explored
below.

Consider a rv X : Ω → R with characteristic function ΦX : R → C given by
(2.1). Fix θ in R. It follows from Theorem 2.4.1 that

eiθX −
k∑
`=0

1

`!
(iθX)` = Rk(X; θ)(2.14)

Therefore, if the rv X has a finite moment of order k for some k = 1, 2, . . ., the
expectation

E [Rk(X; θ)]

exists and is well defined since all the moments ofX of order ` = 1, 2, . . . , k exist
and are finite. Thus, the relationship

E
[
eiθX

]
=

k∑
`=0

1

`!
(iθ)` E

[
X`
]

+ E [Rk(X; θ)](2.15)

does hold. This suggests the following result.

Theorem 2.5.1 Consider a rv X : Ω → R with characteristic function ΦX :
R → C given by (2.1). If E [|X|n] < ∞ for some n = 1, 2, . . ., then for each
k = 1, 2, . . . , n, the characteristic function ΦX : R→ C is everywhere kth differ-
entiable with

dk

dθk
ΦX(θ) = E

[
(iX)k eiθX

]
, θ ∈ R.(2.16)

Proof. If k = 1. Fix θ in R and for each h 6= 0 note that

ΦX(θ + h)− ΦX(θ) = E
[
eiθX

(
eihX − 1

)]
= E

[
eiθX

∫ X

0

iheihtdt

]
(2.17)
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so that
1

h
(ΦX(θ + h)− ΦX(θ)) = E

[
eiθX

∫ X

0

ieihtdt

]
.

The bound ∣∣∣∣eiθX ∫ X

0

ieihtdt

∣∣∣∣ =
∣∣eiθX∣∣ ∣∣∣∣∫ X

0

ieihtdt

∣∣∣∣ ≤ |X|(2.18)

holds uniformly in h 6= 0, whence

lim
h→0

(
eiθX

∫ X

0

ieihtdt

)
= (iX) eiθX

by the Bounded Convergence Theorem. We now conclude that

lim
h→0

1

h
(ΦX(θ + h)− ΦX(θ)) = lim

h→0
E
[
eiθX

∫ X

0

ieihtdt

]
.

= E
[

lim
h→0

(
eiθX

∫ X

0

ieihtdt

)]
= E

[
(iX) eiθX

]
(2.19)

by the Dominated Convergence Theorem and the conclusion (2.16) holds for k =
1.

If k ≥ 2, we proceed by induction: The basis step was just established. To es-
tablish the induction step, assume that for each ` = 1, . . . , k−1, the characteristic
function ΦX : R→ C is everywhere `th differentiable with

d`

dθ`
ΦX(θ) = E

[
(iX)` eiθX

]
, θ ∈ R.(2.20)

Under the assumption E
[
|X|k

]
< ∞, we shall now show that the characteristic

function ΦX : R→ C is everywhere (`+ 1)rst differentiable with

d`+1

dθ`+1
ΦX(θ) = E

[
(iX)`+1 eiθX

]
, θ ∈ R.(2.21)

Indeed, for every h 6= 0, we have

d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ) = E

[
(iX)`

(
ei(θ+h)X − eiθX

)]
= E

[
(iX)` eiθX

(
eihX − 1

)]
= E

[
(iX)` eiθX

∫ X

0

iheihtdt

]
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so that

1

h

(
d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ)

)
= E

[
(iX)` eiθX

∫ X

0

ieihtdt

]
Again we see that ∣∣∣∣(iX)` eiθX

∫ X

0

ieihtdt

∣∣∣∣ ≤ |X|`+1

uniformly in h 6= 0 with E
[
|X|`+1

]
<∞ by assumption. Invoking the Dominated

Convergence Theorem we conclude that

lim
h→0

1

h

(
d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ)

)
= lim

h→0
E
[
(iX)` eiθX

∫ X

0

ieihtdt

]
= E

[
(iX)` eiθX lim

h→0

∫ X

0

ieihtdt

]
= E

[
(iX)`+1 eiθX

]
,(2.22)

and this establishes (2.21) holds. This concludes the induction step as we have
now shown that (2.20) holds for ` = 1, . . . , k.
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Chapter 3

Convergence of random variables

In Chapter 1 we reviewed basic notions of convergence in R. In the present chapter
we turn to developing a convergence theory for sequences of rvs.

Before we proceed several remarks are in order:
Basic points: (i) Compatibility with convergence in R (ii) Dual perspective on

rvs: mappings vs. probability distributions!

3.1 Almost sure convergence

Consider rvs {X,Xn, n = 1, 2, . . .} defined on some probability triple (Ω,F ,P).

The sequence of rvs {Xn, n = 1, 2, . . .} converges almost surely (a.s.) to the
rv X if P [C] = 1 where C is the event

C = {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}.

We shall write limn→∞Xn = X a.s. Sometimes the qualifier “almost sure(ly)”
is replaced by the qualifier “with probability one” (often abbreviated as wp 1), in
which case we write limn→∞Xn = X wp 1.

It is easy to see that the convergence set C is indeed an event in F since

C = ∩∞k=1 ∪∞n=1 ∩∞m=n

[
|Xn −X| ≤

1

k

]
.

23
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The following notation will prove convenient in what follows: Pick ε > 0
arbitrary, and for each n = 1, 2, . . ., define the events

An(ε) = [|Xn −X| ≤ ε]

and

Bn(ε) = ∩m≥nAm(ε)

= [|Xn −X| ≤ ε, m = n, n+ 1, . . .] .(3.1)

Theorem 3.1.1 The sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv
X if and only if

P [B∞(ε)] = 1, ε > 0(3.2)

with
B∞(ε) = ∪∞n=1Bn(ε).(3.3)

Proof. With this notation, the characterization of C given earlier can now be
expressed in the more compact form

C = ∩∞k=1B∞(k−1).

Note also that B∞(ε′) ⊆ B∞(ε) whenever 0 < ε′ < ε. Hence, by the continuity
property of P under monotone limits, we get

P [C] = lim
k→∞

P
[
B∞(k−1)

]
.(3.4)

This last convergence being monotonically decreasing as k increases, we conclude
that P [C] = 1 if and only if

P
[
B∞(k−1)

]
= 1, k = 1, 2, . . . .

The conclusion follows since for every ε > 0 there exists a positive integer k such
that (k + 1)−1 ≤ ε ≤ k−1 with B∞((k + 1)−1) ⊆ B∞(ε) ⊆ B∞(k−1).

This simple observation paves the way for the following simple criterion for
a.s. convergence.
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Theorem 3.1.2 The sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv
X if for every ε > 0, it holds that

∞∑
n=1

P [|Xn −X| > ε] <∞.(3.5)

Proof. Pick ε > 0. Note that B∞(ε) = lim infn→∞An(ε), or equivalently,
B∞(ε)c = lim supn→∞An(ε)c. The first part of the Borel-Cantelli Lemma now
yields P [B∞(ε)c] = 0 provided

∞∑
n=1

P [An(ε)c] <∞.

This is equivalent to P [B∞(ε)] = 1 provided (3.5) holds, and the proof is com-
pleted by invoking Theorem 3.1.1.

The sequence of rvs {Xn, n = 1, 2, . . .} is said to be completely convergent to the
rv X if for every ε > 0, we have

∞∑
n=1

P [|Xn −X| > ε] <∞.(3.6)

By Theorem 3.1.2 we see that complete convergence implies a.s. convergence.
But complete convergence is only a sufficient condition for a.s. convergence, and
not a necessary condition. The next example shows that the converse does not
hold.
A.s. convergence does not imply complete convergence
Take Ω = [0, 1],F = B(R) and P is Lebesgue measure λ. Define the rvs {Xn, n =
1, 2, . . .} to be

Xn =


1 if 0 ≤ ω ≤ 1− 1

n

0 if 1− 1
n
< ω ≤ 1
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for every n = 1, 2, . . .. Fix ω in [0, ). It is plain that limn→∞Xn(ω) = 0, and the
sequence {Xn, n = 1, 2, . . .} converges a.s. to the rv X ≡ 0. However, for every
ε in (0, 1), we get

P [|Xn| > ε] =
1

n
, n = 1, 2, . . .

whence (3.6) fails since
∑∞

n=1
1
n

=∞.

3.2 Convergence in probability

Consider rvs {X,Xn, n = 1, 2, . . .} defined on some probability triple (Ω,F ,P).

The sequence of rvs {Xn, n = 1, 2, . . .} converges in probability to the rv X if
for every ε > 0, we have

lim
n→∞

P [|Xn −X| > ε] = 0.

We shall write Xn
P−→ nX .

Convergence in probability admits the following Cauchy criterion.

Theorem 3.2.1 (Cauchy criterion for convergence in probability) The sequence
of rvs {Xn, n = 1, 2, . . .} converges in probability if and only if for every ε > 0,
we have

lim
n→∞

(
sup
m≥n

P [|Xn −Xm| > ε]

)
= 0.(3.7)

A.s. convergence is a stronger notion of convergence than convergence in
probability.

Theorem 3.2.2 Almost sure convergence implies convergence in probability: If
the sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv X , then it also
converges in probability to the rv X .
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Proof. Pick ε > 0 arbitrary. We have Bn(ε) ⊆ An(ε) for each n = 1, 2, . . .,
whence

P [Bn(ε)] ≤ P [An(ε)] , n = 1, 2, . . .

The sets {Bn(ε), n = 1, 2, . . .} being non-decreasing, we readily conclude
that limn→∞ P [Bn(ε)] = P [B∞(ε)] with B∞(ε) defined at (3.3). It is now plain
that

P [B∞(ε)] = lim
n→∞

P [Bn(ε)] ≤ lim inf
n→∞

P [An(ε)] .

By Theorem 3.1.1 the a.s. convergence of the sequence {Xn, n = 1, 2, . . .} im-
plies P [B∞(ε)] = 1, and this immediately implies lim infn→∞ P [An(ε)] = 1.
Thus, limn→∞ P [An(ε)] = 1, and the sequence {Xn, n = 1, 2, . . .} converges in
probability.

Here is an example of a sequence which converges in probability but does not
converge almost surely:
A counterexample
Take Ω = [0, 1],F = B(R) and P is Lebesgue measure λ. Define the rvs {Xn, n =
1, 2, . . .} as follows: For each n = 1, 2, . . ., there exists a unique integer k =
0, 1, . . . such that 2k ≤ n < 2k+1 so that n = 2k + m for some unique m =
0, . . . , 2k − 1. Define

Xn =


1 if ω ∈ In

0 if ω /∈ In

where In = (m2−k, (m+ 1)2−k).
The set Ωb of boundary points

Ωb =
{
m2−k, m = 0, . . . , 2k, k = 0, 1, . . .

