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SET THEORY:

Basic notation

The set of integers and the set of non-negative integers are denoted by Z and N,
respectively. So
Z=A...,-2,-1,0,1,2,...}

and
N={0,1,...} ={2€Z: z>0}.

It is sometimes convenient to write Ny to denote the set of all positive integers,
1.e.,
No={1,2,...} ={neN: n>0}

Also, we use R to denote the collection of all real numbers — Think of R as
the real line. We shall write R, to denote the set of all non-negative real numbers,
i.e.,

Countable vs. non-countable
A set S is said to be countable if there exists an injective mapping 1" : S — N—-To
be injective means that if 7'(z) = T'(y) for z and y in S, then x = y necessarily.
Put differently, it is not possible for x # y in S to satisfy 7'(z) = T'(y). In some
literature, an injective mapping is also known as a one-fo-one mapping. A set said
that is not countable is said to be uncountable!

If S is countable, then the cardinality |S| of S is either finite or infinite. If | S|
is finite, say |S| = n for some non-negative integer n, we say that S is a finite set
and we can represent it as {z;, i = 1,...,n} by labeling its elements. If |.S| = oo,
then S is said to be countably infinite, and we now represent it as {z;, i € [} by
indexing the elements of .S through the index set I (which per force has to be
countably infinite as well). Usually, but not always, I is taken to be N or Nj,.

It is easy to check the following: The sets {1,...,m} withm = 1,2,.. ., the
set Z of all integers and the set (Q of all rationals are countable sets, the last two
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being countably infinite. The unit interval [0, 1], the real line R and the plane R?
are not countable.

De Morgan’s laws
Let E be an arbitrary set. If {A;, i € I} is a collection of subsets of E, i.e.,
A; C E foreachiin I, then
(VierAi) = Mier 47

and

(MierAi) = Uier 45
These two facts together are known as De Morgan’s laws.
Distributivity
Let £ be an arbitrary set. If {A;, ¢ € I} is a collection of subsets of F, then for
any subset B of I/, we have

BN (UierAi) = Uier (BN Ay)

and
BU (NierA;) = Nier (BU A;) .

Inverting mappings
Consider a mapping a : £/ — F' where I and F' are arbitrary sets. We refer to &£
and F' as the domain and range of a, respectively.

For each y in F’, define

a'(y) ={zr € E: a(z) =y}

The set a~'(y) is a subset of E and is often called the pre-image of y; it is the set
of all elements in £ that map to y. Of course it is possible to have a~!(y) = (.
More generally, we define

a'(A)={rcE: alx)c A}, ACF
Note that
a t(0) = 0.

Properties of inverting mappings
Consider a mapping a : E — F where F and F are arbitrary sets. If {A;, i € I}
is a collection of subsets of F', then the following facts hold:
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(ii)

(111)

We have
a ! (UierAy) = Uiega™ " (A)

and
a " (Mierds) = Niera™ (4;) .

If the sets { A;, i € I} are pairwise disjoint, then the sets {a™' (4;), i € I}
are also pairwise disjoint: Indeed, pick distinct 7 and j in /. By assumption,
the sets are pairwise disjoint, i.e.,

AinA; =10.
As a result,
(D a(A)nat (4 =aT (AN A) =at (0) =0,
and the sets a ™! (A;) and ™' (A;) are therefore disjoint.

Mapping inversion and complementarity commute as we have
a (A% = (a‘l(A))c, ACF.

This is a simple consequence of (ii) as we note the following: Since A N
A¢ = (), we have a! (A) Na™! (A°) = 0. It then follows that ' (A¢) C

(a™" (4))°




