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Chapter 0

Notation, conventions
and terminology

In this preliminary chapter we briefly present the notation, terminology and con-
vention to be used throughout this text.

0.1 Usual mathematical symbols

Throughout, we use N to denote the set {0, 1, . . .} of all non-negative integers, and
write N0 to denote the set {1, 2, . . .} of all positive integers. We also write R to
denote the set of all real numbers, while the notation R+ is reserved to represent
the set {x ∈ R : x ≥ 0} of all non-negative numbers. We introduce the extended
real line to be the set R augmented with ±∞, namely R = [−∞,+∞] = R ∪
{−∞,+∞}, and we write R+ to denote the extended positive real line, namely
R+ = R ∪ {+∞}.

0.2 Countability vs. uncountability

A set S is said to be countable if there is a one-to-one (or injective) mapping
f : S → N0 – In other words, the set f(S) is a subset of N0. The countable set S
is said to be finite (resp. countably infinite) if |f(S)| <∞ (resp. |f(S)| =∞). We
refer to a set that is not countable as being uncountable. When |f(S)| < ∞, say
|f(S)| = N for some positive integer N , the elements of S can always be labelled
so that S = {s1, . . . , sN}. When |f(S)| = ∞, the elements of S can always be
labelled so that S = {s1, . . . , sn, . . .} – Such labelings are not unique.
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4 CHAPTER 0. NOTATION, CONVENTIONS AND TERMINOLOGY

0.3 Displayed equations

0.4 Set theory

This section presents a brief review of some notions of Set Theory: We use ∅ to
denote the empty set. Throughout, with S an arbitrary non-empty set, let P(S)
denote the collection of all subsets of S (including the empty set) – We also refer
to P(S) as the power set of S (sometimes also denoted 2S).

Elementary set-theoretic operations WithE and F subsets of S, we writeE ⊆
F when every element of E is also an element of F , and refer to this situation by
saying that E is contained in F or that E is a subset of F (resp. F is a superset of
E).

The union and intersection of the subsets E and F are subsets of S which are
denoted E ∪ F and E ∩ F , respectively. They are defined by

E ∪ F ≡ {s ∈ S : s ∈ E or s ∈ F}

and
E ∩ F ≡ {s ∈ S : s ∈ E and s ∈ F}

We also define the following basic operations:

(i) the complement Ec of E (in S):

Ec ≡ {s ∈ S : s 6∈ E} .

(ii) the (set) difference E − F :

E − F ≡ E ∩ F c = {s ∈ S : s 6∈ E} .

(iii) the symmetric difference E∆F :

E∆F ≡ (E − F ) ∪ (F − E) = (E ∩ F c) ∪ (Ec ∩ F ) .

De Morgan’s Laws Let I denote an arbitrary index set. With {Ei, i ∈ I} a
collection of subsets of S, we have

(∪i∈IEi)c = ∩i∈IEci

and
(∩i∈IEi)c = ∪i∈IEci .
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Distributivity Let I denote an arbitrary index set. With {Ei, i ∈ I} a collection
of subsets of S and a subset F of S, we have

(∪i∈IEi) ∩ F = ∪i∈I (Ei ∩ F ) [Set intersection is distributive over set union]

and

(∩i∈IEi) ∪ F = ∩i∈I (Ei ∪ F ) [Set union is distributive over set intersection]

0.5 Collections of sets

Since subsets of S are elements of the power set P(S), we can think of a ollection
of subsets of S as a subset of P(S). With this in mind we have the following

Subsets If H1 and H2 are collections of subsets of S, we write H1 ⊆ H2 to
express the fact that every subset of S that belongs to H1 also belongs to H2. We
then say thatH1 is a subset ofH2, or conversely thatH2 is a superset ofH1.

Intersections and unions If {Hi, i ∈ I} is a non-empty family of collections of
subsets of S, i.e., Hi ⊆ P(S) for each i in I , then their intersection ∩i∈IHi is the
collection of subsets of S given by

∩i∈IHi ≡ {E ∈ P(S) : E ∈ Hi, i ∈ I} .

In other words, the collection ∩i∈IHi comprises all the subsets of S that belong
simultaneously to each of the collections {Hi, i ∈ I}. In this definition the index
set I can be taken to be arbitrary.

0.6 Cartesian products

Let Sa and Sb be two arbitrary sets (possibly identical). The Cartesian product of
Sa and Sb, denoted Sa × Sb, is the set of ordered pairs defined by

Sa × Sb ≡ {(sa, sb) : sa ∈ Sa, sb ∈ Sb} .

We refer to Sa and Sb as the factors of the Cartesian product Sa × Sb. If Sc is a
third set (possibly identical to either Sa or Sb), we identify (Sa × Sb) × Sc with
Sa × (Sb × Sc) in the obvious manner and write Sa × Sb × Sc for either set. The
generalization to more than two factors is straightforward.

In particular, it is customary to write the Cartesian product of p copies of the
same set Sa as Sa × . . .× Sa or simply as Spa .
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Chapter 1

Modeling random experiments:
The Kolmogorov model

A random experiment E is understood as an activity with the following character-
istics: It typically has multiple possible outcomes, and the outcome of a realization
of the experiment is revealed only after the experiment has been realized. Classical
examples include the throw of a dice, the price of a commodity at the end of a
trading day on some stock exchange, the temperature taken at noon on January 1
at the top of the Empire State Building, etc.

In these notes we use a widely accepted approach to modeling random experi-
ments that is based on the measure-theoretic formalism proposed by Kolmogorov:
According to this approach, a random experiment E is modeled through a proba-
bility triple (Ω,F ,P) where

• The set Ω lists all (elementary) outcomes (also known as samples) generated
by the experiment E ; it is known as the sample space for the experiment.

• Events are collections of elementary outcomes, and so are subsets of Ω. The
collection of events to which likelihood of occurrence can be assigned is a
collection F of events on Ω. In many cases of interest one is forced for
mathematical reasons to take F to be strictly smaller than the collection of
all subsets of Ω.

• The “likelihood” of occurrence of events is assigned only to the events in F ,
and is given by means a probability measure P defined on F .

These objects will be given precise mathematical meanings in what follows.
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1.1 Fields and σ-fields

Throughout, with S a non-empty set, let S denote a non-empty collection of subsets
of S, so that S ⊆ P(S).

Definition 1.1.1
The collection S is said to be a field (also known as an algebra in some litera-

ture) on S if the conditions (F1)-(F3) hold where

(F1) ∅ ∈ S.

(F2) Closed under complementarity: If E ∈ S, then Ec ∈ S.

(F3) Closed under union: If E ∈ S and F ∈ S, then E ∪ F ∈ S.

The De Morgan’s Laws have straightforward implications: The conditions (F1)
and (F2) automatically imply that S is an element of the field S . Furthermore, (F2)
and (F3) automatically imply

(F4) Closed under intersection: If E ∈ S and F ∈ S, then E ∩ F ∈ S

(F5) Closed under differences: IfE ∈ S and F ∈ S, thenE−F ∈ S, F−E ∈ S
and E∆F ∈ S

Note that (F3) implies (is in fact equivalent to) the seemingly more general state-
ment

(F3b) Closed under finite union: For each n = 1, 2, . . ., if E1 ∈ S, . . . , En ∈ S,
then ∪ni=1Ei ∈ S.

while (F4) implies (is in fact equivalent to) the seemingly more general statement

(F4b) Closed under finite intersection: For each n = 1, 2, . . ., ifE1 ∈ S, . . . , En ∈
S, then ∩ni=1Ei ∈ S.

For technical reasons that will soon become apparent a stronger notion is needed.

Definition 1.1.2
The non-empty collection of S of subsets of S is a σ-field (also known as a

σ-algebra) on S if

(F1) ∅ ∈ S.
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(F2) Closed under complementarity: If E ∈ S, then Ec ∈ S.

(F6) Closed under countable union: With I a countable index set, if Ei ∈ S for
each i ∈ I , then ∪i∈IEi ∈ S.

Any σ-field is always a field since the additional property (F6) surmises (F3b)
(which is itself equivalent to (F3)) – Just take I to be finite. Again, using De
Morgan’s Laws we conclude under (F1) and (F2) that (F6) is equivalent to the
following statement:

(F6b) Closed under countable intersection: With I a countable index set, if Ei ∈ S
for each i ∈ I , then ∩i∈IEi ∈ S.

Any set S always carries at least two σ-fields, namely the trivial σ-field {∅, S}
and the full σ-field P(S). With an arbitrary set S and a σ-field S on S, it is
customary to refer to the pair (S,S) as a measurable space. This is meant to
suggest that it is now possible to “measure” the sets in S by means of a measure
defined on S , an idea formalized in the next section.

1.2 Additivity and measures

Let S denote a non-empty collection of subsets of some non-empty set S. Mea-
suring the sets in S means that a notion of “size” (also referred to as “length” or
“volume” or “weight” depending on the context) can be associated with such sets.
This is done through a set function which maps any set S in S to a non-negative
(possibly infinite) value µ[S]. Of course we expect such a set function to satisfy
some natural properties. Additivity is the most obvious one as it reflects the nat-
ural idea that the size of an object can be evaluated as the sum of the sizes of its
“non-overlapping” components; this is formalized next.

Definition 1.2.1
With arbitrary index set I , the subsets {Ei, i ∈ I} of S are said to be pairwise

disjoint, or simply disjoint, if

Ei ∩ Ej = ∅, i 6= j
i, j ∈ I.

We start with the weakest form of additivity known as finite additivity.
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Definition 1.2.2
Given a collection S of subsets of S, a set function µ : S → [0,∞] is finitely

additive, or simply additive, on S if for any finite collection {Ei, i ∈ I} of ele-
ments in S we have

µ [∪i∈IEi] =
∑
i∈I

µ [Ei]

whenever the sets {Ei, i ∈ I} are disjoint, and their union ∪i∈IEi belongs to S.