}
is countable, hence P [Ωb] = 0. With ω not in Ωb we note that Xn(ω) = 0 and
Xn(ω) = 1 infinitely often, so that lim infn→∞Xn(ω) = 0 < lim supn→∞Xn(ω) =
1. The sequence {Xn, n = 1, 2, . . .} therefore does not converge a.s.. However,
with X = 0, we have limn→∞ P [|Xn −X| > ε] = 0 for every ε > 0 since

P [|Xn −X| > ε] =


P [In] if 0 < ε < 1

0 if 1 ≥ ε.
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The sequence {Xn, n = 1, 2, . . .} indeed converges in probability.

Yet, despite this counterexample which shows that a.s. convergence is strictly
stronger than convergence in probability, there is a partial converse in the follow-
ing sense.

Theorem 3.2.3 Convergence in probability implies almost sure convergence but
only along a subsequence: If the sequence of rvs {Xn, n = 1, 2, . . .} converges in
probability to the rv X , then there exists a (deterministic) subsequence N0 → N0

with
nk < nk+1, k = 1, 2, . . .

such that the subsequence of rvs {Xnk , k = 1, 2, . . .} converges almost surely to
X .

Proof. The assumed convergence in probability of the sequence of rvs {Xn, n =
1, 2, . . .} to the rv X amounts to

lim
n→∞

P [|X −Xn| > ε] = 0, ε > 0.

More precisely, fix ε > 0. Then, for every δ > 0 there exists a positive integer
n?(ε, δ) such that

P [|X −Xn| > ε] ≤ δ, n ≥ n?(ε, δ).

We now use this observation (with ε = k−1 and δ = 2−k) as follows: For each
k = 1, 2, . . ., there exists a positive integer nk such that

P
[
|X −Xn| > k−1

]
≤ 2−k, n ≥ nk.

It is always possible to select nk as any positive integer satisfying

max (n?(ε, δ), nk−1) < nk

with the convention n0 = 0. This construction guarantees nk < nk+1 for all
k = 1, 2, . . ..
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Pick ε > 0 and introduce the integer k(ε) = bε−1c. With the quantities just
introduced we have

∞∑
k=1

P [|Xnk −X| > ε]

=
∑

k=1,2,...: k−1>ε

P [|Xnk −X| > ε] +
∑

k=1,2,...: k−1≤ε

P [|Xnk −X| > ε]

≤ k(ε) +
∞∑

k=k(ε)

P
[
|Xnk −X| > k−1

]
≤ k(ε) +

∞∑
k=k(ε)

2−k

and the conclusion
∑∞

k=1 P [|Xnk −X| > ε] < ∞ follows. The desired a.s. con-
vergence of the sequence of rvs {Xnk , k = 1, 2, . . .} is now a consequence of
Theorem 3.1.2.

3.3 Convergence in the rth mean
Consider rvs {X,Xn, n = 1, 2, . . .} defined on some probability triple (Ω,F ,P).

With r ≥ 1, the sequence of rvs {Xn, n = 1, 2, . . .} converges to the rv X in
the rth mean if the rvs {Xn, n = 1, 2, . . .} satisfy

E [|Xn|r] <∞, n = 1, 2, . . .(3.8)

and
lim
n→∞

E [|Xn −X|r] = 0.(3.9)

We shall write Xn
Lr−→ nX . The case r = 2 is often used in applications where it

is referred as mean-square convergence. The case r = 1 also occurs with some
regularity, and is referred as mean convergence.

It follows from (3.9) that E [|Xn −X|r] < ∞ for all n sufficiently large,
whence the rvX necessarily has a finite moment of order r by virtue of Minkowski’s
inequality under (3.8).
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Convergence in the rth mean also admits a Cauchy criterion which is given
next.

Theorem 3.3.1 (Cauchy criterion for rth mean convergence) With r ≥ 1, the
sequence of rvs {Xn, n = 1, 2, . . .} converges in the rth mean if and only if

lim
n→∞

(
sup
m≥n

E [|Xn −Xm|r]
)

= 0.(3.10)

Convergence in the rth mean becomes more stringent as r increases. This is
not surprising if we recall that for any rv ξ : Ω→ R, we have

E [|ξ|s] ≤ 1 + E [|ξ|r] , 1 ≤ s < r

as a result of the trivial identity xs ≤ 1 + xr for x ≥ 0.

Theorem 3.3.2 With 1 ≤ s < r, convergence in the rth mean implies conver-
gence in the sthmean: If the sequence of rvs {Xn, n = 1, 2, . . .} converges in the
rth mean to the rv X , then the sequence of rvs {Xn, n = 1, 2, . . .} also converges
in the sth mean to the rv X .

Proof. This is a simple consequence of Lyapounov’s inequality

E [|Xn −X|s]
1
s ≤ E [|Xn −X|r]

1
r , n = 1, 2, . . .

Next, we compare rth mean convergence to convergence in probability.

Theorem 3.3.3 Convergence in the rth mean implies convergence in probability:
If the sequence of rvs {Xn, n = 1, 2, . . .} converges in rth mean to the rv X for
some r ≥ 1, then it also converges in probability to the rv X .

Proof. Pick ε > 0 arbitrary. Markov’s inequality yields

P [|Xn −X| > ε] ≤ E [|Xn −X|r]
εr

, n = 1, 2, . . .
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so that limn→∞ P [|Xn −X| > ε] = 0 as soon as limn→∞ E [|Xn −X|r] = 0.

The converse is more delicate as the next example already illustrates; see also
Section 3.5.
(Counter)examples
Consider a collection of rvs {Xn, n = 1, 2, . . .} such that

Xn =


0 with probability 1− n−α

nβ with probability n−α

for each n = 1, 2, . . . where α > 0 and β > 0. Thus,

P [|Xn| > ε] = n−α, n = 1, 2, . . .

as soon as 0 < ε ≤ 1 so that Xn
P−→ n0.

On the other hand, with r ≥ 1, we find

E [|Xn|r] = 0
(
1− n−α

)
+ nrβn−α = nrβ−α, n = 1, 2, . . .

so that

lim
n→∞

E [|Xn|r] =


0 if rβ < α
1 if rβ = α
∞ if rβ > α.

It is now plain that Xn
Lr−→ n0 when rβ < α but no such conclusion can be

reached when rβ ≥ α.

We close this section with a simple observation, based on Theorem 3.1.2,
which allows us to determine a.s. convergence in the presence of convergence
in the rth mean.

Theorem 3.3.4 If the sequence of rvs {Xn, n = 1, 2, . . .} converges in rth mean
to the rv X for some r ≥ 1, then it also converges almost surely to the rv X
whenever the condition

∞∑
n=1

E [|Xn −X|r] <∞

holds.
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Proof. By Markov’s inequality, we have

P [|Xn −X| > ε] ≤ E [|Xn −X|r]
εr

, n = 1, 2, . . .

for every ε > 0, whence
∞∑
n=1

P [|Xn −X| > ε] ≤ 1

εr

∞∑
n=1

E [|Xn −X|r] ,

and the conclusion is immediate by Theorem 3.1.2.

3.4 Convergence in distribution
For any rv X : Ω → R, its probability distribution function FX : R → [0, 1] sat-
isfies the following properties: (i) it is non-decreasing; (ii) it has left-limit and is
right-continuous at every point; and (iii) limx→−∞ FX(x) = 0 and limx→∞ FX(x) =
1.

Let C(FX) denote the set of points in R where FX : R→ [0, 1] is continuous,
i.e.,

C(FX) = {x ∈ R : FX(x−) = FX(x)}.
The complement C(FX)c of C(FX) in R consists of the points where FX : R →
[0, 1] is not continuous.

Theorem 3.4.1 For any rv X : Ω→ R, its probability distribution function FX :
R→ [0, 1] has the property that C(FX) is a countable subset of R.

Proof. For each n = 1, 2, . . ., let Dn denote the collection of points of disconti-
nuity in C(FX)c whose discontinuity jump lies in the interval ( 1

n+1
, 1
n
], i.e.,

Dn ≡
{
x ∈ C(FX)c :

1

n+ 1
< FX(x)− FX(x−) ≤ 1

n

}
Noting that

|Dn| ·
1

n+ 1
≤
∑
x∈Dn

(FX(x)− FX(x−)) ≤ 1,
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it follows that |Dn| ≤ n+ 1. The desired result is now immediate since C(FX)c =
∪∞n=1Dn.

The sequence of rvs {Xn, n = 1, 2, . . .} converges in distribution to the rv X
if

lim
n→∞

FXn(x) = FX(x), x ∈ C(FX)..(3.11)

We shall write Xn =⇒n X or Xn
L−→ nX . Some authors refer to this mode of

convergence as convergence in law or as weak convergence.

As this mode of convergence involves only the probability distribution func-
tions, it is sometimes convenient to define this notion without any reference to
the rvs (viewed as mappings): The sequence of probability distribution functions
{Fn, n = 1, 2, . . .} converges in distribution to the probability distribution func-
tion F if

lim
n→∞

Fn(x) = F (x), x ∈ C(FX)..(3.12)

We shall write Fn =⇒n F or Fn
L−→ nF .

At this point the reader may wonder as to why the definition of distributional
convergence requires the convergence (3.11) only on the set of points of continuity
of the limit. This is best seen on the following example.
The importance of discontinuity points
Consider the two sequences of rvs {Xn, n = 1, 2, . . .} and {X ′n, n = 1, 2, . . .}
given by

Xn = − 1

n
and X ′n =

1

n
, n = 1, 2, . . .

defined on some probability triple (Ω,F ,P). Both sequences converge as deter-
ministic sequences with limn→∞Xn(ω) = 0 and limn→∞ Yn(ω) = 0 for every ω
in Ω. Yet it is easy to check that

lim
n→∞

FXn(x) =


0 if x < 0

1 if x ≥ 0
and lim

n→∞
FX′n(x) =


0 if x ≤ 0

1 if x > 0
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Theorem 3.4.2 Convergence in probability implies convergence in distribution:
If the sequence of rvs {Xn, n = 1, 2, . . .} converges in probability to the rv X ,
then it also converges in distribution.

