ENEE 620 RANDOM PROCESSES IN COMMUNICATION AND CONTROL FALL 2016

SET THEORY:

Basic notation.

The set of integers and the set of non-negative integers are denoted by \mathbb{Z} and \mathbb{N} , respectively. So

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

and

$$\mathbb{N} = \{0, 1, \ldots\} = \{z \in \mathbb{Z} : z \ge 0\}.$$

It is sometimes convenient to write \mathbb{N}_0 to denote the set of all positive integers, i.e.,

$$\mathbb{N}_0 = \{1, 2, \ldots\} = \{n \in \mathbb{N} : n > 0\}.$$

Also, we use \mathbb{R} to denote the collection of *all* real numbers – Think of \mathbb{R} as the real line. We shall write \mathbb{R}_+ to denote the set of all non-negative real numbers, i.e.,

$$\mathbb{R}_+ = \{ x \in \mathbb{R} : \ x \ge 0 \}.$$

Countable vs. non-countable _

A set S is said to be *countable* if there exists an *injective* mapping $T: S \to \mathbb{N}$ – To be injective means that if T(x) = T(y) for x and y in S, then x = y necessarily. Put differently, it is not possible for $x \neq y$ in S to satisfy T(x) = T(y). In some literature, an injective mapping is also known as a *one-to-one* mapping. A set said that is *not* countable is said to be *uncountable*!

If S is countable, then the cardinality |S| of S is either finite or infinite. If |S| is finite, say |S| = n for some non-negative integer n, we say that S is a finite set and we can represent it as $\{x_i, i = 1, \ldots, n\}$ by labeling its elements. If $|S| = \infty$, then S is said to be *countably infinite*, and we now represent it as $\{x_i, i \in I\}$ by indexing the elements of S through the index set I (which per force has to be countably infinite as well). Usually, but not always, I is taken to be \mathbb{N} or \mathbb{N}_0 .

It is easy to check the following: The sets $\{1, \ldots, m\}$ with $m = 1, 2, \ldots$, the set \mathbb{Z} of all integers and the set \mathbb{Q} of all rationals are countable sets, the last two

2

being countably infinite. The unit interval [0,1], the real line \mathbb{R} and the plane \mathbb{R}^2 are not countable.

De Morgan's laws

Let E be an arbitrary set. If $\{A_i, i \in I\}$ is a collection of subsets of E, i.e., $A_i \subseteq E$ for each i in I, then

$$(\bigcup_{i\in I} A_i)^c = \bigcap_{i\in I} A_i^c$$

and

$$(\cap_{i\in I} A_i)^c = \cup_{i\in I} A_i^c$$

These two facts together are known as De Morgan's laws.

Distributivity

Let E be an arbitrary set. If $\{A_i, i \in I\}$ is a collection of subsets of E, then for any subset B of E, we have

$$B \cap (\cup_{i \in I} A_i) = \cup_{i \in I} (B \cap A_i)$$

and

$$B \cup (\cap_{i \in I} A_i) = \cap_{i \in I} (B \cup A_i)$$
.

Inverting mappings _

Consider a mapping $a: E \to F$ where E and F are arbitrary sets. We refer to E and F as the domain and range of a, respectively.

For each y in F, define

$$a^{-1}(y) = \{x \in E : a(x) = y\}.$$

The set $a^{-1}(y)$ is a subset of E and is often called the *pre-image* of y; it is the set of all elements in E that map to y. Of course it is possible to have $a^{-1}(y) = \emptyset$.

More generally, we define

$$a^{-1}(A) = \{ x \in E : a(x) \in A \}, A \subseteq F.$$

Note that

$$a^{-1}(\emptyset) = \emptyset.$$

Properties of inverting mappings

Consider a mapping $a: E \to F$ where E and F are arbitrary sets. If $\{A_i, i \in I\}$ is a collection of subsets of F, then the following facts hold:

(i) We have

$$a^{-1}(\bigcup_{i\in I} A_i) = \bigcup_{i\in I} a^{-1}(A_i)$$

and

$$a^{-1}(\cap_{i\in I}A_i) = \cap_{i\in I}a^{-1}(A_i)$$
.

(ii) If the sets $\{A_i, i \in I\}$ are *pairwise disjoint*, then the sets $\{a^{-1}(A_i), i \in I\}$ are also pairwise disjoint: Indeed, pick distinct i and j in I. By assumption, the sets are pairwise disjoint, i.e.,

$$A_i \cap A_i = \emptyset.$$

As a result,

(1)
$$a^{-1}(A_i) \cap a^{-1}(A_i) = a^{-1}(A_i \cap A_i) = a^{-1}(\emptyset) = \emptyset,$$

and the sets $a^{-1}(A_i)$ and $a^{-1}(A_j)$ are therefore disjoint.

(iii) Mapping inversion and complementarity commute as we have

$$a^{-1}(A^c) = (a^{-1}(A))^c, \quad A \subseteq F.$$

This is a simple consequence of (ii) as we note the following: Since $A \cap A^c = \emptyset$, we have $a^{-1}(A) \cap a^{-1}(A^c) = \emptyset$. It then follows that $a^{-1}(A^c) \subseteq (a^{-1}(A))^c$