The natural setting for this definition is for S to be a field on S since then the
union set ∪i∈IEi automatically belongs to S when the sets in the finite collection
{Ei, i ∈ I} are elements of the field S.

In order to deal with situations where the sample space is countably infinite
or uncountable, we extend the definition of a finitely additive set function in very
much the same way that we extended the notion of a field to that of a σ-field – This
is done by allowing the additive evaluation of unions of countably many, not just
finitely many, disjoint events.

Definition 1.2.3
Given a collection S of subsets of S, a set function µ : S → [0,∞] is countably

additive, or simply σ-additive, on S if for any countable collection {Ei, i ∈ I} of
elements in S we have

µ [∪i∈IEi] =
∑
i∈I

µ [Ei]

whenever the sets {Ei, i ∈ I} are disjoint, and their union ∪i∈IEi belongs to S.

This time the natural setting for this definition is for S to be a σ-field on S since then
the set ∪i∈IEi automatically belongs to S when the countably many sets {Ei, i ∈
I} are elements of the σ-field S. On the other hand, according to Definition 1.2.3
a countably additive set function µ : S → [0,∞] when defined on a field S is
automatically finitely additive there.

Definition 1.2.4
Let S be an arbitrary non-empty set equipped with a σ-field S. A σ-additive

measure µ on S is a set function µ : S → [0,∞] which satisfies the properties
(M1)-(M2) where

(M1) µ [∅] = 0.
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(M2) σ-additivity: For any countable collection {Ei, i ∈ I} of disjoint subsets in
S , we have

µ [∪i∈IEi] =
∑
i∈I

µ [Ei] .

A σ-additive measure is often referred simply as a measure; this terminology
always assumes that its domain of definition S is a σ-field. Obviously any mea-
sure is also finitely additive. The qualifier “on S” is usually dropped once it is
clear from the context what is the σ-field S on S being used throughout the discus-
sion. However, sometimes the qualifier “on (S,S)” is added when there might be
ambiguity as to the measurable space being considered.

A measure is said to be finite if µ [S] <∞, in which case (M1) is automatically
satisfied as a consequence of (M2) since µ [S] = µ [S] + µ [∅] by additivity on
account of the obvious relations S = S ∪ ∅ and S ∩ ∅ = ∅.

With a σ-field S on an non-empty set S and a measure µ : S → [0,+∞]
defined on S , it is customary to call the triple (S,S, µ) a measure space.

1.3 Probability measures

Specializing Definition 1.2.4 we obtain the notion of a probability measure, a no-
tion that will occupy a central place in further developments.

Definition 1.3.1
Let S be an arbitrary non-empty set equipped with a σ-field S. A probability

measure µ : S → R+ on S is a finite measure on S with µ [S] = 1.

Collecting earlier definitions and remarks we readily see that the set function
µ : S → R+ is a probability measure on (S,S) (where S is a σ-field) if and only
if it satisfies the following properties:

(P1) µ[S] = 1.

(P2) σ-additivity: For any countable collection {Ei, i ∈ I} of disjoint subsets in
S , we have

µ [∪i∈IEi] =
∑
i∈I

µ [Ei] .
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As mentioned earlier, the condition µ[S] = 1 implies µ[∅] = 0. Moreover, if E
is any event in the σ-field S , then its complement Ec is also in the σ-field S with
E ∪ Ec = S, whence

µ [E] + µ [Ec] = µ [S] = 1

by additivity. It follows that

µ [Ec] = 1− µ [E] , E ∈ S

and
0 ≤ µ [E] ≤ 1, E ∈ S.

In other words, {µ [E] , E ∈ S} ⊆ [0, 1] and a probability measure is a set function
µ : S → [0, 1], note merely µ : S → R+!

1.4 Probability models

As likelihood assignments are implemented through probability measures, we are
now ready to introduce the basic model that we will adopt in the study of random
phenomena (with the usual change of notation).

Definition 1.4.1
A probability model for the random experiment E is a triple (Ω,F ,P) where

the set Ω is the sample space for the experiment, F is a σ-field of events on Ω and
P is a probability measure on (Ω,F) (or simply on F).

We refer to (Ω,F ,P) as a probability space (or as a probability triple). An event
E in F such that P [E] = 1 is called a certain event, whereas an event E in
F such that P [E] = 0 is called a null event. Next we present simple, yet useful,
consequences of the definitions (F1)-(F5) and (P1)-(P2); proofs are elementary and
left to the interested reader as exercises [Exercise 1.8] – Some have already been
given.

Given a probability triple (Ω,F ,P), with events E and F in F , we have

(i) Complementarity:
P [Ec] = 1− P [E] .

(ii) Generalizing additivity:

P [E ∪ F ] = P [E] + P [F ]− P [E ∩ F ]

so that
P [E ∪ F ] ≤ P [E] + P [F ] .
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(iii) Monotonicity (I):

P [F ] = P [F − E] + P [E] , E ⊆ F.

(iv) Monotonicity (II):
P [E] ≤ P [F ] , E ⊆ F.

(v) Monotonicity (III):
0 ≤ P [E] ≤ 1.

1.5 Discrete probability models and pmfs

In many applications a major question is concerned with determining the probabil-
ity measure P that captures the salient features of the experiment E under consid-
eration once its sample space Ω has been identified. This requires that the σ-field
F of events be judiciously chosen.

A situation of particular importance arises when Ω is countable, in which case
it is customary to take F = P(Ω) – This choice reflects the natural desire to
assign the likelihood of occurrence to the individual outcomes {{ω}, ω ∈ Ω} (so
that anticipating on the material of Section 1.7 we must have σ ({{ω}, ω ∈ Ω}) =
P(Ω) [Exercise 1.14]). We refer to such models as discrete probability models.

As we now argue, specifying P on (Ω,P(Ω)) is equivalent to specifying

{P [{ω}] , ω ∈ Ω} .(1.1)

Indeed, if P has been specified on (Ω,P(Ω)), then obviously the values (1.1) are
known since {ω} is (an event) in P(Ω) for every sample ω in Ω. Conversely, if the
values {P [{ω}] , ω ∈ Ω} were only available, then the obvious relation

E = ∪ω∈E{ω}, E ∈ P(Ω)

implies

P [E] =
∑
ω∈E

P [{ω}] , E ∈ P(Ω)

by the σ-additivity of P since every subset of the countable sample space Ω is nec-
essarily countable. This shows that the values {P [{ω}] , ω ∈ Ω} indeed uniquely
specify P on the whole σ-field P(Ω), an observation which leads to the following
elementary fact.



14CHAPTER 1. MODELING RANDOM EXPERIMENTS:THE KOLMOGOROV MODEL

Fact 1.5.1 With Ω a countable set, any probability measure P on the σ-field P(Ω)
can be uniquely represented by a collection {p(ω), ω ∈ Ω} satisfying

0 ≤ p(ω) ≤ 1, ω ∈ Ω and
∑
ω∈Ω

p(ω) = 1,(1.2)

with the identification P [{ω}] = p(ω) for each ω in Ω. We necessarily have

P [E] =
∑
ω∈E

p(ω), E ∈ P(Ω).(1.3)

We often refer to a collection {p(ω), ω ∈ Ω} satisfying (1.2) as a probability mass
function (pmf) on Ω, written (p(ω), ω ∈ Ω).

1.6 Uniform probability assignments

Let Ω be an arbitrary set to be used as the sample space of a probabilistic exper-
iment E whose outcomes are known or believed to be equally likely to occur –
In many literatures an outcome of Ω so selected is said to be selected at random.
We will avoid this usage and use instead the more accurate terminology whereby
the outcomes are uniformly generated. A natural question is how to construct the
corresponding probability measure P, hereafter referred to as the uniform probabil-
ity measure. Obviously such a construction also requires that we simultaneously
identify the appropriate σ-field F of events on which P is defined.

In a first step it may seem intuitively reasonable to start building this uniform
probability measure by assigning the same probability of occurrence to all out-
comes. This would necessarily require that {{ω}, ω ∈ Ω} ⊆ F , i.e.,

{ω} ∈ F , ω ∈ Ω(1.4)

with
P [{ω}] = p, ω ∈ Ω(1.5)

for some p in [0, 1]. Again, anticipating on the material of Section 1.7 we must
have σ ({{ω}, ω ∈ Ω}) ⊆ F .

Under the requirement (1.4) any countable subset E of Ω must belong to the
σ-field F as a consequence of the decomposition E = ∪ω∈E{ω}. By σ-additivity
we then conclude that

P [E] =
∑
ω∈E

P [{ω}] , E ⊆ Ω
Countable.

(1.6)

Several cases arise:
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Finite case (|Ω| < ∞) The set Ω contains a finite number of elements, labelled
ω1, . . . , ωN for some finite N , so Ω = {ω1, . . . , ωN}. As pointed out in Section
1.5 the requirement (1.4) leads to F = P(Ω). Using (1.5) into (1.6) we get

P [E] =
∑
ω∈E

P [{ω}] = |E|p, E ∈ P(Ω)

whence p = |Ω|−1 upon taking E = Ω in this last relation. It immediately follows
that

P [E] =
|E|
|Ω|

, E ∈ P(Ω).(1.7)

Much of elementary Probability Theory is concerned with computing such prob-
abilities through combinatorial arguments that help evaluate the size of various
subsets (e.g., E) of a discrete set (e.g., Ω).