Proof. Fix n = 1, 2, . . . and pick x in R. With ε > 0, we note that

FXn(x) = P [Xn ≤ x]

= P [Xn ≤ x,X ≤ x+ ε] + P [Xn ≤ x, x+ ε < X]

≤ P [X ≤ x+ ε] + P [|Xn −X| > ε]

= FX(x+ ε) + P [|Xn −X| > ε](3.13)

In a similar way, we find

FX(x− ε) = P [X ≤ x− ε]
= P [X ≤ x− ε,Xn ≤ x] + P [X ≤ x− ε, x < Xn]

≤ P [Xn ≤ x] + P [|Xn −X| > ε]

= FXn(x) + P [|Xn −X| > ε](3.14)

Let n go to infinity in these inequalities. Under the assumed convergence in
probability, we find

lim sup
n→∞

FXn(x) ≤ FX(x+ ε)

and
FX(x− ε) ≤ lim inf

n→∞
FXn(x)

Picking x to be a point of continuity for FX , we get

lim
ε↓0

FX(x+ ε) = lim
ε↓0

FX(x− ε) = FX(x).

Therefore,

lim sup
n→∞

FXn(x) = lim
ε↓0

(
lim sup
n→∞

FXn(x)

)
≤ lim

ε↓0
FX(x+ ε)

= FX(x)



3.4. CONVERGENCE IN DISTRIBUTION 35

and

FX(x) = lim
ε↓0

FX(x− ε)

≤ lim
ε↓0

(
lim inf
n→∞

FXn(x)
)

= lim inf
n→∞

FXn(x)

whence lim infn→∞ FXn(x) = lim supn→∞ FXn(x) = FX(x). It follows that

lim inf
n→∞

FXn(x) = FX(x), C(FX).

Although weak convergence is weaker than convergence in probability, there
is one situation where they are equivalent.

Theorem 3.4.3 With c a scalar in R, the sequence of rvs {Xn, n = 1, 2, . . .}
converges in probability to the degenerate rv X = c if and only if the sequence of
rvs {Xn, n = 1, 2, . . .} converges in distribution to the degenerate rv X = c.

Proof. Assume that the sequence of rvs {Xn, n = 1, 2, . . .} converges in distri-
bution to the degenerate rv X = c. Fix ε > 0. For every n = 1, 2, . . ., we observe
that

P [|Xn −X| ≤ ε] = P [|Xn − c| ≤ ε]

= P [c− ε ≤ Xn ≤ c+ ε]

= P [Xn ≤ c+ ε]− P [Xn < c− ε]
= FXn(c+ ε)− FXn((c− ε)−)(3.15)

so that

P [|Xn −X| > ε] = 1− FXn(c+ ε) + FXn((c− ε)−)

≤ 1− FXn(c+ ε) + FXn(c− ε).(3.16)

Recall that FX(x) = 0 (resp. FX(x) = 1) if x < c (resp. c ≤ x) so
that the only point of discontinuity of FX is located at x = c. Thus, under
the assumed convergence in distribution, we have limn→∞ FXn(c + ε) = 1 and
limn→∞ FXn(c− ε) = 0, whence limn→∞ P [|Xn −X| > ε] = 0 as desired.
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3.5 Uniform integrability
If a rv X has finite first moment, we know that

lim
B→∞

E [1 [|X| > B] |X|] = 0.(3.17)

This is a simple consequence of the Dominated Convergence Theorem (since
YB ≤ |X| where YB = 1 [|X| > B] |X| for all B > 0). Thus, for every ε > 0,
there exists B?(ε) > 0 such that

E [1 [|X| > B] |X|] ≤ ε, B ≥ B?(ε).(3.18)

As we consider a collection of rvs {Xn, n = 1, 2, . . .} with finite first mo-
ments, we can certainly assert the following: For each n = 1, 2, . . . and every
ε > 0, there exists B?(ε;n) > 0 such that

E [1 [|Xn| > B] |Xn|] ≤ ε, B ≥ B?(ε;n).(3.19)

This is a direct consequence of (3.18). However, sometimes it is required that
this condition holds uniformly with respect to n = 1, 2, . . . in that B?(ε;n) can
be selected independently of n. This leads to the following stronger notion of
integrability for a sequence of rvs.

The collection of rvs {Xn, n = 1, 2, . . .} is said to be uniformly integrable if

lim
B→∞

(
sup

n=1,2,...
E [1 [|Xn| > B] |Xn|]

)
= 0.(3.20)

In other words, for every ε > 0, there exists B?(ε) > 0 such that

sup
n=1,2,...

E [1 [|Xn| > B] |Xn|] ≤ ε, B ≥ B?(ε).(3.21)

Interest in this notion arises from the need to have an easy characterization of
situations where interchange between limits and expectation can take place.

Theorem 3.5.1 Consider a collection of rvs {X,Xn, n = 1, 2, . . .} such that
limn→∞Xn = X a.s. If the collection of rvs {Xn, n = 1, 2, . . .} is uniformly
integrable, then E [|X|] <∞ and

lim
n→∞

E [Xn] = E [X](3.22)
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3.6 Weak convergence via characteristic functions

Weak convergence of a sequence of rvs can be characterized through the limiting
behavior of the corresponding sequence of characteristic functions.

Theorem 3.6.1 The sequence of rvs {Xn, n = 1, 2, . . .} converges weakly to the
rv X if and only if

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.

This result suggests the following strategy: Consider the limit

Φ(θ) = lim
n→∞

ΦXn(θ), θ ∈ R(3.23)

and identify the rv X whose characteristic function coincides with Φ : R → C.
However, a word of caution is in order as the limit (3.23) may not necessarily de-
fine the characteristic function of a rv as can be seen from the following example.
The limit of characteristic functions is not always a characteristic function
For each n = 1, 2, . . ., the rv Xn is the uniform rv on the interval (−n, n). Easy
calculations show that

ΦXn(θ) =

∫ n

−n

eiθx

2n
dx =


sin(nθ)
n

if θ 6= 0

1 if θ = 0,

(3.24)

so that

Φ(θ) = lim
n→∞

ΦXn(θ) =


0 if θ 6= 0

1 if θ = 0.

Obviously, there are no rv X whose characteristic function coincides with the
limit.

This difficulty can be remedied with the help of the next result by simply
checking continuity at θ = 0 for the limit (3.23). This is a consequence of the
Bochner-Herglotz Theorem.
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Theorem 3.6.2 Consider a sequence of rvs {Xn, n = 1, 2, . . .} such that the lim-
its

Φ(θ) = lim
n→∞

ΦXn(θ), θ ∈ R

all exist. If Φ : R→ C is continuous at θ = 0, then it is the characteristic function
of some rv X , and Xn =⇒n X .

Proof. For each n = 1, 2, . . ., the function ΦXn : R→ C is a characteristic func-
tion. Therefore, by Theorem 2.3.1 it is (i) bounded with |ΦXn(θ)| ≤ ΦXn(0) = 1
for all θ in R; (ii) uniformly continuous on R; and (iii) positive semi-definite.
Properties (i) and (iii) are clearly inherited by the limit Φ : R → C. Therefore,
by Theorem 2.3.2 the assumed continuity of Φ implies that it is a characteristic
function, i.e., there exists a rv X such that Φ = ΦX . Invoking Theorem 3.6.1 we
conclude that Xn =⇒n X .

3.7 Weak convergence via the Skorokhod represen-
tation

Consider a collection {F, Fn, n = 1, 2, . . .} of probability distribution functions
on R.

Theorem 3.7.1 If the sequence of probability distribution functions {Fn, n =
1, 2, . . .} converges weakly to F , then there exists a probability triple (Ω?,F?,P?)
and a collection of R-valued rvs {X?, X?

n, n = 1, 2, . . .} all defined on Ω? with
the following properties:

(i) We have
F (x) = P?[X? ≤ x], x ∈ R(3.25)

and

Fn(x) = P?[X?
n ≤ x]

x ∈ R
n = 1, 2, . . .

(3.26)

(ii) The rvs {X?
n, n = 1, 2, . . .} converges a.s. to X? (under P?), i.e.,

P?
[{
ω? ∈ Ω? : lim

n→∞
X?
n(ω?) = X?(ω?)

}]
= 1
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3.8 Functional characterization of convergence in dis-
tribution

The following equivalent characterizations of distributional convergence have many
use.

Theorem 3.8.1 Consider the R-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). The following three statements are equivalent:

(i) The rvs {Xn, n = 1, 2, . . .} converge in distribution to the rv X , i.e.,

lim
n→∞

FXn(x) = FXx), x ∈ C(FX).

(ii) For every bounded continuous mapping g : R→ R, it holds that

lim
n→∞

E [g(Xn)] = E [g(X)] .(3.27)

(iii) The characteristic functions converge in the sense that

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.(3.28)

Proof. It follows from Theorem 3.7.1 that (i) implies the validity of (ii): Indeed,
with the notation used in that result, consider the probability triple (Ω?,F?,P?)
and the R-valued rvs {X?, X?

n, n = 1, 2, . . .} all defined on Ω? such that

P [X ≤ x] = P?[X? ≤ x], x ∈ R(3.29)

and

P [Xn ≤ x] = P?[X?
n ≤ x]

x ∈ R
n = 1, 2, . . .

(3.30)

with
P?
[
ω? ∈ Ω? : lim

n→∞
X?
n(ω?) = X?(ω?)

]
= 1.

Pick a mapping g : R→ R which is continuous and bounded - Set

Bg ≡ sup
x∈R
|g(x)| <∞.
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Obviously,

E [g(X)] = E? [g?(X?)] and E [g(Xn)] = E? [g?(X?
n)] , n = 1, 2, . . .

It is plain that
lim
n→∞

g(X?
n) = g(X?) P?-a.s.

by the continuity of g, with

|g(X?
n(ω?)| ≤ Bg,

ω? ∈ Ω?

n = 1, 2, . . .

Invoking the Dominated Convergence Theorem we readily conclude that

lim
n→∞

E? [g?(X?
n)] = E? [g?(X?)] .

This completes the proof of the validity of (ii). The proof that (ii) implies (i) is
omitted.

The equivalence of (i) and (iii) is just Theorem ??. Note that (iii) is a sim-
ple consequence of (ii) since for every θ in R the mappings x → cos(θx) and
x→ sin(θx) are bounded and continuous on R.

An immediate consequence of Theorem is the following continuity result for
weak convergence.

Theorem 3.8.2 Consider the R-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). If the rvs {Xn, n = 1, 2, . . .} converge in
distribution to the rv X , then the R-valued rvs {h(Xn), n = 1, 2, . . .} converge
in distribution to the rv h(X) for any continuous mapping h : R→ R, namely

h(Xn) =⇒n h(X).

Proof. The proof follows by a simple application of Theorem 3.10: Pick a
bounded continuous mapping g : R → R. Given the continuous mapping h :
R→ R, we note that the mapping g ◦ h : R→ R given by

g ◦ h(x) = g(h(x)), x ∈ R
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is also a bounded continuous mapping R→ R. Therefore, by Part (ii) of Theorem
3.10 we conclude from the assumed convergence Xn =⇒n X that

lim
n→∞

E [g ◦ h(Xn)] = E [g ◦ h(X)] .

or equivalently,
lim
n→∞

E [g(h(Xn))] = E [g(h(X))] .

