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SET THEORY:

Basic notation

The set of integers and the set of non-negative integers are denoted by Z and N,
respectively. So

Z = {. . . ,−2,−1, 0, 1, 2, . . .}

and
N = {0, 1, . . .} = {z ∈ Z : z ≥ 0}.

It is sometimes convenient to write N0 to denote the set of all positive integers,
i.e.,

N0 = {1, 2, . . .} = {n ∈ N : n > 0}.

Also, we use R to denote the collection of all real numbers – Think of R as
the real line. We shall write R+ to denote the set of all non-negative real numbers,
i.e.,

R+ = {x ∈ R : x ≥ 0}.

Countable vs. non-countable
A set S is said to be countable if there exists an injective mapping T : S → N – To
be injective means that if T (x) = T (y) for x and y in S, then x = y necessarily.
Put differently, it is not possible for x 6= y in S to satisfy T (x) = T (y). In some
literature, an injective mapping is also known as a one-to-one mapping. A set said
that is not countable is said to be uncountable!

If S is countable, then the cardinality |S| of S is either finite or infinite. If |S|
is finite, say |S| = n for some non-negative integer n, we say that S is a finite set
and we can represent it as {xi, i = 1, . . . , n} by labeling its elements. If |S| =∞,
then S is said to be countably infinite, and we now represent it as {xi, i ∈ I} by
indexing the elements of S through the index set I (which per force has to be
countably infinite as well). Usually, but not always, I is taken to be N or N0.

It is easy to check the following: The sets {1, . . . ,m} with m = 1, 2, . . ., the
set Z of all integers and the set Q of all rationals are countable sets, the last two
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being countably infinite. The unit interval [0, 1], the real line R and the plane R2

are not countable.

De Morgan’s laws

Let E be an arbitrary set. If {Ai, i ∈ I} is a collection of subsets of E, i.e.,
Ai ⊆ E for each i in I , then

(∪i∈IAi)
c = ∩i∈IAc

i

and
(∩i∈IAi)

c = ∪i∈IAc
i

These two facts together are known as De Morgan’s laws.

Distributivity
Let E be an arbitrary set. If {Ai, i ∈ I} is a collection of subsets of E, then for
any subset B of E, we have

B ∩ (∪i∈IAi) = ∪i∈I (B ∩ Ai)

and
B ∪ (∩i∈IAi) = ∩i∈I (B ∪ Ai) .

Inverting mappings
Consider a mapping a : E → F where E and F are arbitrary sets. We refer to E
and F as the domain and range of a, respectively.

For each y in F , define

a−1(y) = {x ∈ E : a(x) = y}.

The set a−1(y) is a subset of E and is often called the pre-image of y; it is the set
of all elements in E that map to y. Of course it is possible to have a−1(y) = ∅.

More generally, we define

a−1(A) = {x ∈ E : a(x) ∈ A}, A ⊆ F.

Note that
a−1(∅) = ∅.

Properties of inverting mappings
Consider a mapping a : E → F where E and F are arbitrary sets. If {Ai, i ∈ I}
is a collection of subsets of F , then the following facts hold:
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(i) We have
a−1 (∪i∈IAi) = ∪i∈Ia

−1 (Ai)

and
a−1 (∩i∈IAi) = ∩i∈Ia−1 (Ai) .

(ii) If the sets {Ai, i ∈ I} are pairwise disjoint, then the sets {a−1 (Ai) , i ∈ I}
are also pairwise disjoint: Indeed, pick distinct i and j in I . By assumption,
the sets are pairwise disjoint, i.e.,

Ai ∩ Aj = ∅.

As a result,

a−1 (Ai) ∩ a−1 (Aj) = a−1 (Ai ∩ Aj) = a−1 (∅) = ∅,(1)

and the sets a−1 (Ai) and a−1 (Aj) are therefore disjoint.

(iii) Mapping inversion and complementarity commute as we have

a−1 (Ac) =
(
a−1(A)

)c
, A ⊆ F.

This is a simple consequence of (ii) as we note the following: Since A ∩
Ac = ∅, we have a−1 (A) ∩ a−1 (Ac) = ∅. It then follows that a−1 (Ac) ⊆
(a−1 (A))

c