Countably infinite case (|Ω| = ∞) The set Ω contains countably infinite many
elements, say Ω = {ωn, n = 1, 2, . . .} for some labeling N0 → Ω : n → ωn.
Again, as pointed out in Section 1.5 the requirement (1.4) leads to F = P(Ω). The
same argument as above, based on (1.5) and (1.6), shows that

P [E] = |E|p ≤ 1,
E ∈ P(Ω)
|E| <∞.(1.8)

Now it is always possible to select a sequence {En, n = 1, 2, . . .} of subsets of
Ω such that |En| = n for all n = 1, 2, . . . – Indeed, with the labeling introduced
earlier, just take En = {ω1, . . . , ωn} in which case |En| = n. Applying (1.8)
with E = En we conclude that p ≤ n−1 for all n = 1, 2, . . ., whence p = 0. A
contradiction immediately arises: Indeed, by virtue of (1.6) (with E = Ω), we get
P [Ω] =

∑
ω∈Ω p = 0, and yet we must have P [Ω] = 1 because P is a probability

measure. In other words, on a discrete sample set Ω with |Ω| =∞ it is not possible
to construct a probability measure that satisfies the uniformity constraint (1.5).

Uncountably infinite case When Ω is uncountable, the same arguments as above
will still show that p = 0, and the conclusion

P [E] = 0,
E ⊆ Ω

Countable

again follows from (1.6) by σ-additivity.
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What can we say concerning P [E] if the subset E is not countable? While the
decomposition E = ∪ω∈E{ω} always holds for any subset E of Ω, there is no
guarantee that

P [E] =
∑
ω∈E

P [{ω}] , E ⊆ Ω
Uncountable

since P is only required to be σ-additive. In fact, were this last relationship indeed
hold for every subset of Ω (including Ω) we would have to conclude that P [E] = 0
for every subset of Ω (including Ω, hence already a contradiction) This would
certainly define a measure on P(Ω), namely the zero measure, definitely not a
probability measure on P(Ω).

This discussion strongly suggests that when defining probability measures on
non-countable sample spaces Ω, under the uniformity constraint (1.4) it may not
be feasible to take F = P(Ω) – This will be further discussed in Chapter 5. This
can be traced back to the fact that the σ-additivity of P on P(Ω) imposes too many
constraints – They cannot all be simultaneously satisfied if P is to be defined on
P(Ω), thereby forcing a reduction of P(Ω) to a strictly smaller σ-field!

However, the analysis so far does not preclude the possibility of constructing a
probability measure P which reflects constraints naturally associated with uniform
selection other than (1.4) and (1.5) – This is illustrated on two examples, namely
infinitely many coin tosses of a fair coin in Section ?? and selecting a point at ran-
dom in the interval [0, 1] in Section ??. However, such constructions will have to
be done on a σ-field strictly smaller than P(Ω).

The reader may wonder as to why the conclusions reached in the countably
infinite and uncountable cases differ: In the countable case the equivalence em-
bedded in Fact 1.5.1 forces the construction of the desired uniform probability
measure to pass through the constraints (1.4)-(1.5). While this leads to a complete
characterization, namely (1.7), when Ω contains a finite number of samples, the
situation is quite different in the countably infinite case: The constraints (1.4)-(1.5)
are now incompatible with Ω being countably infinite. In the non-countable case,
the construction of the desired uniform probability measure cannot pass through
the constraints (1.4)-(1.5) – They are too weak as will be illustrated in Section ??,
leaving open the possibility that additional constraints reflecting uniformity could
possibly be added to characterize the desired probability measure.
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1.7 Generating σ-fields

On a number of occasions it will be helpful to consider the smallest σ-field contain-
ing a given collection of subsets of a non-empty set S. The following elementary
fact provides the basis for this notion; its proof is left as an exercise [Exercise 1.11].

Fact 1.7.1 If {Fi, i ∈ I} is a non-empty family of σ-fields on S (with I arbitrary,
countable or not), then the intersection ∩i∈ISi is a σ-field on the set S.

Using Fact 1.7.1 it is a simple matter to define the desired concept by leveraging
the following easy result [Exercise 1.12].

Lemma 1.7.1 Let G denote a non-empty collection of subsets of S. There exists a
unique σ-field on S, denoted σ (G), with the following properties:

(i) The σ-field σ (G) contains G;
(ii) The σ-field σ (G) is minimal in the sense that any other σ-field S on S

containing G must necessarily contain σ (G), i.e., σ (G) ⊆ S.

We refer to the σ-field σ (G), whose existence is established in Lemma 1.7.1, as the
σ-field on S generated by G. In fact σ (G) coincides with the σ-field ∩i∈IGi where
{Gi, i ∈ I} denotes the family of all the σ-fields on S containing the collection G
– Note that {Gi, i ∈ I} is never empty as it contains the power set P(S).

Definition 1.7.1
Let G and S be two collections of subsets of S with G ⊆ S. If S is a σ-field on

S with S = σ (G), we say that G generates the σ-field S, or equivalently, that G is
a generating family (or a generator) for S.

The following fact is elementary [Exercise 1.13].

Fact 1.7.2 If G1 and G2 are two collections of subsets of S such that G1 ⊆ G2,
then σ (G1) ⊆ σ (G2). Moreover, if G2 is already a σ-field, then σ (G2) = G2 and
σ (G1) ⊆ G2.

1.8 Exercises

Ex. 1.1 Let S be a σ-field on some non-empty set S with a finite number of ele-
ments, i.e., |S| <∞.

a. Let S? denote the collection of all non-empty elements of S which do not
contain another non-empty element of S . Explain how S can be generated from
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S? – We can think of S? as the “atoms” of S [HINT: Remember that S is a σ-field
on S].

b. Using Part a show that we necessarily have |S| = 2m with |S?| = m.
c. Claim: Any σ-field on a non-empty finite set S necessarily has 2m subsets

of S in it for some positive integer m.

Ex. 1.2 Let H be a field on some set S. For any additive set function µ : H →
[0,∞] show that µ[∅] = 0 as soon as there exists H inH such that µ[H] <∞.

Ex. 1.3 In Definition 1.2.2 show that it suffices to check that the simpler pairwise
conditions

µ [E ∪ F ] = µ [E] + µ [F ] ,
E, F ∈ S
E ∩ F = ∅

hold.

Ex. 1.4 Let S denote a countable set. With F = P(S), define the set function
µ : F → R+ by

µ [E] = |E|, E ∈ F
where |E| denotes the number of elements in E. Show that the set function µ :
F → R+ is a measure on F – It is known as the counting measure.

Ex. 1.5 Let S be a countably infinite set, say S = N. Define the collection F of
subsets of S to be F ≡ {F ⊆ S : Either |F | <∞ or |F c| <∞ }.

a. Show that F is an algebra on S. Is it a σ-algebra on S? Explain.
b. Define the mapping µ : F → R+ by

µ [E] ≡


0 if |E| <∞

1 if |Ec| <∞.

Show that µ is finitely additive. Is µ also σ-additive on F? – Prove or give a
counterexample!

Ex. 1.6 Let S be an uncountable set, say S = R. Define the collectionF of subsets
of S to be F ≡ {E ⊆ S : E is countable or Ec is countable} where countable
means here either finite or countably infinite.

a. Show that F is an algebra on S.
b. Is F a σ-algebra on S? Prove or give a counterexample!
c. Define the set function µ : F → R+ by

µ [E] ≡


0 if E is countable

1 if Ec is countable.
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Is this set function µ : F → R+ σ-additive on F? Prove or give a counterexample!

Ex. 1.7 Let S be a countable set. With c > 0 show that there exists a unique
measure µc : P(S) → [0,+∞] such that µ [{s}] = c for all s in S. Give an
expression for µ [E] for E in P(S).

Ex. 1.8 Give proofs to the elementary properties (i)-(v) of probability models given
in Section 1.4.

Ex. 1.9 Additional elementary properties of a probability measure: Given a prob-
ability triple (Ω,F ,P), with events E, F and G, we have

P [E ∩ F ] ≥ P [E] + P [F ]− 1,

and
P [E∆F ] = P [E] + P [F ]− 2P [E ∩ F ]

where E∆F denotes the symmetric difference of E and F (defined as E∆F =
(E ∩ F c) ∪ (Ec ∩ F )). Furthermore, the following “triangle inequality’

P [E∆G] ≤ P [E∆F ] + P [F∆G]

holds.

Ex. 1.10 Let S denote a finite set, say S = {1, . . . , n} for some positive integer n.
The random experiment E consists in selecting uniformly an ordered pair A and B
of (possibly empty) subsets of S.

a. Construct an probability model for this experiment – Clearly specify the
sample space Ω, the σ-field F of events and the probability assignment P. Using
the ideas developed in Section 1.6, compute the following probabilities:

b. For any subset B of S, compute the probability of the event IB given by

IB ≡ {(A,B) ∈ P(S)× P(S) : A ⊆ B} .

c. Compute the probability of the event I given by

I ≡ {(A,B) ∈ P(S)× P(S) : A ⊆ B}

[HINT: Note that I = ∪B⊆SIB]. See Exercise 2.28 for another take on this
problem using conditional probabilities.

Ex. 1.11 Prove Fact 1.7.1.
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Ex. 1.12 Prove Lemma 1.7.1.

Ex. 1.13 Prove Fact 1.7.2.

Ex. 1.14 Let S be an arbitrary non-empty set. Let G denote the collection of all its
singletons, namely G = {{s} , s ∈ S}.

a. If S is a finite set, what is σ(G)?
b. If S is a countably infinite set, what is σ(G)?
c. If S is an uncountably infinite set, what is σ(G)?