Invoking one more time Part (ii) of Theorem 3.10 we now conclude that h(Xn) =⇒n

h(X) as desired.

3.9 Weak convergence of discrete rvs
In this section we consider a collection of discrete rvs {X,Xn, n = 1, 2, . . .}with

P [X ∈ S] = P [Xn ∈ S] = 1, n = 1, 2, . . .

where S = {ai, i ∈ I} is a countable subset of Z.

Theorem 3.9.1 The sequence of discrete rvs Xn =⇒n X converges weakly to
the rv X if and only if

lim
n→∞

P [Xn = ai] = P [X = ai] , i ∈ I.

Proof. Assume first that Xn =⇒n X . Pick a a point of disconitnuity for FX . By
assumption a is an element of Z, so that ε > 0 can be selected so that both a ± ε
are not in Z, whence

lim
n→∞

P [Xn ≤ a± ε] = P [X ≤ a± ε] .(3.31)

Note however that

P [Xn ≤ a− ε] = P [Xn ≤ a+ ε] + P [Xn = a] , n = 1, 2, . . .(3.32)

and
P [X ≤ a− ε] = P [X ≤ a+ ε] + P [X = a] .(3.33)
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since the probability distribution functions are piecewise constant with jumps only
at points in Z.

Let n go to infinity in (3.32). It is plain from (3.31) that limn→∞ P [Xn = a]
exists and is given by

lim
n→∞

P [Xn = a] = P [X ≤ a+ ε]− P [X ≤ a− ε] = P [X = a]

where the last equality follows from (3.33).
Conversely, assume that

lim
n→∞

P [Xn = a] = P [X = a] , a /∈ C(FX)(3.34)

With a Borel subset B in R, we shall show that

lim
n→∞

P [Xn ∈ B] = P [X ∈ B] .(3.35)

This will immediately imply Xn =⇒n X upon specializing B to sets of the form
B = (−∞, x] with x in C(FX). To do so, fix n = 1, 2, . . . and pick A an arbitrary
positive integer A:

We see that

P [Xn ∈ B]

= P [|Xn| ≤ A,Xn ∈ B] + P [|Xn| > A,Xn ∈ B]

=
∑

a∈Z∩B:|a|≤A
P [Xn = a] + P [|Xn| > A,Xn ∈ B](3.36)

while

P [X ∈ B]

= P [|X| ≤ A,X ∈ B] + P [|X| > A,X ∈ B]

=
∑

a∈Z∩B:|a|≤A
P [X = a] + P [|X| > A,X ∈ B] .(3.37)

Substracting we conclude that

|P [Xn ∈ B]− P [X ∈ B]|
≤

∑
a∈Z∩B:|a|≤A

|P [Xn = a]− P [X = a]|+ P [|Xn| > A] + P [|X| > A] .

Let n go to infinity in this last inequality: Using (3.34) we get

lim
n→∞

∑
a∈Z∩B:|a|≤A

|P [Xn = a]− P [X = a]| = 0
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since this sum has at most 2A+ 1 terms, while

lim
n→∞

P [|Xn| > A] = lim
n→∞

(1− P [|Xn| ≤ A])

= 1− P [|X| ≤ A] = P [|X| ≤ A](3.38)

by a similar argument. Collecting these facts we obtain

lim sup
n→∞

|P [Xn ∈ B]− P [X ∈ B]| ≤ 2P [|X| > A] .

Now let A go to infinity in this last inequality and note that

lim
A→∞

(
lim sup
n→∞

|P [Xn ∈ B]− P [X ∈ B]|
)

= 0

and the desired conclusion (3.35) follows since the left handside does not depend
on A

In the more restrictive setting where S ⊆ N, probability generating functions
can be defined, and the following analog of Theorem 3.6.1 holds.

Theorem 3.9.2 The sequence of N-valued rvs {Xn, n = 1, 2, . . .} converges
weakly to the rv X if and only if

lim
n→∞

GXn(z) = GX(z), |z| ≤ 1.

3.10 Convergence in higher dimensions
The discussion so far has been in the context of R-valued rvs. We now outline the
corresponding theory for Rp-valued rvs with p ≥ 1. The first observation is that
the three first modes of convergence, namely a.s. convergence, convergence in
probability and convergence in the rth mean are “metric” notions in the following
sense: The rvs {Xn, n = 1, 2, . . .}

• converge a.s. to the rv X if

lim
n→∞

|Xn −X| = 0 a.s.
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• converge in probability to the rv X if

lim
n→∞

P [|Xn −X| > ε] = 0, ε > 0

• converge in the rth mean (for some r ≥ 1) to the rv X if

lim
n→∞

E [|Xn −X|r] = 0.

They are all expressed in terms of the distance |Xn −X| of Xn to X .
In Rp there are a number of ways to define the distance between two vectors.

Here we limit ourselves to metrics that are induced by norms, so that distance is
measured by

d(x, y) = ‖x− y‖, x, y ∈ Rp

where ‖ · ‖ : Rp → R+ is a norm. Therefore, a natural to define the modes of
convergence for Rp-valued rvs as follows:

Consider any norm ‖ · ‖ : Rp → R+. The Rp-valued rvs {Xn, n = 1, 2, . . .}

• converge a.s. to the rv X if

lim
n→∞

‖Xn −X‖ = 0 a.s.

• converge in probability to the rv X if

lim
n→∞

P [‖Xn −X‖ > ε] = 0, ε > 0

• converge in the rth mean (for some r ≥ 1) to the rv X if

lim
n→∞

E [‖Xn −X‖r] = 0.

Note that all norms on Rp are equivalent in the following sense: If ‖·‖a : Rp → R+

and ‖ · ‖b : Rp → R+ are two different norms, then there exists constants ca|b > 0
and Ca|b > such that

ca|b‖x‖a ≤ ‖x‖b ≤ Ca|b‖x‖a, x ∈ Rp.

Norms often used in applications include
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• The Euclidean norm (or L1-norm):

‖x‖2 =

√√√√ p∑
k=1

|xk|2, x = (x1, . . . , xp) ∈ Rp

• The L1-norm:

‖x‖1 =

p∑
k=1

|xk|, x = (x1, . . . , xp) ∈ Rp

• The Manhattan norm

‖x‖∞ = max(|xk|, k = 1, . . . , p), x = (x1, . . . , xp) ∈ Rp

However when it comes to convergence in distribution matters are quite dif-
ferent because this notion does not rely on a notion of proximity in the range of
the rvs under consideration. Furthermore, probability distribution functions on Rp

are more cumbersome to characterize. So instead of using the definition given in
Section 3.4 we instead rely on the equivalence given in Theorem 3.10

The sequence of Rp-valued rvs {Xn, n = 1, 2, . . .} converges in distribution
to the Rp-valued rv X if for every bounded continuous mapping g : Rp → R, it
holds that

lim
n→∞

E [g(Xn)] = E [g(X)] .(3.39)

Here as well we shall write Xn =⇒n X or Xn
L−→ nX . Some authors also refer

to this mode of convergence as convergence in law or as weak convergence.

Theorem 3.10 has the following multi-dimensional analog.

Theorem 3.10.1 Consider the Rp-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). Then, the rvs {Xn, n = 1, 2, . . .} converge in
distribution to the rv X if and only if

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.(3.40)
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This amounts to
lim
n→∞

E
[
eiθ
′Xn
]

= E
[
eiθ
′X
]
, θ ∈ R.

In the same way that Theorem implied Theorem 3.8.2, we readily see that
Theorem 3.10.1has the following important consequence.

Theorem 3.10.2 Consider the Rp-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). If the rvs {Xn, n = 1, 2, . . .} converge in
distribution to the rv X , then the Rq-valued rvs {h(Xn), n = 1, 2, . . .} converge
in distribution to the Rq-valued rv h(X) for any continuous mapping h : Rp → Rq,
namely

h(Xn) =⇒n h(X).



Chapter 4

The classical limit theorems

The setting of the next four sections is as follows: The rvs {Xn, n = 1, 2, . . .} are
rvs defined on some probability triple (Ω,F ,P). With this sequence we associate
the sums

Sn =
n∑
k=1

Xk, n = 1, 2, . . .

Two types of results will be discussed: The first class of results are known as Laws
of Large Numbers; they deal with the convergence of the sample averages

S̄n =
1

n

n∑
k=1

Xk, n = 1, 2, . . .

The second class of results are called Central Limit Theorems and provide a rate
of convergence in the Laws Large Numbers.

4.1 Weak Laws of Large Numbers (I)
Laws of Large Numbers come in two types which are distinguished by the mode
of convergence used. When convergence in probability is used, we refer to such
results as weak Laws of Large Numbers. The most basic such results is given first.

Theorem 4.1.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|2] <∞. Then,

Sn
n

L2

−→ nE [X] ,(4.1)

47



48 CHAPTER 4. THE CLASSICAL LIMIT THEOREMS

whence
Sn
n

P−→ nE [X] .(4.2)

Proof. For each n = 1, 2, . . ., we note that

E

[∣∣∣∣Snn − E [X]

∣∣∣∣2
]

= E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [X])

∣∣∣∣∣
2


=
1

n2
· Var[Sn](4.3)

with

Var[Sn] =
n∑
k=1

n∑
`=1

Cov[Xk, X`]

=
n∑
k=1

Var[Xk]

= nVar[X](4.4)

since
Cov[Xk, X`] = δ(k; `)Var[X], k, ` = 1, . . . , n

under the enforced independence assumptions.
As a result,

E

[∣∣∣∣Snn − E [X]

∣∣∣∣2
]

=
nVar[X]

n2
=

Var[X]

n2

and the desired conclusions follow.

4.2 Weak Laws of Large Numbers (II)
A careful inspection of the proof of Theorem 4.1.1 suggests a more general result.
Assume that the rvs {Xn, n = 1, 2, . . .} are second-order rvs. For each n =
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1, 2, . . ., we note that

E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2
 =

Var[Sn]

n2
.

