Please work out the ten (10) problems stated below – Show work and explain reasoning.

All rvs are defined on the same probability triple $(\Omega, \mathcal{F}, \mathbb{P})$.

1. For any rv $X : \Omega \rightarrow \mathbb{R}$ such that $\mathbb{P}[X \in \mathbb{N}] = 1$, i.e., $X \in \mathbb{N}$ a.s., show that the inequality $\mathbb{P}[X > 0] \leq \mathbb{E}[X]$ always holds. This simple observation is the basis for the method of first moment often used in the theory of random graphs and in Combinatorics.

2. For any second-order rv $X : \Omega \rightarrow \mathbb{R}$ such that $\mathbb{P}[X \geq 0] = 1$, i.e., $X \geq 0$ a.s., show that

$$\frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]} \leq \mathbb{P}[X > 0]$$

provided $\mathbb{E}[X^2] > 0$ [HINT: Note that $X = X \cdot 1[X > 0]$ a.s. and apply the Cauchy-Schwartz inequality]. This inequality is the starting point for the method of second moment often used in the theory of random graphs and in Combinatorics where it is applied to integer-valued count rvs in the form

$$\mathbb{P}[X = 0] \leq 1 - \frac{(\mathbb{E}[X])^2}{\mathbb{E}[X^2]}.$$

3. With Hölder’s inequality generalizing the Cauchy-Schwartz inequality, Problem 2 suggests the following inequality:

 a. Consider a rv $X : \Omega \rightarrow \mathbb{R}$ such that $\mathbb{P}[X \geq 0] = 1$, i.e., $X \geq 0$ a.s. with $\mathbb{E}||X|^p| < \infty$ for some $p > 1$. With q the conjugate of p, show that

$$\left(\frac{\mathbb{E}[X]}{(\mathbb{E}[X^p])^{\frac{1}{p}}} \right)^q \leq \mathbb{P}[X > 0]$$
provided $\mathbb{E} [|X|^p] > 0$ \textbf{[HINT:} Note that $X = X \cdot 1[X > 0]$ a.s. and apply H"older’s inequality].

\textbf{b.} Apply the result of Part \textbf{a} when X is an exponential rv with unit parameter and p is an integer, and explore how the bounds improve as p increases.

\textbf{4.} Consider a rv $X : \Omega \to \mathbb{R}$ defined on probability triple $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E} [|X|] < \infty$.
\begin{enumerate}[a.]
\item Compute $\mathbb{E} [X | D]$ when $D = \Omega$.
\item Compute the conditional expectation of X given the \mathcal{F}-partition $\{\emptyset, \Omega\}$.
\item Compute $\mathbb{E} [X | \mathcal{T}]$ where \mathcal{T} denotes the trivial σ-field on Ω.
\item Compute $\mathbb{E} [X | \mathcal{F}]$.
\end{enumerate}

\textbf{5.} Consider the two rv $X, Y : \Omega \to \mathbb{R}$ defined on probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. Assume that (i) the rvs X and Y are independent rvs, and (ii) each of the rvs is a standard normal. Set
\begin{equation*}
U \equiv XY \quad \text{and} \quad V \equiv \begin{cases}
\frac{X}{Y} & \text{if } Y \neq 0 \\
0 & \text{if } Y = 0
\end{cases}
\end{equation*}

Using mostly \textit{conditioning} arguments answer the following questions:
\begin{enumerate}[a.]
\item Find the joint probability distribution of the rv (U, V). Does it admit a probability density?
\item Find the joint probability distribution of the rv U. Does it admit a probability density?
\item Find the joint probability distribution of the rv V. Does it admit a probability density?
\item Are the rvs U and V independent?
\end{enumerate}

\textbf{6.} This problem involves \textbf{mutually independent} rvs $\{N, Y, X_n, \, n = 1, 2, \ldots\}$ which are all defined on some probability triple $(\Omega, \mathcal{F}, \mathbb{P})$. It is assumed that (i) for each $n = 1, 2, \ldots$, the rv X_n is exponentially distributed with parameter $\lambda > 0$, (ii) the rv Y is uniformly distributed over the interval $(0, 1)$, and (iii) the rv N is a geometric rv with parameter a ($0 < a < 1$), say
\[\mathbb{P} [N = k] = (1 - a)a^k, \quad k = 0, 1, \ldots \]

Using conditioning argument, answer the following questions:
\begin{enumerate}[a.]
\item Compute the expectation
\[E(k) := \mathbb{E} [e^{-Y(X_1+\ldots+X_k)}] \]
for each $k = 0, 1, \ldots$ (with the convention that $X_1 + \ldots + X_k = 0$ if $k = 0$).
\item Compute the expectation
\[\mathbb{E} [e^{-Y(X_1+\ldots+X_N)}], \]
\end{enumerate}

Carefully explain your calculations!
7. The rvs X_1, \ldots, X_n are jointly Gaussian, e.g., with $X = (X_1, \ldots, X_n)'$, namely $X \sim N(\mu, R)$ for some vector μ in \mathbb{R}^n and $n \times n$ covariance matrix R. With a and b elements in \mathbb{R}^n, define the \mathbb{R}-valued rvs A and B by

$$A \equiv a'X = \sum_{k=1}^{n} a_k X_k \quad \text{and} \quad B \equiv b'X = \sum_{k=1}^{n} b_k X_k.$$

a. Compute the characteristic function of the \mathbb{R}^2-valued rv $(A, B)'$, namely

$$\varphi(s, t) = \mathbb{E}[e^{i(sA + tB)}], \quad s, t \in \mathbb{R}.$$

Carefully explain your calculations!

b. With the help of your answer in Part a derive a necessary and sufficient condition on the parameters μ, a, b and R for the rvs A and B to be independent. Carefully explain your calculations!

c. What form does this condition take when the rvs X_1, \ldots, X_n are i.i.d. Gaussian rvs, say $X \sim N(\mu, \sigma^2 I_n)$ with $\sigma^2 > 0$?

8. Construct an \mathbb{R}^2-valued rv $X = (X_1, X_2)$ such that the \mathbb{R}-valued rvs X_1 and X_2 are each Gaussian but the \mathbb{R}^2-valued rv X is not (jointly) Gaussian.

9. A rv X is said to be a **Rice** rv with parameters α (in \mathbb{R}) and $\sigma > 0$ if

$$X =_{st} \sqrt{(\alpha + Y)^2 + Z^2} \quad (1.1)$$

where Y and Z are independent zero-mean Gaussian rvs with variance σ^2.

a. Use **conditioning** arguments to compute the probability distribution function of X, i.e., $\mathbb{P}[X \leq x]$ for all $x \geq 0$.

b. Use part a to conclude that the Rice rv is of continuous type and find its probability density function $f_X : \mathbb{R} \to \mathbb{R}^+$.

10. A rv X is said to be a **Rayleigh** rv with parameter $\sigma > 0$ if

$$X =_{st} \sqrt{Y^2 + Z^2} \quad (1.2)$$

where Y and Z are independent zero-mean Gaussian rvs with variance σ^2.

Without using or computing the probability density function of the rv X, show by **direct** arguments that if X is a Rayleigh distribution with parameter σ, then X^2 is exponentially distributed with parameter $(2\sigma^2)^{-1}$ [**HINT:** Compute $\mathbb{E}[e^{-\theta X^2}]$ for a Rayleigh rv X for $\theta \geq 0$.]