Ex. 1.15 With S an arbitrary non-empty set, let G be a collection of subsets of
S. If E denotes a subset of S, define the trace of G on E as the collection GE of
subsets of E given by

GE ≡ {G ∩ E : G ∈ G} .

a. Show that GE is a field (resp. a σ-field) on E whenever G is a field (resp.
σ-field) on E regardless of whether E is an element of G.

b. Show that generating the smallest σ-field and taking a trace are commutative
operations, i.e., σ (GE) = (σ (G))E .

Ex. 1.16 Let {Ei, i ∈ I} denote a countable decomposition of a non-empty set S,
i.e., the sets {Ei, i ∈ I} are not empty with ∪i∈IEi = S and Ei ∩ Ej = ∅ for all
distinct i and j in I . Discuss the cardinality of the σ-field σ (Ei, i ∈ I).



Chapter 2

Elementary Probability Theory

In Chapter 1 we introduced the notion of a probability model for a random experi-
ment in the sense of Kolmogorov as a triple (Ω,F ,P) where Ω lists all elementary
outcomes of the experiment, and the collection F identifies the subsets of Ω (or
events) whose likelihood can be evaluated by means of the probability measure P
defined on F .

In the present chapter we present some of the most basic concepts often found
in textbooks covering elementary Probability Theory. Throughout we are given a
probability triple (Ω,F ,P) which is held fixed during the discussion.

2.1 Bounding probabilities

With I a finite index set, let {Ei, i ∈ I} denote any collection of events in F .
At this point the reader may wonder how to evaluate the probability of the union
∪i∈IEi when the events are not disjoint (since in that case it is unclear how to
invoke σ-additivity).

A formula by Poincaré The next result is attributed to Poincaré and gives a
formal answer to this question. It states that

P [∪i∈IEi] =

|I|∑
k=1

(−1)k−1
(∑

j1<j2<...<jk
P
[
∩k`=1Ej`

])
(2.1)

where for each k = 1, . . . , |I|, the summation
∑

j1<j2<...<jk
is over all ordered

k-uples drawn from I . This formula is an expression of the Inclusion-Exclusion
Principle.

21
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By complementarity this expression is often used in the form

P [∩i∈IEci ] = 1− P [∪i∈IEi]

=

|I|∑
k=0

(−1)k
(∑

j1<j2<...<jk
P
[
∩k`=1Ej`

])
(2.2)

with the understanding that the term corresponding to k = 0 is set to 1. The expres-
sions (2.1) and (2.2) are easily derived by induction on the size of the cardinality
|I| [Exercise 2.1].

While exact, the expressions (2.1) and (2.2) are often too unwieldy to be useful.
Instead only the upper and lower bounds given next suffice in many cases; they are
also established by induction on the size |I| [Exercise 2.3].

Boole’s inequality This bound, also known as the union bound, is commonly
used in Information Theory and theoretical Computer Science, and states that

P [∪i∈IEi] ≤
∑

i∈I
P [Ei] .(2.3)

The union bound (2.3) also holds when I is countably infinite [Exercise 3.2].

The Bonferroni Inequality This bound gives a lower bound on the probability
P [∪i∈IEi] in the form∑

i∈I
P [Ei]−

∑
i,j∈I: i<j

P [Ei ∩ Ej ] ≤ P [∪i∈IEi] .(2.4)

Combining the inequalities (2.3) and (2.4) we get∑
i∈I

P [Ei]−
∑

i,j∈I: i<j
P [Ei ∩ Ej ] ≤ P [∪i∈IEi] ≤

∑
i∈I

P [Ei] .

This opens the door to the possibility that P [∪i∈IEi] might be well approximated
by
∑

i∈IP [Ei] whenever the term
∑

i,j∈I: i<jP [Ei ∩ Ej ] is smaller than
∑

i∈IP [Ei]
in a suitable sense. This idea is commonly used in many settings. Sometimes it is
more convenient to express these two inequalities in the following equivalent form

0 ≤
∑

i∈I
P [Ei]− P [∪i∈IEi] ≤

∑
i,j∈I: i<j

P [Ei ∩ Ej ] .

2.2 Independence

The notion of independence introduced next is key to probabilistic modeling. It
is perhaps what makes Probability Theory not just a special case but rather a very
rich subarea of Measure Theory.
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In this section we consider a collection {Ei, i ∈ I} of events in F where I is
an arbitrary index set, and present the several notions of independence commonly
discussed.

Pairwise independence The events {Ei, i ∈ I} are said to be pairwise indepen-
dent if the conditions

P [Ei ∩ Ej ] = P [Ei]P [Ej ] ,
i 6= j
i, j ∈ I

all hold. With I finite, this constitutes a set of |I|(|I|−1)
2 conditions. When con-

sidering only two events, i.e., |I| = 2, this set of conditions reduces to a single
condition, in which case the qualifier “pairwise” is dropped and the two events are
simply said to be independent.

The terminology may be misleading. Indeed, if two events are independent,
it does not necessarily mean that their outcomes are not influencing each other in
any way; see Exercise 2.9 for an illustration of this point.

Mutual independence (with I finite) The events {Ei, i ∈ I} are said to be
mutually independent if the conditions

P [∩j∈JEj ] =
∏
j∈J

P [Ej ] ,
J ⊂ I
|J | ≥ 1

are all satisfied – This represents 2|I|−(|I|+1) non-trivial conditions. In Exercises
2.7 and 2.8 situations are given (with |I| = 3 so that 2|I| − (|I| + 1) = 23 − 4 =
4 conditions) where some of the inequalities are satisfied but others are not. In
particular, Exercise 2.7 already shows that pairwise independence may not imply
mutual independence.

Mutual independence (with I arbitrary, countable or uncountable) The events
{Ei, i ∈ I} are said to be mutually independent if for each finite subset J ⊆ I
with 0 < |J | < ∞, the events {Ej , j ∈ J} are mutually independent. It is easy
to check that this definition is equivalent to the following requirement [Exercise
2.10].

Fact 2.2.1 When I is an uncountable index set, the collection {Ei, i ∈ I} of
events in F are mutually independent. if and only if the conditions

P [∩k∈KEk] =
∏
k∈K

P [Ek] ,
K ⊆ I
|K| <∞
|K| ≥ 1
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are all simultaneously satisfied.

Set-theoretic operations preserve independence in the following sense.

Theorem 2.2.1 Consider a collection {Ei, i ∈ I} of events in F where I is an
arbitrary index set. If the events {Ei, i ∈ I} are mutually independent, then the
following statements hold:

(i) For every subset J ⊆ I , the events {Ej , j ∈ J} are mutually independent.
(ii) Taking complements does not affect mutual independence: For any subset

C ⊆ I (possibly empty), the events {Ei, i ∈ C;Ecj , j ∈ I − C} are mutually
independent.

(iii) Partitioning does not affect mutual independence: The events {Gk, k ∈
K} are mutually independent where K is an index set, {Ik, k ∈ K} is a partition
of I and for each k in K, the event Gk is defined by set-theoretic operations ex-
clusively on the events {Ei, i ∈ Ik} – Here set-theoretic operations refer to taking
the complement of a set, union and intersection.

Part (i) is trivial, and although Part (ii) is subsumed by Part (iii), we invite the
reader to provide a direct proof in Exercise 2.12. The proof of (iii) is more delicate
and will not be given here.

The next two sections provide examples where the notion of independence
plays a major role.

2.3 Modeling repeated coin tosses

In this section we discuss a class of random experiments associated with a well-
known game of chance, namely the repeated throw of a coin. Historically this situa-
tion has provided much impetus for the early development of Probability Theory. It
illustrates a probabilistic paradigm that recurs in many applications where the ran-
dom experiment of interest consists of repeated random trials (or sub-experiments),
each with exactly two possible outcomes, carried out under identical and indepen-
dent conditions.

To set the stage, we first describe the random experiment of interest in some
more detail: A two-sided coin is tossed repeatedly n times (with n a positive in-
teger). Each toss results in one of two outcomes, say H = “Head” and T = “Tail”
– It is often convenient to label the outcomes as H = 1 and T = 0 or even as
H = 1 and T = −1. Furthermore we assume that the n successive tosses do form
independent trials, each carried out under identical conditions. This implies that
the likelihood of occurrence in each trial remains the same throughout the n trials,
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say p (resp. 1 − p) for any coin toss resulting in H (resp. T ) with p a scalar in
[0, 1].

From now on we use the labeling convention H = 1 and T = 0 so that the
outcome of the random experiment can be represented by a binary sequence, i.e.,
a sequence of 0’s and 1’s, of length n. Put differently, each outcome is a word of
length n with entries drawn from {0, 1}. This leads to taking Ω = {0, 1}n for the
sample space with generic element ω given by ω = (ω1, . . . , ωn) where ωi is an
element of {0, 1} for each i = 1, . . . , n. Following the approach in Section 1.5,
with F = P(Ω) as usual, we will construct the appropriate probability measure P
on P(Ω) by identifying a pmf (p(ω), ω ∈ {0, 1}n) which reflects the probabilistic
properties described earlier.