By computations similar to the ones used in the proof of Theorem 4.1.1, we find

Var[Sn] = Var[
n∑
k=1

Xk]

=
n∑
k=1

n∑
`=1

Cov[Xk, X`]

=
n∑
k=1

Var[Xk] +
∑

k,`=1, k 6=`

Cov[Xk, X`],(4.5)

whence

E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2


=
1

n2

n∑
k=1

Var[Xk] +
1

n2

∑
k,`=1, k 6=`

Cov[Xk, X`].(4.6)

Theorem 4.2.1 Consider a collection {Xn, n = 1, 2, . . .} of second-order rvs
such that

lim
n→∞

1

n2

n∑
k=1

Var[Xk] = 0.(4.7)

We have
1

n

n∑
k=1

(Xk − E [Xk])
L2

−→ n0(4.8)

and
1

n

n∑
k=1

(Xk − E [Xk])
P−→ n(4.9)

whenever either one of the following conditions holds:
(i) The rvs {Xn, n = 1, 2, . . .} are uncorrelated
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(ii) The rvs {Xn, n = 1, 2, . . .} are negatively correlated, i.e.,

Cov[Xk, X`] ≤ 0,
k 6= `

k, ` = 1, . . . , n

(iii) The rvs {Xn, n = 1, 2, . . .} satisfy the condition

lim
n→∞

1

n2

∑
k,`=1, k 6=`

Cov[Xk, X`] = 0.(4.10)

This result is often applied when the rvs {Xn, n = 1, 2, . . .} have identical
means and variances, namely there exist µ and σ2 > 0 such that

E [Xn] = µ and Var[Xn] = σ2, n = 1, 2, . . .

In that case, condition (4.7) is automatically satisfied and the convergence state-
ments take the simpler form

1

n

n∑
k=1

Xk
L2

−→ n µ(4.11)

and
1

n

n∑
k=1

Xk
P−→ n µ(4.12)

4.3 The classical Weak Law of Large Numbers (III)

As we now show, the finiteness of the second moment of X can be dropped.

Theorem 4.3.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then, we have

Sn
n

P−→ nE [X] .(4.13)
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Proof. Fix n = 1, 2, . . . and θ in R. Note that

E
[
eiθ(

Sn
n
−E[X])

]
= E

[
ei

θ
n

∑n
k=1(Xk−E[X])

]
= E

[
n∏
k=1

ei
θ
n

(Xk−E[X])

]

=
n∏
k=1

E
[
ei

θ
n

(Xk−E[X])
]

=
(
E
[
ei

θ
n

(X−E[X])
])n

(4.14)

so that
E
[
eiθ(

Sn
n
−E[X])

]
=
(
E
[
ei

θ
n

(X−E[X])
])n

.

As pointed out in Section 2.4, using Theorem 2.4.1 (for k = 1 and x = X −
E [X]), we get

eiθ(X−E[X]) = 1 + iθ(X − E [X]) + iθ

∫ X−E[X]

0

(
eiθt − 1

)
dt,

whence

E
[
eiθ(X−E[X])

]
= 1 + iθE

[∫ X−E[X]

0

(
eiθt − 1

)
dt

]
upon taking expectations. Substituting θ by θ

n
, we obtain the relation

E
[
ei

θ
n

(X−E[X])
]

= 1 +
iθ

n
· C1

(
θ

n

)
where

C1(θ) ≡ E

[∫ X−E[X]

0

(
eiθt − 1

)
dt

]
.

It follows that

E
[
eiθ(

Sn
n
−E[X])

]
=

(
1 +

iθ

n
· C1

(
θ

n

))n
.(4.15)

By Dominated Convergence, we conclude that limn→∞C1

(
θ
n

)
= 0, whence

lim
n→∞

(
E
[
ei

θ
n

(X−E[X])
])n

= lim
n→∞

(
1 +

iθ

n
· C1

(
θ

n

))n
= 1.
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It follows that Sn
n
− E [X]

P−→ n0, and this conclude the proof of (4.13).

4.4 The Strong Law of Large Numbers
Strong Laws of Large Numbers are given are convergence statements in the a.s.
sense. The classical Strong Law of Large Numbers is given next.

Theorem 4.4.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then,

lim
n→∞

Sn
n

= E [X] a.s.(4.16)

We give two proofs of this result under stronger assumptions on the moments
of X . One proof assumes E [|X|4] <∞ while the second proof is given under the
condition E [|X|2] < ∞. A proof under the first moment condition E [|X|] < ∞
is available in [].

Proof 1 Assume E [|X|4] < ∞ – Note that there is no loss in generality in
assuming that E [X] = 0 as we do from now on in this proof. The basic idea of
the proof is as follows: By the Monotone Convergence Theorem it is always the
case that

E

[
∞∑
n=1

(
Sn
n

)4
]

=
∞∑
n=1

E

[(
Sn
n

)4
]

Therefore, if we could show that
∞∑
n=1

E

[(
Sn
n

)4
]
<∞,(4.17)

we immediately conclude that

E

[
∞∑
n=1

(
Sn
n

)4
]
<∞

As a result,
∞∑
n=1

(
Sn
n

)4

<∞ a.s.
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and the conclusion limn→∞
Sn
n

= 0 a.s. is now straightforward.
In order to establish (4.17) we note that

E

[(
Sn
n

)4
]

=
1

n4
· E

( n∑
k=1

Xk

)4


with

E

( n∑
k=1

Xk

)4
 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

E [XiXjXkX`] .(4.18)

Under the enforced independence assumptions it is plain (with E [X] = 0) that
E [XiXjXkX`] = 0 as soon as one of the indices i, j, k, ` is different from all the
other three, e.g., i /∈ {j, k, `}, etc. The only cases when E [XiXjXkX`] 6= 0 are
as follows: (i) If i = j = k = `, then E [XiXjXkX`] = E [X4]; there are n
such configurations; (ii) If {i, j, k, `} contains only two distinct values, say a 6= b
appearing as aabb, abab and abba in (4.18), then E [XiXjXkX`] = (E [X2])2;
there are 3n(n− 1) such configurations. It follows that

E

( n∑
k=1

Xk

)4
 = nE

[
X4
]

+ 3n(n− 1)(E
[
X2
]
)2,

whence

E

[(
Sn
n

)4
]

=
1

n3
E
[
X4
]

+ 3
n− 1

n3
(E
[
X2
]
)2.

The conclusion (4.17) readily follows, and this completes the proof.

Proof 2 Assume E [|X|2] <∞ – For each k = 1, 2, . . ., we note that

Var

[
Sk2

k2

]
=

Var [X]

k2

so that
∞∑
k=1

P
[∣∣∣∣Sk2k2

∣∣∣∣ > ε

]
≤ 1

ε2

∞∑
k=1

Var [X]

k2
<∞, ε > 0.
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It follows from Theorem 3.1.2 that

lim
k→∞

Sk2

k2
= E [X] a.s.(4.19)

Now assume that the rvs {X,Xn, n = 1, 2, . . .} are non-negative, i.e., X ≥ 0
a.s. (in which case obviously E [X] ≥ 0). The case when the rvs {X,Xn, n =
1, 2, . . .} are non-positive, i.e., X ≤ 0 a.s., can be handed mutatis mutants.

Fix n = 1, 2, . . .. There exists a unique positive integer k(n) such that

k(n)2 ≤ n < (k(n) + 1)2.(4.20)

Under the non-negativity assumption we note the inequalities

Sk(n)2 ≤ Sn ≤ S(k(n)+1)2 a.s.

by virtue of the fact thatX` ≥ 0 a.s. for ` = k(n)2, . . . , (k(n)+1)2−1. It follows
that

k(n)2

n
·
(
Sk(n)2

k(n)2

)
≤ Sn

n
≤ (k(n) + 1)2

n
·
(

S(k(n)+1)2

(k(n) + 1)2

)
.(4.21)

Using (4.20) we readily get

k(n)2

n
≤ 1 <

k(n)2

n
+ 2 · k(n)√

n
· 1√

n
+

1

n
(4.22)

It is now straightforward to conclude from the first inequality in (4.22) that

lim sup
n→∞

k(n)2

n
≤ 1

with k(n)√
n
≤ 1, and the second inequality in (4.22) therefore yields 1 ≤ lim infn→∞

k(n)2

n
.

As a result, limn→∞
k(n)2

n
= 1 (whence limn→∞ k(n) = ∞ as expected). Finally

let n go to infinity in (4.21), and we readily get (4.16) upon combining this last
conclusion with the convergence (4.19).

To complete the proof note that E [(X±)2] <∞ since E [|X|2] = E [(X+)2] +
E [(X−)2]. Thus, it holds that

lim
n→∞

∑n
k=1X

±
k

n
= E

[
X±
]

a.s.(4.23)

since the rvs {X±, X±k , k = 1, 2, . . .} form an i.i.d. sequence of rvs with finite
second moments. The desired result (4.16) automatically follows since

Xn = X+
n −X−n , n = 1, 2, . . .

and E [X] = E [X+]− E [X−].
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4.5 The Central Limit Theorem
The Central Limit Theorem completes the Law of Large Numbers, in that it pro-
vides some indication as to the rate at which convergence takes place.

Theorem 4.5.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|2] <∞. Then, we have

√
n

(
Sn
n
− E [X]

)
=⇒n

√
Var[X] · U(4.24)

where U is standard zero-mean unit-variance Gausssian rv.

Proof. Fix n = 1, 2, . . . and θ in R. This time, as in the proof of Theorem 4.3.1
we get

E
[
eiθ
√
n(Snn −E[X])

]
=
(
E
[
e
i θ√

n
(X−E[X])

])n
under the enforced independence.

Using Theorem 2.4.1 (with k = 2 and x = X − E [X]), we get

eiθ(X−E[X])

= 1 + iθ(X − E [X])− θ2

2
(X − E [X])2

−θ
2

2

∫ X−E[X]

0

(X − E [X]− t)
(
eiθt − 1

)
dt,(4.25)

and taking expectations yields

E
[
eiθ(X−E[X])

]
= 1− θ2

2
· Var [X]− θ2

2
· C2(θ)(4.26)

with

C2(θ) ≡ E

[∫ X−E[X]

0

(X − E [X]− t)
(
eiθt − 1

)
dt

]
.(4.27)

Substituting θ by θ√
n

in this last relation leads to

E
[
e
i θ√

n
(X−E[X])

]
= 1− θ2

2n
· Var [X]− θ2

2n
· C2

(
θ√
n

)
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so that

E
[
eiθ
√
n(Snn −E[X])

]
=

(
1− θ2

2n
· Var [X]− θ2

2n
· C2

(
θ√
n

))n
.

Again, by Dominated Convergence, we obtain

lim
n→∞

C2

(
θ√
n

)
= 0

under the second moment condition E [|X|2] <∞, whence

lim
n→∞

n

(
θ2

2n
· Var [X]− θ2

2n
· C2

(
θ√
n

))
=
θ2

2
· Var [X]

It follows that
lim
n→∞

E
[
eiθ
√
n(Snn −E[X])

]
= e−

θ2

2
·Var[X]

This complete the proof of (4.24).

4.6 The Central Limit Theorem – An application
We are still in the setting of Theorem 4.5.1. We can rephrase (4.24) as

lim
n→∞

P
[√

n

(
Sn
n
− E [X]

)
≤ x

]
= P

[√
Var[X] · U ≤ x

]
, x ∈ R.(4.28)

as we recall that every point in R is a point of continuity for the rvU (or
√

Var[X]·
U ).

It follows that

lim
n→∞

P
[∣∣∣∣√n(Snn − E [X]

)∣∣∣∣ ≤ x

]
= P

[√
Var[X] · U ≤ x

]
− P

[√
Var[X] · U ≤ −x

]
= Φ

(
x√

Var[X]

)
− Φ

(
− x√

Var[X]

)

= 2Φ

(
x√

Var[X]

)
− 1, x ≥ 0.(4.29)
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Fix x ≥ 0 and n = 1, 2, . . .: We have∣∣∣∣√n(Snn − E [X]

)∣∣∣∣ ≤ x

if and only if

−x ≤
√
n

(
Sn
n
− E [X]

)
≤ x

if and only if

E [X] ∈
[
Sn
n
− x√

n
,
Sn
n

+
x√
n

]
.

Thus, if we think of

X̂n =
Sn
n
, n = 1, 2, . . .

as an estimate of E [X] on the basis of the observations X1, . . . , Xn, then the
SLLNs already tells us that the estimate is increasingly accurate as n gets large
since

lim
n→∞

X̂n = E [X] a.s.

The calculations above show via (4.29) that

lim
n→∞

P
[
E [X] ∈

[
X̂n −

x√
n
, X̂n +

x√
n

]]
= 2Φ

(
x√

Var[X]

)
− 1, x ≥ 0.(4.30)

In other words, for large n, the unknown value E [X] lies in a symmetric inter-
val centered at the estimate X̂n (obtained from the observed data X1, . . . , Xn) of
width 2x√

n
with a probability approximately given by

2Φ

(
x√

Var[X]

)
− 1,

the accuracy of this approximation improving with increasing n. With α in (0, 1)
given, we can ensure that

P
[
E [X] ∈

[
X̂n −

x√
n
, X̂n +

x√
n

]]
' 1− α
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for large n if we select x ≥ 0 such that

2Φ

(
x√

Var[X]

)
− 1 = 1− α,

or equivalently,

Φ

(
x√

Var[X]

)
= 1− α

2
.

With λ in (0, 1) let zλ denote the unique solution to the nonlinear equation

1− Φ(x) = λ, x ∈ R.

Equivalently,
P [U > x] = λ, x ∈ R.

With this notation we see that the random interval[
Sn
n
−
z1−α

2

√
Var[X]
√
n

,
Sn
n

+
z1−α

2

√
Var[X]
√
n

]

is known as the confidence interval for estimating E [X] on the basis dataX1, . . . , Xn

with confidence (1− α)%
Note that this analysis is predicated on knowing the variance Var[X]. When

this value is unknown, we replace Var[X] by the sample variance S2
n given by

S2
n =

1

n− 1

n∑
k=1

(
Xk −

1

n

n∑
`=1

X`

)2

, n = 2, 3, . . .

4.7 Poisson convergence
The setting is a follows: For each n = 1, 2, . . ., let X1(pn), . . . , Xn(pn) denote a
collection of i.i.d. Bernoulli rvs with parameters pn in (0, 1). i.e.,

P [Xk,n(pn) = 1] = 1− P [Xk,n(pn) = 0] = pn, k = 1, . . . , n

Write

Sn =
n∑
k=1

Xk(pn), n = 1, 2, . . .
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Theorem 4.7.1 Assume there exists λ > 0 such that

lim
n→∞

npn = λ.(4.31)

Then, we have
Sn =⇒n Π(λ)(4.32)

where Π(λ) denotes a Poisson rv with parameter λ.

The convergence (4.32) can be restated as

lim
n→∞

P [Sn = k] =
λk

k!
e−λ, k = 0, 1, . . .(4.33)

We give two proofs of this important result.

Proof 1 The first proof uses the characterization of weak convergence for integer-
valued rvs given in Theorem 3.9.1: Fix n = 1, 2, . . .. Under the independence
assumptions, the rv Sn is a binomial rv Bin(n; pn). Thus, Fix k = 0, 1, . . .. For
every integer n such that k ≤ n we have

P [Sn = k] =

(
n

k

)
pkn (1− pn)n−k

=
n!

k!(n− k)!
· pkn (1− pn)n−k

=
1

k!

(
pn

1− pn

)k
· n!

(n− k)!
· (1− pn)n

=
1

k!

(
npn

1− pn

)k
· n!

nk(n− k)!
· (1− pn)n .(4.34)

It is plain that

lim
n→∞

n!

nk(n− k)!
= lim

n→∞

n(n− 1) . . . (n− k + 1)

nk
= 1

while (4.31) implies

lim
n→∞

(1− pn)n = lim
n→∞

(
1− npn

n

)n
= e−λ
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and
lim
n→∞

pn
1− pn

= λ

since limn→∞ pn = 0. Collecting we conclude to (4.33) as we make use of Theo-
rem 3.9.1.

Proof 2 This second proof relies on the characterization of weak convergence
for integer-valued rvs given in terms of probability generating functions: Fix n =
1, 2, . . .. For each θ in R we get

E
[
eiθSn

]
= E

[
eiθ

∑n
k=1Xk(pn)

]
= E

[
n∏
k=1

eiθXk(pn)

]

=
n∏
k=1

E
[
eiθXk(pn)

]
=

(
1− pn + pne

iθ
)n

=
(
1− pn

(
1− eiθ

))n
.(4.35)

Under (4.31) we get that

lim
n→∞

npn
(
1− eiθ

)
= λ

(
1− eiθ

)
.

Thus,
lim
n→∞

E
[
eiθSn

]
= e−λ(1−eiθ), θ ∈ R

and the conclusion (4.32) follows since

E
[
eiθΠ(λ)

]
=

∞∑
k=0

λk

k!
e−λ · eikθ

=

(
∞∑
k=0

1

k!

(
λeiθ

)k)
e−λ = e−λ(1−eiθ), θ ∈ R(4.36)

as we use Theorem 3.9.2.



Chapter 5

Gaussian Random Variables

This chapter is devoted to a brief discussion of the class of Gaussian rvs. In
particular, for easy reference we have collected various facts and properties to be
used repeatedly.

5.1 Scalar Gaussian rvs
With

µ ∈ R and σ ≥ 0,

an R-valued rv X is said to be a Gaussian (or normally distributed) rv with mean
µ and variance σ2 if either it is degenerate to a constant with X = µ a.s. (in which
case σ = 0) or the probability distribution of X is of the form

P [X ≤ x] =
1√

2πσ2

∫ x

−∞
e−

(t−µ)2

2σ2 dt, x ∈ R

(in which case σ2 > 0). Under either circumstance, it can be shown that

E
[
eiθX

]
= eiθµ−

σ2

2
·θ2 , θ ∈ R.(5.1)

This fact is established in Section 5.11. The following equivalent definition cap-
tures both cases.

An R-valued rv X is said to be a Gaussian rv with mean µ (in R) and variance
σ2 > 0 if its characteristic function is given by

E
[
eiθX

]
= eiθµ−

σ2

2
·θ2 , θ ∈ R.(5.2)
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It is then follows by differentiation that

E [X] = µ and E
[
X2
]

= µ2 + σ2(5.3)

so that Var[X] = σ2. This confirms the meaning ascribed to the parameters µ and
σ2 as mean and variance, respectively.

It is a simple matter to check that ifX is normally distributed with mean µ and
variance σ2, then for scalars a and b, the rv aX + b is also normally distributed
with mean aµ+ b and variance a2σ2. In particular, with σ > 0, the rv σ−1(X−µ)
is a Gaussian rv with mean zero and unit variance.

5.2 The standard Gaussian rv
The Gaussian rv with mean zero and unit variance occupies a very special place
among Gaussian rvs, and is often referred to as the standard Gaussian rv. Through-
out, we denote by U the Gaussian rv with zero mean and unit variance. Its proba-
bility distribution function is given by

P [U ≤ x] = Φ(x) :=

∫ x

−∞
φ(t)dt, x ∈ R(5.4)

with density function φ given by

φ(x) :=
1√
2π
e−

x2

2 , x ∈ R.(5.5)

As should be clear from earlier comments, the importance of this standard rv
U stems from the fact that for any Gaussian rv X with mean µ and variance σ2, it
holds that X =st µ+ σU , so that

P [X ≤ x] = P
[
σ−1(X − µ) ≤ σ−1(x− µ)

]
= P

[
U ≤ σ−1(x− µ)

]
= Φ(σ−1(x− µ)), x ∈ R.

The evaluation of probabilities involving Gaussian rvs thus reduces to the evalua-
tion of related probabilities for the standard Gaussian rv.
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For each x in R, we note by symmetry that P [U ≤ −x] = P [U > x], so that
Φ(−x) = 1 − Φ(x), and Φ is therefore fully determined by the complementary
probability distribution function of U on [0,∞), namely

Q(x) := 1− Φ(x) = P [U > x] , x ≥ 0.(5.6)

5.3 Evaluating Q(x)
The complementary distribution function (5.6) repeatedly enters the computation
of various probabilities of error. Given its importance, we need to develop good
approximations to Q(x) over the entire range x ≥ 0.

The error function In the literature on digital communications, probabilities of
error are often expressed in terms of the so-called error function Erf : R+ → R
and of its complement Erfc : R+ → R defined by

Erf(x) =
2√
π

∫ x

0

e−t
2

dt, x ≥ 0(5.7)

and
Erfc(x) =

2√
π

∫ ∞
x

e−t
2

dt, x ≥ 0.(5.8)

A simple change of variables (t = u√
2
) in these integrals leads to the relationships

Erf(x) = 2

(
Φ(x
√

2)− 1

2

)
and Erfc(x) = 2Q(x

√
2),

so that
Erf(x) = 1− Erfc(x), x ≥ 0.

Conversely, we also have

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
and Q(x) =

1

2
Erfc

(
x√
2

)
.