To do so, for each k = 1, . . . , n we define the events

Hk ≡ {ω′ ∈ Ω : ω′k = 1}(2.5)

and
Tk ≡ {ω′ ∈ Ω : ω′k = 0}.(2.6)

The event Hk (resp. Tk) contains the outcomes of the n tosses for which the kth

toss results in H (resp. T ). The disjoint sets Hk and Tk are complements of each
other in Ω since Hk ∪ Tk = {0, 1, }n, hence Tk = Hc

k. That the n successive
tosses form independent trials, each carried out under identical conditions, natu-
rally translates into the events {Hk, k = 1, . . . , n} being mutually independent
with

P [Hk] = p = 1− P [Tk] , k = 1, . . . , n.(2.7)

Now pick ω in Ω, and introduce the index sets H(ω) ≡ {k = 1, . . . , n : ωk =
1} and T (ω) ≡ {k = 1, . . . , n : ωk = 0}. The disjoint index sets H(ω) and
T (ω) are obviously complement of each other in {1, . . . , n} since H(ω)∪T (ω) =
{1, . . . , n}. Noting the representation

{ω} =
(
∩k∈H(ω)Hk

)
∩
(
∩`∈T (ω)T`

)
,

we get

P [{ω}] = P
[(
∩k∈H(ω)Hk

)
∩
(
∩`∈T (ω)T`

)]
=

∏
k∈H(ω)

P [Hk] ·
∏

`∈T (ω)

P [T`]

= p|H(ω)| · (1− p)|T (ω)|(2.8)

upon invoking Part (ii) of Theorem 2.2.1, namely that taking complements does not
change mutual independence. In the last expression, |H(ω)| (resp. |T (ω)|) denotes
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the number of trials (or equivalently, coin tosses) in the sample ω that result in H
(resp. T ).

In conclusion the assumptions that the n successive tosses form independent
trials, each carried out under identical conditions, lead to the pmf (p(ω), ω ∈
{0, 1}n) being given by

p(ω) = p|H(ω)| · (1− p)|T (ω)|

= p|H(ω)| · (1− p)n−|H(ω)|, ω ∈ {0, 1}n(2.9)

since |H(ω)| + |T (ω)| = n. The case p = 1
2 is often referred to as the fair case

and is explored in Exercise 2.18.

2.4 A probabilistic proof of a formula by Euler

The Riemann function ζ : (0,∞)→ [0,+∞] is defined by

ζ(s) ≡
∞∑
m=1

1

ms
, s > 0.(2.10)

It is easy to show that ζ(s) = ∞ on the range 0 < s ≤ 1 and that ζ(s) < ∞ for
s > 1. The following identity was established by Euler.

Theorem 2.4.1 It holds that

ζ(s) =
∏
p∈P

1

1− p−s
, s > 1(2.11)

where P denotes the set of prime numbers.

We will now provide a probabilistic proof of this remarkable identity, thereby il-
lustrating the power of probabilistic thinking!

Proof. Fix s > 1. The basic idea of the proof is to construct a discrete probability
model (Ω,F,Ps) tailored to the value ζ(s) of the Riemann function: Take Ω = N0

and F = P(N0). Following the approach developed in Section 1.5 we define Ps
on P(N0) through the pmf (ps(n), n = 1, 2, . . .) given by

ps(n) =
n−s

ζ(s)
, n = 1, 2, . . .

From the definition (2.10) of ζ(s) this definition is well posed and the collection
(ps(n), n = 1, 2, . . .) is indeed a pmf on N0.



2.4. A PROBABILISTIC PROOF OF A FORMULA BY EULER 27

Next, for each k = 1, 2, . . ., we introduce the subset Mk of N0 given by Mk ≡
{kn, n = 1, 2, . . .}. An elementary calculation then shows that

Ps [Mk] =
∞∑
n=1

ps(kn) =
∞∑
n=1

(kn)−s

ζ(s)
=

1

ks
.

For each ` = 2, 3, . . ., if p1, . . . , p` are positive integers with no common divi-
sors, then it is the case [Part (i) of Exercise 2.21] that

∩`r=1Mpr = Mp1p2...p` .(2.12)

It then follows that

Ps
[
∩`r=1Mpr

]
= Ps [Mp1p2...p` ]

=
1

(p1p2 . . . p`)s

=
∏̀
r=1

Ps [Mpr ] .(2.13)

As this conclusion obviously holds for any collection of prime numbers p1, . . . , p`,
the events {Mp, p ∈ P} are mutually independent; see also Fact 2.2.1.

Now label the prime numbers by increasing size, say P = {p1, p2, . . .} with
p1 < p2 < . . .. By Part (ii) of Theorem 2.2.1 the mutual independence of the
events {Mp, p ∈ P} implies the mutual independence of the complementary
events {M c

p , p ∈ P}. Thus, for any ` = 1, 2, . . ., it holds that

Ps
[
∩`r=1M

c
pr

]
=
∏̀
r=1

Ps
[
M c
pr

]
=
∏̀
r=1

(
1− p−sr

)
.(2.14)

Let ` go to infinity in (2.14): On one hand we get

lim
`→∞

Ps
[
∩`r=1M

c
pr

]
= lim

`→∞

∏̀
r=1

(
1− p−sr

)
=
∞∏
r=1

(
1− p−sr

)
.(2.15)

On the other hand we have ∩p∈PM c
p = {1} [Part (ii) of Exercise 2.21] and

lim
`→∞

Ps
[
∩`r=1M

c
pr

]
= Ps

[
∩∞r=1M

c
pr

]
= Ps [{1}] = ζ(s)−1.(2.16)

The first equality expresses the continuity from above of the probability measure
Ps discussed in Lemma 3.1.2 (applied with E` = ∩`r=1M

c
pr for all ` = 1, 2, . . .).

The proof of Theorem 2.4.1 is now complete upon combining (2.15) and (2.16).
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2.5 Conditional probabilities

Conditional probabilities naturally arise when independence does not hold. We
begin with a classical definition.

Definition 2.5.1
Consider an event B in F such that P [B] > 0. The conditional probability of

the event A in F given B is defined as the ratio

P [A|B] ≡ P [A ∩B]

P [B]
.(2.17)

When P [B] = 0 it is customary to take P [A|B] to be arbitrary in [0, 1]. How-
ever, the relation

P [A|B]P [B] = P [A ∩B] , A ∈ F(2.18)

is always true regardless of whether P [B] > 0 or not: When P [B] > 0 this is
clear from (2.17), while if P [B] = 0, then P [A ∩B] = 0 and P [A|B]P [B] = 0,
irrespective of the arbitrary value selected for P [A|B]. The following fact is an
easy consequence of the definitions.

Fact 2.5.1 With P [B] > 0, the mapping QB : F → [0, 1] defined by

QB(A) ≡ P [A ∩B]

P [B]
, A ∈ F

is a probability measure on F .

Pairwise independence can be easily characterized in terms of conditional prob-
abilities.

Fact 2.5.2 Let A and B be two events in F . Under the condition P [B] > 0, the
events A and B are independent if and only if P [A|B] = P [A].

In other words, the events A and B are independent if the conditional probability
of A given B coincides with its unconditional probability P [A]. This is a simple
consequence of (2.18) and of the definition of pairwise independence; its proof is
left as an exercise [Exercise 2.30].

We close this chapter with two easy, but important, consequences associated
with the notion of conditional probability.
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Definition 2.5.2
With I a countable index set, the events {Bi, i ∈ I} inF form anF-measurable

partition of Ω whenever

Bi ∩Bj = ∅, i, j ∈ I
i 6= j

and ∪i∈I Bi = Ω.

This definition does not preclude that P [Bi] = 0 for some i in I . However, the
second condition yields ∑

i∈I
P [Bi] = 1,

a fact which implies P [Bi] > 0 for at least one index i in I .

The Law of Total Probability For each A in F , the obvious decomposition
A = ∪i∈I(A ∩Bi) yields

P [A] =
∑
i∈I

P [A ∩Bi]

=
∑
i∈I

P [A|Bi]P [Bi] , A ∈ F .(2.19)

Put differently,
P [A] =

∑
i∈I

QBi(A)P [Bi] , A ∈ F

in the notation used in Fact 2.5.1.

Bayes’ rule – From prior probabilities to posterior probabilities Consider any
event A in F such that P [A] > 0. For each k in I , we have

P [Bk|A] =
P [Bk ∩A]

P [A]

=
P [A|Bk]P [Bk]

P [A]

=
P [A|Bk]P [Bk]∑
i∈I P [A|Bi]P [Bi]

(2.20)

upon using the Law of Total Probability to evaluate the denominator. This last re-
lation, which gives the posterior probability P [Bk|A] in terms of the likelihoods
{P [A|Bi] , i ∈ I} and of the prior probabilities {P [Bi] , i ∈ I}, is a celebrated re-
lation known as Bayes’ rule or Bayes’ law. It plays a central role in many branches
of Statistics and Data Science.
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2.6 Exercises

Unless otherwise specified a probability triple (Ω,F ,P) is assumed given. Exer-
cises 2.1–2.6 assume the setting of Section 2.1.

Ex. 2.1 Prove Poincaré’s formulae (2.1) and (2.2) [HINT: The result is true when
|I| = 2, and then use an induction argument on the size of I].

Ex. 2.2 What happens to Poincaré’s formula (2.1) when the events {Ei, i ∈ I}
are disjoint?

Ex. 2.3 Prove the bounds (2.3) and (2.4) [HINT: The results are true when |I| = 2,
and then use an induction argument on the size of I].

Ex. 2.4 Prove the bound

P [∪i∈IEi] ≤ min
k∈I

∑
i∈I

P [Ei]−
∑

`∈I,` 6=k
P [Ek ∩ E`]


due to Kounias.

Ex. 2.5 The bounds (2.3) and (2.4) take a particularly simple form when for each
k = 1, 2, the individual probabilities P

[
∩k`=1Ej`

]
do not depend on the index set

i1 < . . . < ik. In such situations, show that

|I|P [E1]− |I|(|I| − 1)

2
P [E1 ∩ E2] ≤ P [∪i∈IEi] ≤ |I|P [E1] .

Ex. 2.6 Show that

P [∩i∈IEi] ≥
∑
i∈I

P [Ei]− (|I| − 1).

a. First proof: The result is true when |I| = 2 by virtue of Exercise 1.9. Then
proceed with an induction argument on the size of I .

b. Second proof: Apply the union bound to the collection {Eci , i ∈ I}.

Ex. 2.7 An item is selected uniformly from a set comprising four distinct objects
labelled 1, 2, 3, 4. To model this experiment we take Ω = {1, 2, 3, 4}, F = P(Ω)
and P given by the uniform pmf p(1) = . . . = p(4) = 1

4 . On this probability
space define three events, say A, B and C, such that the events A, B and C are
pairwise independent but not mutually independent, i.e., P [A ∩B] = P [A]P [B],
P [B ∩ C] = P [B]P [C] and P [A ∩ C] = P [A]P [C] and yet P [A ∩B ∩ C] 6=
P [A]P [B]P [C].
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Ex. 2.8 An item is selected uniformly from a set comprising eight distinct objects
labelled 1, . . . , 8. We model this experiment by taking Ω = {1, . . . , 8}, F = P(Ω)
and P given by the uniform pmf p(1) = . . . = p(8) = 1

8 . On this probability
space define three events, say A, B and C, such that P [A ∩B] = P [A]P [B],
P [A ∩ C] = P [A]P [C] and P [A ∩B ∩ C] = P [A]P [B]P [C], yet P [B ∩ C] 6=
P [B]P [C]. In other words, the pairs of events A and B, and A and C are each
pairwise independent and the condition P [A ∩B ∩ C] = P [A]P [B]P [C] holds.
However, the events B and C are not pairwise independent – This illustrates that
the three events A, B and C are not mutually independent.

Ex. 2.9 Two identical six-facetted dice are cast one after the other under identical
and independent conditions, and the outcomes recorded. We model this experiment
by taking Ω = {(k, `), k, ` = 1, . . .}, F = P(Ω) and P given by the uniform pmf
p(k, `) = 1

36 (k, ` = 1, . . . , 6). Consider the events A and B given by

A ≡ [ The sum of the two outcomes is 7 ]

and
B ≡ [ The first outcome is 3 ] .

Show that the events A and B are independent. Although there is intuitively a
form of “influence” between the events A and B – After all getting a “3” in the
first outcome obviously affects the second outcome that could produce a sum “7”,
these events are independent according to definition given in Section 2.2 because
the realization of one event does not affect the probability of the other.

Ex. 2.10 Prove the equivalence stated in Fact 2.2.1.

Ex. 2.11 Let {Ei, i ∈ I} denote a collection of events in F .
a. With I countably infinite, explain why the definition of independence re-

quiring

P [∩j∈JEj ] =
∏
j∈J

P [Ej ] ,
J ⊆ I
1 ≤ |J |(2.21)

is equivalent to the one given in Section 2.2 (and equivalent to the one given in Fact
2.2.1) – However, note that when J is countably infinite the conditions (2.21) are
usually not informative.

b. With I uncountable, explain why a definition of independence requiring

P [∩j∈JEj ] =
∏
j∈J

P [Ej ] ,
J ⊆ I
1 ≤ |J |

makes no mathematical sense.
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Ex. 2.12 Prove Part (ii) of Theorem 2.2.1 [HINT 1: It suffices to consider the
case when I is finite] [HINT 2: Proceed by induction on the size of the index set
C when evaluating the probabilities

P
[(
∩j∈CEcj

)
∩ (∩i∈I−CEi)

]
where C ⊆ I . Start with the case |C| = 1].

Ex. 2.13 If the events E1, . . . , En in F are mutually independent events such that
P [∪ni=1Ei] = 1, show that P [Ek] = 1 for some index k = 1, . . . , n. Is the index k
unique?

Ex. 2.14 Let E, F and G denote three events in F which are mutually indepen-
dent, and assume that 0 < P [E] ,P [F ] < 1. Under what conditions are the events
E ∩G and F ∩G independent?

Ex. 2.15 Let A, E1 and E2 denote three events in F . Assuming that for each
k = 1, 2, the eventsA andEk are independent, show that the eventsA andE1∩E2

are independent if and only if the events A and E1 ∪ E2 are independent.

Ex. 2.16 Let A denote an event in F with 0 < P [A] < 1 (in order to avoid trivial
situations of limited interest). Define the collection FA of events in F by

FA = {F ∈ F : P [F ∩A] = P [F ] · P [A]} .

a. Show that both Ω and the empty set ∅ belong to FA.
b. Show that FA is closed under complementarity, i.e., if F is an element of

FA, then so is its complement F c.
c. Is the family FA a σ-field on Ω? Prove or give a counterexample!

Ex. 2.17 Consider the probability triple (Ω,F ,P) where (i) Ω = {1, . . . , p} for
some prime number p; (ii) F is the power set of Ω; and (iii) the probability assign-
ment P is uniform in the sense that P [A] = |A|

p for every subset A of Ω. Consider
now two independent events A and B, neither of which is empty. What can you
say concerning these sets?

Ex. 2.18 Consider the situation discussed in Section 2.3. The pmf (p(ω), ω ∈
{0, 1}n) described at (2.9) was obtained by translating the requirement that the n
successive tosses form independent trials, each carried out under identical condi-
tions. This was done by positing the mutual independence of the events {Hk, k =
1, 2, . . . , n} defined at (2.5) with probability assignment (2.7).
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If the coin is fair, i.e., p = 1
2 , then the expression (2.9) reduces to

p(ω) = 2−n, ω ∈ {0, 1}n.(2.22)

Since Ω = {0, 1}n for this model, hence Ω| = 2n), we conclude from the discus-
sion in Section 1.6 that the pmf (2.22) corresponds to uniform selection.

Conversely, if we consider the uniform probability assignment (2.22), show
that the events {Hk, k = 1, 2, . . . , n} defined at (2.5) are necessarily mutually
independent.

Ex. 2.19 The situation discussed in Exercise 2.18 can be further generalized: Con-
sider n probability triples, each with a finite sample space, say (Ω1,P(Ω1),P1),
. . ., (Ωn,P(Ωn),Pn). Consider the measurable space (Ω,F) where Ω ≡ Ω1 ×
. . .× Ωn and F ≡ P(Ω).

a. Show that there exists a unique probability measure P on P(Ω) such that

P [E1 × . . .× En] =
n∏
k=1

Pk [Ek] ,
Ek ∈ P(Ωk)
k = 1, . . . , n

(2.23)

and give an expression for the probabilities

P [E] , E ∈ P(Ω).

[HINT: What is the value of P [{ω}] for each ω in Ω?].
b. Show that the unique probability measure P satisfying is uniform on P(Ω)

if and only if each probability measure Pk is uniform on P(Ωk), k = 1, . . . , n.

Ex. 2.20 A fair coin is rolled n times under identical and independent conditions,
as in Exercise 2.18. We adopt the model discussed in Section 2.3 (with p = 1

2 ).
With distinct i, j = 1, . . . , n, define the event Eij as the event where the out-

comes of the ith and jth tosses are identical (e.g., both are heads). Show that the
n(n−1)

2 events {Eij , 1 ≤ i < j ≤ n} are pairwise independent but not mutually
independent!

Ex. 2.21 In the proof of Theorem 2.4.1:
(i) Prove the set equality (2.21) [HINT: Prove it first for ` = 2, and use induc-

tion on ` to establish the general case].
(ii) Show that ∩p∈PM c

p = {1}.

Ex. 2.22 Establish Fact 2.5.1

Ex. 2.23 In Definition 2.5.1 show through examples that both inequalities P [A] <
P [A|B] and P [A|B] < P [A] are possible – Assume that P [B] > 0.
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Ex. 2.24 Given are three scalars α, β and γ in (0, 1). Construct a probability triple
(Ω,F ,P) and a pair of events E and F in F such that P [F ] = β, P [E|F ] = α and
P [E|F c] = γ

Ex. 2.25 Let E and F be events in F with P [E] > 0 and P [F ] > 0. We say that
event E is positively correlated with event F if P [E|F ] ≥ P [E].

a. Show the equivalence of the following three statements (i)-(iii) below:

(i) Event E is positively correlated with event F

(ii) Event F is positively correlated with event E

(iii) Event Ec is positively correlated with event F c

b. Construct a probability triple (Ω,F ,P) and three events E, F and G in F
such that P [E|F ] > P [E] [Event E is (strictly) positively correlated with event
F ] P [F |G] > P [F ] [Event E is (strictly) positively correlated with event F ] but
P [E|G] > P [E] [Event E is not positively correlated with event G] [HINT: Take
Ω = {1, 2, 3}, F = P(Ω) and the uniform probability assignment on F].

Ex. 2.26 The decomposition formula for conditional probabilities: Given three
events E, F and G in F such that P [F ∩G] > 0 and P [F ∩Gc] > 0, show that

P [E|F ] = P [G|F ]P [E|F ∪G] + P [Gc|F ]P [E|F ∪Gc] .

Ex. 2.27 Consider events E1, . . . , En in F that are disjoint with P [Ei] > 0 for all
i = 1, . . . , n. For any event E in F show that the bounds

min
i=1,...,n

P [F |Ei] ≤ P [E| ∪ni Ei] ≤ max
i=1,...,n

P [E|Ei]

hold [HINT: Let α1, . . . , αn be non-negative scalars such that α1 + . . .+ αn = 1.
Then, for any x1, . . . , xn in R the inequalities

min
i=1,...,n

xi ≤
n∑
i=1

αixi ≤ max
i=1,...,n

xi

are satisfied].

Ex. 2.28 We return to Exercise 1.10: Let S denote a finite set, say S = {1, . . . , n}
for some positive integer n. The random experiment E consists in selecting uni-
formly an ordered pair A and B of (possibly empty) subsets of S. Using the model
developed there, evaluate P [I] by first evaluating the conditional probabilities

P [I|B] , B ⊆ S,

and then using the Law of Total Probability.
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Ex. 2.29 The following fact is useful when modeling situations associated with
sequential decision making: Given a probability model (Ω,F ,P), with events
A1, . . . , An in F , show that

P [A1 ∩ . . . ∩An] = P [A1] ·
n∏
i=2

P [Ai|A1 ∩ . . . ∩Ai−1] .