Thus, knowledge of any one of the quantities Φ, Q, Erf or Erfc is equivalent to
that of the other three quantities. Although the last two quantities do not have
a probabilistic interpretation, evaluating Erf is computationally more efficient.
Indeed, Erf(x) is an integral of a positive function over the finite interval [0, x]
(and not over an infinite interval as in the other cases).
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Chernoff bounds To approximate Q(x) we begin with a crude bound which
takes advantage of (??): Fix x > 0. For each θ > 0, the usual Chernoff bound
argument gives

P [U > x] ≤ E
[
eθU
]
e−θx

= e−θx+ θ2

2

= e−
x2

2 e
(θ−x)2

2(5.9)

where in the last equality we made use of a completion-of-square argument. The
best lower bound

Q(x) ≤ e−
x2

2 , x ≥ 0(5.10)

is achieved upon selecting θ = x in (5.9). We refer to the bound (5.10) as a
Chernoff bound; it is not very accurate for small x > 0 since limx→0Q(x) = 1

2

while limx→0 e
−x

2

2 = 1.

Approximating Q(x) (x → ∞) The Chernoff bound shows that Q(x) decays

to zero for large x at least as fast as e−
x2

2 . However, sometimes more precise
information is needed regarding the rate of decay of Q(x). This issue is addressed
as follows:

For each x ≥ 0, a straigthforward change of variable yields

Q(x) =

∫ ∞
x

φ(t)dt

=

∫ ∞
0

φ(x+ t)dt

= φ(x)

∫ ∞
0

e−xte−
t2

2 dt.(5.11)

With the Taylor series expansion of e−
t2

2 in mind, approximations for Q(x) of
increased accuracy thus suggest themselves by simply approximating the second
exponential factor (namely e−xt) in the integral at (5.11) by terms of the form

n∑
k=0

(−1)k

2kk!
t2k, n = 0, 1, . . .(5.12)
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To formulate the resulting approximation contained in Proposition 5.3.1 given
next, we set

Qn(x) = φ(x)

∫ ∞
0

(
n∑
k=0

(−1)k

2kk!
t2k

)
e−xtdt, x ≥ 0

for each n = 0, 1, . . ..

Proposition 5.3.1 Fix n = 0, 1, . . .. For each x > 0 it holds that

Q2n+1(x) ≤ Q(x) ≤ Q2n(x),(5.13)

with

| Q(x)−Qn(x) |≤ (2n)!

2nn!
x−(2n+1)φ(x).(5.14)

where

Qn(x) = φ(x)
n∑
k=0

(−1)k(2k)!

2kk!
x−(2k+1).(5.15)

A proof of Proposition 5.3.1 can be found in Section ??. Upon specializing
(5.13) to n = 0 we get

e−
x2

2

x
√

2π

(
1− 1

x2

)
≤ Q(x) ≤ e−

x2

2

x
√

2π
, x > 0(5.16)

and the asymptotics

Q(x) ∼ e−
x2

2

x
√

2π
(x→∞)(5.17)

follow. Note that the lower bound in (5.16) is meaningful only when x ≥ 1.

5.4 Gaussian random vectors
Let µ denote a vector in Rd and let Σ be a symmetric and non-negative definite
d× d matrix, i.e., Σ′ = Σ and θ′Σθ ≥ 0 for all θ in Rd.

An Rd-valued rv X is said to be a Gaussian rv with mean vector µ and co-
variance matrix Σ if there exist a d × p matrix T for some positive integer p and
i.i.d. zero mean unit variance Gaussian rvs U1, . . . , Up such that

TT ′ = Σ(5.18)
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and
X =st µ+ TU p(5.19)

where U p is the Rp-valued rv (U1, . . . , Up)
′.

From (5.18) and (5.19) it is plain that

E [X] = E [µ+ TU p] = µ+ TE [U p] = µ

and

E
[
(X − µ) (X − µ)′

]
= E

[
TU p (TU p)

′]
= TE

[
U pU

′
p

]
T ′

= TIpT
′ = Σ,(5.20)

whence
E [X] = µ and Cov[X] = Σ.

Again this confirms the terminology used for µ and Σ as mean vector and covari-
ance matrix, respectively.

It is a well-known fact from Linear Algebra [, , p. ] that for any symmetric
and non-negative definite d× d matrix Σ, there exists a d× d matrix T such that
(5.18) holds with p = d. This matrix T can be selected to be symmetric and non-
negative definite, and is called the square root of Σ. Consequently, for any vector
µ in Rd and any symmetric non-negative definite d × d matrix Σ, there always
exists an Rd-valued Gaussian rv X with mean vector µ and covariance matrix Σ
– Simply take

X =st µ+ TU d

where T is the square root of Σ.

5.5 Characteristic functions
The characteristic function of Gaussian rvs has an especially simple form which
is now developed.

Lemma 5.5.1 The characteristic function of a Gaussian Rd-valued rv X with
mean vector µ and covariance matrix Σ is given by

E
[
eiθ

′X
]

= eiθ
′µ− 1

2
θ′Σθ, θ ∈ Rd.(5.21)
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Conversely, any Rd-valued rv X whose characteristic function is given by (5.21)
for some vector µ in Rd and symmetric non-negative definite d× d matrix Σ is a
Gaussian Rd-valued rvX with mean vector µ and covariance matrix Σ.

Proof. Consider an Rd-valued rv X which is a Gaussian rv with mean vector µ
and covariance matrix Σ. By definition, there exist a d × p matrix T for some
positive integer p and i.i.d. zero mean unit variance Gaussian rvs U1, . . . , Up such
that (5.18) and (5.19) hold.

For each θ in Rd, we get

E
[
eiθ

′X
]

= eiθ
′µ · E

[
eiθ

′TU p

]
= eiθ

′µ · E
[
ei(T

′θ)′U p

]
= eiθ

′µ · E
[
ei

∑p
k=1(T ′θ)kUk

]
= eiθ

′µ ·
p∏

k=1

E
[
ei(T

′θ)kUk
]

(5.22)

= eiθ
′µ ·

p∏
k=1

e−
1
2
|(T ′θ)k|2(5.23)

The equality (5.22) is a consequence of the independence of the rvs U1, . . . , Up,
while (5.23) follows from their Gaussian character (and (??)).

Next, we note that

p∑
k=1

|(T ′θ)k|2 = (T ′θ)′(T ′θ)

= θ′(TT ′)θ = θ′Σθ(5.24)

upon invoking (5.18). It is now plain from (5.23) that the characteristic function
of the Gaussian Rd-valued rvX is given by (5.21).

Conversely, consider an Rd-valued rv X with characteristic function of the
form (5.21) for some vector µ in Rd and some symmetric non-negative definite
d × d matrix Σ. By comments made earlier, there exists a d × d matrix T such
that (5.18) holds. By the first part of the proof, the Rd-valued rv X̃ given by
X̃ := µ + TU d has characteristic function given by (5.21). Since a probability
distribution is completely determined by its characteristic function, it follows that
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the rvsX and X̃ obey the same distribution. The rv X̃ being Gaussian with mean
vector µ and covariance matrix Σ, the rv X is necessarily Gaussian as well with
mean vector µ and covariance matrix Σ.

5.6 Existence of a density
In general, an Rd-valued Gaussian rv as defined above may not admit a density
function. To see why, consider the null space of its covariance matrix Σ,1 namely

N(Σ) := {x ∈ Rd : Σx = 0d}.

Observe that θ′Σθ = 0 if and only if θ belongs to N(Σ), in which case (5.21)
yields

E
[
eiθ

′
(X−µ)

]
= 1

and we conclude that
θ′(X − µ) = 0 a.s.

In other words, with probability one, the rv X − µ is orthogonal to the linear
space N(Σ).

To proceed, we assume that the covariance matrix Σ is not trivial (in that it
has some non-zero entries) for otherwiseX = µ a.s. In the non-trivial case, there
are now two possibilities depending on the d× d matrix Σ being positive definite
or not. Note that the positive definiteness of Σ, i.e., θ′Σθ = 0 necessarily implies
θ = 0d, is equivalent to the condition N(Σ) = {0d}.

If the d×dmatrix Σ is not positive definite, hence only positive semi-definite,
then the mass of the rv X − µ is concentrated on the orthogonal space N(Σ)⊥

of N(Σ), whence the distribution of X has its support on the linear manifold
µ+N(Σ)⊥ and is singular with respect to Lebesgue measure.

On the other hand, if the d × d matrix Σ is positive definite, then the matrix
Σ is invertible, det(Σ) 6= 0 and the Gaussian rv X with mean vector µ and
covariance matrix Σ admits a density function given by

f(x) =
1√

(2π)ddet(Σ)
e−

1
2

(x−µ)′Σ−1
(x−µ), x ∈ Rd.

1This linear space is sometimes called the kernel of Σ.
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5.7 Linear transformations
The following result is very useful in many contexts, and shows that linear trans-
formations preserve the Gaussian character:

Lemma 5.7.1 let ν be an element of Rq and let A be an q × d matrix. Then, for
any Gaussian rv Rd-valued rv X with mean vector µ and covariance matrix Σ,
the Rq-valued rv Y given by

Y = ν +AX

is also a Gaussian rv with mean vector ν +Aµ and covariance matrixAΣA′.

Proof. First, by linearity we note that

E [Y ] = E [ν +AX] = ν +Aµ

so that

Cov[Y ] = E
[
A(X − µ) (A(X − µ))′

]
= AE [(X − µ)(X − µ)′]A′

= AΣA′.(5.25)

Consequently, the Rq-valued rv Y has mean vector ν+Aµ and covariance matrix
AΣA′.

Next, by the Gaussian character of X , there exist a d × p matrix T for some
positive integer p and i.i.d. zero mean unit variance Gaussian rvs U1, . . . , Up such
that (5.18) and (5.19) hold. Thus,

Y =st ν +A (µ+ TU p)

= ν +Aµ+ATU p

= µ̃+ T̃U p(5.26)

with
µ̃ := ν +Aµ and T̃ := AT

and the Gaussian character of Y is established.

This result can also be established through the evaluation of the characteristic
function of the rv Y . As an immediate consequence of Lemma 5.7.1 we get
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Corollary 5.7.1 Consider a Gaussian rv Rd-valued rvX with mean vector µ and
covariance matrix Σ. For any subset I of {1, . . . , d} with |I| = q ≤ d, the Rq-
valued rv XI given by XI = (Xi, i ∈ I)′ is a Gaussian rv with mean vector
(µi, i ∈ I)′ and covariance matrix (Σij, i, j ∈ I).

5.8 Independence of Gaussian rvs
Characterizing the mutual independence of Gaussian rvs turns out to be quite
straightforward as the following suggests: Consider the rvs X1, . . . ,Xr where
for each s = 1, . . . , r, the rvXs is an Rds-valued rv with mean vector µs and
covariance matrix Σs. With d = d1 + . . . + dr, let X denote the Rd-valued rv
obtained by concatenatingX1, . . . ,Xr, namely

X =

 X1
...
Xr

 .(5.27)

Its mean vector µ is simply

µ =

 µ1
...
µr

(5.28)

while its covariance matrix Σ can be written in block form as

Σ =


Σ1 Σ1,2 . . . Σ1,r

Σ2,1 Σ2 . . . Σ2,r
...