[HINT: The observation

P [A1 ∩ . . . ∩An] = P [An|A1 ∩ . . . ∩An−1] · P [A1 ∩ . . . ∩An−1]

suggests a proof by induction on n].

Ex. 2.30 Establish Fact 2.5.2

Ex. 2.31 Your cupboard contains six cups and six saucers. There are two blue cups
and two blue saucers, two red cups and two red saucers, two white cups and two
white saucers. As you are setting the table for a dinner party, you randomly assign
cups to saucers.

a. Construct a probability model (Ω,F ,P) that would model this situation.
b. Compute the probability that each of the six cups is assigned to a saucer of

the same color!
c. Compute the probability that none of the six cups is assigned to a saucer of

the same color!

We close with several urn problems:

Ex. 2.32 An urn contains R red balls and B blue balls (with R ≥ 1 and B ≥ 1).
A ball is drawn at random from the urn and then put aside. A second ball is then
drawn again at random from the urn (which now contains one less ball).

a. Construct a probability model (Ω,F ,P) that would model this situation.
b. Consider the eventE andF informally defined asE = [The first ball drawn is red]

and F = [The second ball drawn is red]. Are they independent?

Ex. 2.33 Consider two urns, say U1 and U2, each of which contains containsR red
balls and B blue balls. A ball is drawn at random from urn U1, and put in urn U2.
Urn U2 is then well stirred and shaken, and a ball is drawn at random from urn U2.

a. Describe a complete probability model (Ω,F ,P) to model this situation.
b. Compute the probability that the ball drawn from urn U2 is red.
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Ex. 2.34 There are three urns, say U1, U2 and U3. Urn U1 contains R1 red balls
and B1 blue balls, urn U2 contains R2 red balls and B2 blue balls, and urn U3

contains R3 red balls and B3 blue balls. An urn is selected at random, and then a
ball is selected at random from it.

a. Describe a complete probability model (Ω,F ,P) to model this situation.
b. Compute the probability that the selected ball came from urn U1 if the ball

selected is red.

Ex. 2.35 An urn contains B blue balls and R red balls. They are removed one by
one at random and not replaced until the urn is empty.

a. Construct a probability model (Ω,F ,P) that would model this situation.
b. Compute the probability that the first red ball drawn is the (k + 1)-th ball

drawn – What is the range of k?
c. Compute the probability that the last ball drawn is red.

Ex. 2.36 Consider N urns (with N ≥ 2), say U1, . . . , UN , each of which initially
contains R red balls and B blue balls. Each of the urns has been well stirred and
shaken! A ball is drawn at random from urn U1, and put in urn U2 which is then
well stirred and shaken! Then, a ball is drawn at random from urn U2 and put in
urn U3. The process is repeated until a ball is finally drawn at random from last urn
UN .

a. Describe a complete probability model (Ω,F ,P) to model this situation.
b. Compute the probability that the ball selected from urn U1 is red.

Ex. 2.37 There are two urns, U1 and U2, each containing N −1 blue balls and one
(1) red ball.

a. From each urn, n balls are randomly selected without replacement (with
1 ≤ n ≤ N ), and the selections at urns U1 and U2 are carried out independently
from urn to urn:

Construct a probability model (Ω?,F?,P?) that would model this situation.
Compute the probability P ?(E) of selecting at least one red ball among the 2n
balls that have been drawn.

b. Combine all 2N balls into a third urn U3 and let 2n balls be randomly
selected from urn U3 without replacement:

Construct a probability model (Ω?,F?,P?) that would model this second situ-
ation. Compute the probability P?(E) of selecting at least one red ball among the
2n balls drawn from urn U3.

c. Compare P ?(E) and P?(E). Is it surprising?

In Exercises 2.38–2.40 we consider an urn containing n balls, some of which
are red with the remaining ones being blue. Although the exact composition of the
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urn is not known a priori, it is believed that the values 0, 1, . . . , n for the number
of red balls are equally likely.

Ex. 2.38 First draw a ball at random from the urn and record its color.
Construct a probability model (Ω1,F1,P1) to compute the probability that k

red balls (k = 0, 1, . . . , n) were initially in the urn given that the ball drawn was
red.

Ex. 2.39 First draw a ball at random from the urn, throw it away and then draw a
second ball at random from the remaining n− 1 balls.

Construct a probability model (Ω2,F2,P2) to compute the probability that k
red balls (k = 0, 1, . . . , n) were initially in the urn given that the two balls drawn
were red and blue in that order? Is the probability model (Ω1,F1,P1) appropriate
to answer this question? If not, explain!

Ex. 2.40 First draw a ball at random from the urn, throw it away and then draw
a second ball at random from the remaining n − 1 balls. This time, compute the
probability that k red balls (k = 0, 1, . . . , n) were initially in the urn given that the
two balls drawn were red and blue, but the order is unknown.
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Chapter 3

Limits of probabilities
vs. probabilities of limiting events

In many applications we are confronted with the following situation: On some
probability triple (Ω,F ,P), there is a need to examine the probabilistic behavior
of a sequence of events {En, n = 1, 2, . . .} in F as n becomes large. Specifically,
we are interested in understanding how the sequence of probabilities {P [En] , n =
1, 2, . . .} behaves – Does this sequence converge and if so, what is the limit?

A typical example arise when trying to assess the performance of statistical
procedures. In such a situation, the event En describes an event where the pro-
cedure provides an acceptable level of performance when n samples are used.
Special attention is then given to situations where either limn→∞ P [En] = 0 or
limn→∞ P [En] = 1.

In the present chapter we start developing some understanding of these issues
by presenting some basic facts concerning the limiting behavior of these probabil-
ities. In particular, we present conditions under which the limit limn→∞ P [En] ,
exists, and identify this limit.

3.1 Monotonicity and σ-additivity

Consider a sequence {En, n = 1, 2, . . .} of events in F .

Lemma 3.1.1 (Continuity from below) If the sequence is monotone increasing in
the sense thatEn ⊆ En+1 for all n = 1, 2, . . ., then limn→∞ P [En] = P [∪∞n=1En].

39
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Proof. Note the relation
∪∞n=1En = ∪∞m=1Fm

where
Fm ≡ Em − Em−1, m = 1, 2, . . .

(under the convention E0 = ∅). The events {Fm, m = 1, 2, . . .} being pairwise
disjoint, we get

P [∪∞n=1En] = P [∪∞m=1Fm]

=

∞∑
m=1

P [Fm] [By the σ-additivity of P]

=
∞∑
m=1

(P [Em]− P [Em−1])

= lim
m→∞

(
m∑
k=1

(P [Ek]− P [Ek−1])

)
= lim

m→∞
(P [Em]− P [E0]) = lim

m→∞
P [Em] .(3.1)

This result can be interpreted as a continuity result for P in the following sense: If
we define limn→∞En ≡ ∪∞n=1En, then Lemma 3.1.1 states that limn→∞ P [En] =
P [limn→∞En]. The analog of Lemma 3.1.1 for sequences of events which are
monotone decreasing is given next.

Lemma 3.1.2 (Continuity from above) If the sequence is monotone decreasing in
the sense thatEn+1 ⊆ En for all n = 1, 2, . . ., then limn→∞ P [En] = P [∩∞n=1En].

This result can also be recast as a continuity result for P: This time, if we
define limn→∞En ≡ ∩∞i=1En, then limn→∞ P [En] = P [limn→∞En] by virtue
of Lemma 3.1.2. The proof of this result is similar to the one given for Lemma
3.1.1. In fact, these two results are equivalent once we observe that a sequence
{En, n = 1, 2, . . .} is monotone increasing (resp. decreasing) if and only if its
complementary sequence {Ecn, n = 1, 2, . . .} is monotone decreasing (resp. in-
creasing).

We stress that in Lemma 3.1.1 and Lemma 3.1.2 the existence of the limit
limn→∞ P [En] is trivially guaranteed by the monotonicity of the sequence
{P [En] , n = 1, 2, . . .}. The added information provided by these results is an
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identification of the limit as the probability of the well-defined events ∪∞n=1En and
∩∞n=1En, respectively.

We close this section by pointing out an inherent equivalence between Lemma
3.1.1 and Lemma 3.1.2, on one the hand, and σ-additivity of the underlying prob-
ability measure on the other; see Proposition 5.1.1 for a formal statement of this
equivalence in the context of arbitrary measures.

3.2 Limsup, liminf and limits –
Continuity of probability measures

In analogy with the convergence of sequences on R, these continuity results for
monotone sequences of events can be extended to arbitrary sequences of events as
follows: Let {En, n = 1, 2, . . .} be an arbitrary collection of events in F . Define

lim sup
n→∞

En ≡ ∩∞n=1 (∪∞m=nEm) = ∩∞n=1En

with
En = ∪∞m=nEm, n = 1, 2, . . .

Similarly,
lim inf
n→∞

En ≡ ∪∞n=1 (∩∞m=nEm) = ∪∞n=1En

with
En = ∩∞m=nEm, n = 1, 2, . . .

The sets lim supn→∞En and lim infn→∞En are well defined and always ex-
ist; we refer to them as the limit sup and limit inf, respectively, of the collection
{En, n = 1, 2, . . .} in analogy with similar notions for real-valued sequences.

We have the memnonic notation

lim sup
n→∞

En = [ En infinitely often (i.o.) ]

and
lim inf
n→∞

En = [ Eventually all En ] .