...
...

...
Σr,1 Σr,2 . . . Σr

(5.29)

with the notation

Σs,t := Cov[Xs,X t] s, t = 1, . . . , r.

Lemma 5.8.1 With the notation above, assume the Rd-valued rvX to be a Gaus-
sian rv with mean vector µ and covariance matrix Σ. Then, for each s = 1, . . . , r,
the rvXs is a Gaussian rv with mean vector µs and covariance matrix Σs. More-
over, the rvsX1, . . . ,Xr are mutually independent Gaussian rvs if and only they
are uncorrelated, i.e.,

Σs,t = δ(s, t)Σt, s, t = 1, . . . , r.(5.30)
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The first part of Lemma 5.8.1 is a simple rewrite of Corollary 5.7.1. Some-
times we refer to the fact that the rvX is Gaussian by saying that the rvsX1, . . . ,Xr

are jointly Gaussian. A converse to Lemma 5.8.1 is available:

Lemma 5.8.2 Assume that for each s = 1, . . . , r, the rvXs is a Gaussian rv with
mean vector µs and covariance matrix Σs. If the rvs X1, . . . ,Xr are mutually
independent, then the Rd-valued rv X is an Rd-valued Gaussian rv with mean
vector µ and covariance matrix Σ as given by (5.29) with (5.30).

It might be tempting to conclude that the Gaussian character of each of the rvs
X1, . . . ,Xr alone suffices to imply the Gaussian character of the combined rv
X . However, it can be shown through simple counterexamples that this is not so.
In other words, the joint Gaussian character of X does not follow merely from
that of its componentsX1, . . . ,Xr without further assumptions.

5.9 Convergence and limits of Gaussian rvs
In later chapters we will need to define integrals with respect to Gaussian pro-
cesses. As in the deterministic case, these stochastic integrals will be defined as
limits of partial sums of the form

Xn :=
kn∑
i=1

a
(n)
j Y

(n)
j , n = 1, 2, . . .(5.31)

where for each n = 1, 2, . . ., the integer kn and the coefficients a(n)
j , j = 1, . . . , kn,

are non-random while the rvs {Y (n)
j , j = 1, . . . , kn} are jointly Gaussian rvs. Typ-

ically, as n goes to infinity so does kn. Note that under the foregoing assumptions
for each n = 1, 2, . . ., the rv Xn is Gaussian with

E [Xn] =
kn∑
i=1

a
(n)
j E

[
Y

(n)
j

]
(5.32)

and

Var[Xn] =
kn∑
i=1

kn∑
j=1

a
(n)
i a

(n)
j Cov[Y

(n)
i , Y

(n)
j ].(5.33)
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Therefore, the study of such integrals is expected to pass through the conver-
gence of sequence of rvs {Xn, n = 1, 2, . . .} of the form (5.31). Such considera-
tions lead naturally to the need for the following result [, Thm. , p.]:

Lemma 5.9.1 Let {Xk, k = 1, 2, . . .} denote a collection of Rd-valued Gaussian
rvs. For each k = 1, 2, . . ., let µk and Σk denotes the mean vector and covariance
matrix of the rv Xk. The rvs {Xk, k = 1, . . .} converge in distribution (in law)
if and only there exist an element µ in Rd and a d× d matrix Σ such that

lim
k→∞

µk = µ and lim
k→∞

Σk = Σ.(5.34)

In that case,
Xk =⇒k X

where X is an Rd-valued Gaussian rv with mean vector µ and covariance matrix
Σ.

The second half of condition (5.34) ensures that the matrix Σ is symmetric
and non-negative definite, hence a covariance matrix.

Returning to the partial sums (5.31) we see that Lemma 5.9.1 (applied with
d = 1) requires identifying the limits µ = limn→∞ E [Xn] and σ2 = limn→∞Var[Xn],
in which case Xn =⇒n X where X is an R-valued Gaussian rv with mean µ and
variance Σ. In Section ?? we discuss a situation where this can be done quite
easily.

5.10 Rvs derived from Gaussian rvs
Rayleigh rvs A rv X is said to be a Rayleigh rv with parameter σ (σ > 0) if

X =st

√
Y 2 + Z2(5.35)

with Y and Z independent zero mean Gaussian rvs with variance σ2. It is easy to
check that

P [X > x] = e−
x2

2σ2 , x ≥ 0(5.36)

with corresponding density function

d

dx
P [X ≤ x] =

x

σ2
e−

x2

2σ2 , x ≥ 0.(5.37)
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It is also well known that the rv Θ given by

Θ := arctan

(
Z

Y

)
(5.38)

is uniformly distributed over [0, 2π) and independent of the Rayleigh rv X , i.e.,

P [X ≤ x,Θ ≤ θ] =
θ

2π

(
1− e−

x2

2σ2

)
, θ ∈ [0, 2π), x ≥ 0.(5.39)

Rice rvs A rv X is said to be a Rice rv with parameters α (in R) and σ (σ > 0)
if

X =st

√
(α + Y )2 + Z2(5.40)

with Y and Z independent zero mean Gaussian rvs with variance σ2. It is easy to
check that X admits a probability density function given by

d

dx
P [X ≤ x] =

x

σ2
e−

x2+α2

2σ2 · I0

(αx
σ2

)
, x ≥ 0.(5.41)

Here,

I0(x) :=
1

2π

∫ 2π

0

ex cos tdt, x ∈ R(5.42)

is the modified Bessel function of the first kind of order zero.

Chi-square rvs For each n = 1, 2, . . ., the Chi-square rv with n degrees of
freedom is the rv defined by

χ2
n =st U

2
1 + . . .+ U2

n

where U1, . . . , Un are n i.i.d. standard Gaussian rvs.

5.11 A proof of (5.1)
Assume µ = 0 and σ2 = 1. Fix θ in R. We need to evaluate

1√
2π

∫
R
eiθxe−

x2

2 dx



74 CHAPTER 5. GAUSSIAN RANDOM VARIABLES

Our starting point is the Taylor series expansion

eiθx =
∞∑
k=0

(iθx)k

k!
, x ∈ R.

Assuming a valid interchange of integration and summation (to be justified be-
low), we get ∫

R
eiθxe−

x2

2 dx =

∫
R

(
∞∑
k=0

(iθx)k

k!

)
e−

x2

2 dx

=
∞∑
k=0

(iθ)k

k!

∫
R
xke−

x2

2 dx

=
∞∑
k=0

(iθ)k

k!
mk(5.43)

where we have set

mk =

∫
R
xke−

x2

2 dx, k = 0, 1, . . .

Note that
mk = 0, k = 1, 3, 5, . . .

by symmetry, so that ∫
R
eiθxe−

x2

2 dx =
∞∑
`=0

(iθ)2`

(2`)!
m2`

=
∞∑
`=0

(−θ2)
`

(2`)!
m2`(5.44)

Therefore, it remains to compute m2`, ` = 0, 1, . . ..
To that end, fix ` = 0, 1, . . .. By integration by parts yields

m2(`+1) =

∫
R
x2(`+1)e−

x2

2 dx

= 2

∫ ∞
0

x2(`+1)e−
x2

2 dx
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= 2

∫ ∞
0

x2`+1
(
xe−

x2

2

)
dx

= 2

∫ ∞
0

x2`+1
(
−e−

x2

2

)′
dx

= 2

([
−x2`+1e−

x2

2

]∞
0

+

∫ ∞
0

(2`+ 1)x2`e−
x2

2 dx

)
= 2(2`+ 1)

∫ ∞
0

x2`e−
x2

2 dx.(5.45)

In other words,

m2(`+1) = (2`+ 1)m2`, ` = 0, 1, . . .

Iterating we get

m2` = (2`− 1)m2(`−1)

= (2`− 1)(2`− 3)m2(`−2)

...
= (2`− 1)(2`− 3)(2`− 5) · . . . · 5 · 3 · 1 ·m0.(5.46)

It follows that

m2` =
(2`)!

(2`)(2(`− 1))(2(`− 2)) · · · (2 · 3)(2 · 2)(2 · 1)
·m0 =

(2`)!

2``!
·m0

for each ` = 1, 2, . . .. Collecting we conclude that∫
R
eiθxe−

x2

2 dx =
∞∑
`=0

(−θ2)
`

(2`)!
· (2`)!

2``!
·m0

=
∞∑
`=0

1

`!

(
−θ

2

2

)`
·m0

= e−
θ2

2 ·m0.(5.47)

The desired conclusion now follows from the fact that m0 =
√

2π since∫
R

1√
2π
e−

x2

2 dx = 1.
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5.12 Exercises
Ex. 5.1 Derive the relationships between the quantities Φ, Q, Erf or Erfc which
are given in Section 5.3.

Ex. 5.2 Given the covariance matrix Σ, explain why the representation (5.18)–
(5.19) may not be unique. Give a counterexample.

Ex. 5.3 Give a proof for Lemma 5.8.1 and of Lemma 5.8.2.

Ex. 5.4 Construct an R2-valued rv X = (X1, X2) such that the R-valued rvs X1

and X2 are each Gaussian but the R2-valued rvX is not (jointly) Gaussian.

Ex. 5.5 Derive the probability distribution function (5.36) of a Rayleigh rv with
parameter σ (σ > 0).

Ex. 5.6 Show by direct arguments that if X is a Rayleigh distribution with pa-
rameter σ, then X2 is exponentially distributed with parameter (2σ2)−1 [Hint:
Compute E

[
e−θX

2
]

for a Rayleigh rv X for θ ≥ 0.]

Ex. 5.7 Derive the probability distribution function (5.41) of a Rice rv with pa-
rameters α (in R) and σ (σ > 0).

Ex. 5.8 Write a program to evaluate Qn(x).

Ex. 5.9 Let X1, . . . , Xn be i.i.d. Gaussian rvs with zero mean and unit variance
and write Sn = X1 + . . .+Xn. For each a > 0 show that

P [Sn > na] ∼ e−
na2

2

a
√

2πn
(n→∞).(5.48)

This asymptotic is known as the Bahadur-Rao correction to the large deviations
asymptotics of Sn.

Ex. 5.10 Find all the moments E [Up] (p = 1, . . .) where U is a zero-mean unit
variance Gaussian rv.

Ex. 5.11 Find all the moments E [Up] (p = 1, . . .) where X is a χ2
n-rv with n

degrees of freedom.