Both lim supn→∞En and lim infn→∞En are events in F , and the inclusion

lim inf
n→∞

En ⊆ lim sup
n→∞

En(3.2)

holds [Exercise 3.1]
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Definition 3.2.1
The collection {En, n = 1, 2, . . .} of events is said to converge if the condition

lim sup
n→∞

En = lim inf
n→∞

En(3.3)

holds, in which case we define its limit, denoted limn→∞En, to be the event at
(3.3).

With this definition of set continuity, we have the following continuity property
for probability measures.

Proposition 3.2.1 If the collection {En, n = 1, 2, . . .} of events in F converges
according to Definition 3.2.1, then we have the continuity result

lim
n→∞

P [En] = P
[

lim
n→∞

En

]
.

Proposition 3.2.1 requires no monotonicity assumption on the collection {En, n =
1, 2, . . .}, only the convergence condition (3.3), in contrast with both Lemma 3.1.2
and Lemma 3.1.2 which are in fact special cases of this result [Exercise 3.3]. A
different take to Proposition 3.2.1 can be found in Exercise 3.6.

Proof. For each n = 1, 2, . . . the monotone inclusions En ⊆ En+1 and En+1 ⊆
En flow from the definitions. The continuity of P on monotone sequences implies
limn→∞ P [En] = P [lim infn→∞En] by Lemma 3.1.1 and limn→∞ P

[
En
]

=
P [lim supn→∞En] by Lemma 3.1.2. Under the assumed convergence condition
(3.3) satisfied by the collection of events {En, n = 1, 2, . . .}, the equality

lim
n→∞

P [En] = lim
n→∞

P
[
En
]

(3.4)

then follows. On the other hand, we have

P [En] ≤ P [En] ≤ P
[
En
]
, n = 1, 2, . . .

by virtue of the obvious inclusions En ⊆ En ⊆ En. Let n go to infinity in this
last chain of inequalities: A standard sandwich argument yields the desired result
as we make use of (3.4).
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3.3 Borel-Cantelli Lemmas

The Borel-Cantelli Lemmas given next constitute an example of a zero-one law;
they play a central role is the derivation of various convergence results. Recall that
if {En, n = 1, 2, . . .} is a collection of events in F , then

lim sup
n→∞

En = [ En i.o. ] = ∩∞n=1 ∪∞m=n Em.

Lemma 3.3.1 If {En, n = 1, 2, . . .} is a collection of events in F such that
∞∑
n=1

P [En] <∞,

then it is always the case that P [ En i.o. ] = 0.

Proof. Obviously,

P [ En i.o. ]

= P [∩∞n=1 ∪∞m=n Em]

= lim
n→∞

P [∪∞m=nEm] [By monotonicity in n and Lemma 3.1.2]

= lim
n→∞

(
lim
k→∞

P
[
∪n+k
m=nEm

])
[By monotonicity in k and Lemma 3.1.1]

≤ lim
n→∞

(
lim
k→∞

n+k∑
m=n

P [Em]

)
[By the union bound on P

[
∪n+k
m=nEm

]
]

≤ lim
n→∞

( ∞∑
m=n

P [Em]

)
.

The result follows since limn→∞
∑∞

m=n P [Em] = 0 under the summability con-
dition

∑∞
n=1 P [En] <∞.

It is natural to wonder what happens to the conclusion of Lemma 3.3.2 when
the condition

∑∞
n=1 P [En] = ∞ holds instead. If we add independence, then the

following result holds.

Lemma 3.3.2 When the events {En, n = 1, 2, . . .} in F are mutually indepen-
dent, then P [ En i.o. ] = 1 under the condition

∞∑
n=1

P [En] =∞.
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Proof. Our point of departure is the observation that

[En i.o. ]c = ∪∞n=1 ∩∞m=n E
c
m.

By arguments similar to the one given in the proof of Lemma 3.3.1 we get

1− P [ En i.o. ]

= P [∪∞n=1 ∩∞m=n E
c
m]

= lim
n→∞

P [∩∞m=nE
c
m] [By monotonicity in n and Lemma 3.1.1]

= lim
n→∞

(
lim
k→∞

P
[
∩n+k
m=nE

c
m

])
[By monotonicity in k and Lemma 3.1.2].

For each n = 1, 2, . . . and k = 1, 2, . . ., we see that

P
[
∩n+k
m=nE

c
m

]
=

n+k∏
m=n

P [Ecm] [By mutual independence]

=

n+k∏
m=n

(1− P [Em])

≤
n+k∏
m=n

e−P[Em] [Because 1− x ≤ e−x, x ≥ 0]

= e−
∑n+k
m=n P[Em].(3.5)

Thus, limk→∞ P
[
∩n+k
m=nE

c
m

]
= 0 since

∑∞
n=1 P [En] = ∞, and the desired con-

clusion follows.

Without the assumption of independence the conclusion of Lemma 3.3.2 may
not hold as the following example shows.

Counterexample 3.3.1 Consider the probability triple (Ω,F ,P) (see Chapter 5)
where Ω = [0, 1], F is the Borel σ-field on [0, 1] and P is Lebesgue measure λ
on F . As explained in Chapter 4, the Borel σ-field on [0, 1] contains all closed
intervals of the form [a, b] with 0 ≤ a ≤ b ≤ 1 and λ([a, b]) = b − a. Now
consider the collection of events {En, n = 1, 2, . . .} with En = [0, n−1] for each
n = 1, 2, . . .. It is easy to check that [En i.o. ] = ∩∞n=1En = {0} [See Exercise
3.3]. Therefore, P [En i.o. ] = 0, and yet

∑
n=1 P [En] =

∑∞
n=1

1
n =∞.

We refer the reader to Exercise 3.9 for a more general version of this counterexam-
ple.
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3.4 Exercises

All exercises assume an underlying probability triple (Ω,F ,P).

Ex. 3.1 Show the validity of (3.2).

Ex. 3.2 Show that the union bound (2.3) also holds when I is countable, finite or
not [HINT: The union bound in the countably infinite case follows from the fact
that it holds for any finite I and an easy application of Lemma 3.1.1].

Ex. 3.3 On the way to show that Proposition 3.2.1 subsumes both Lemma 3.1.2
and Lemma 3.1.2, consider a monotone sequence of events {En, n = 1, 2, . . .} in
F .

a. Under the monotone increasing assumption of Lemma 3.1.1, show that
lim supn→∞En = lim infn→∞En = ∪∞n=1En.

b. Under the monotone decreasing assumption of Lemma 3.1.2, show that
lim supn→∞En = lim infn→∞En = ∩∞n=1En.

Ex. 3.4 Let {En, n = 1, 2, . . .} and {Fn, n = 1, 2, . . .} be two collections of
events in F .

a. Show that

lim sup
n→∞

(En ∩ Fn) ⊆
(

lim sup
n→∞

En

)
∩
(

lim sup
n→∞

En

)
and (

lim sup
n→∞

En

)
∪
(

lim sup
n→∞

Fn

)
⊆ lim sup

n→∞
(En ∪ Fn)

b. Give examples where the inclusions are strict and where they hold as equal-
ity.

Ex. 3.5 Repeat Exercise 3.4 for the liminf operation.

Ex. 3.6 A different route to Proposition 3.2.1:
a. With {En, n = 1, 2, . . .} an arbitrary collection of events in F , show the

validity of the inequalities

P
[
lim inf
n→∞

En

]
≤ lim inf

n→∞
P [En]

and

lim sup
n→∞

P [En] ≤ P
[
lim sup
n→∞

En

]
.
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b. Use Part a to construct another proof of Proposition 3.2.1. In particular
show that the result holds under a condition weaker than the set-theoretic condition
(3.3), namely

P
[(

lim sup
n→∞

En

)
∆
(

lim inf
n→∞

En

)]
= 0.

.

Ex. 3.7 Let {E−, E+, En, n = 1, 2, . . .} be a collection of events in F such that
E− ⊆ En ⊆ E+ for all n = 1, 2, . . .. If P [E−] = P [E+], show that

P
[
lim inf
n→∞

En

]
= P

[
lim sup
n→∞

En

]
= P [E−] = P [E+] .

.

Ex. 3.8 Consider a sequence of events {En, n = 1, 2, . . .} such that P [En] = 1
for all n = 1, 2, . . .

a. Show that

P [∩j∈JEj ] = 1 and P [∪j∈JEj ] = 1,
J ⊆ {1, 2, . . .}
1 ≤ |J | <∞.

b. What can you say concerning the value of P [ En i.o. ]? Can the answer be
obtained by making use of the Borel-Cantelli Lemmas?

Ex. 3.9 Generalizing Counterexample 3.3.1: Consider a monotone decreasing se-
quence of events {En, n = 1, 2, . . .} Assume that 0 < P [En] < 1 for all
n = 1, 2, . . ..

a. Under such circumstances show that the events {En, n = 1, 2, . . .} cannot
be mutually independent.

b. It follows by Lemma 3.1.2 that P [ En i.o. ] = P [∩∞n=1En] = limn→∞ P [En].
Use this fact to conclude that the entire range 0 ≤ P [ En i.o. ] < 1 of values is pos-
sible under the condition

∑∞
n=12 P [En] =∞ when the events {En, n = 1, 2, . . .}

fail to be independent.



Chapter 4

Measurable mappings:
A tale of σ-fields

Many situations of interest naturally require that the sample space be uncountable
– For instance, for some models it is appropriate for the sample space to be Rp
(or a subset thereof); see Chapter 6 for some concrete examples. Unfortunately
in such cases determining the appropriate σ-field of events on which to define the
probability measures is technically more delicate: In a nutshell the required σ-
additivity imposes too many constraints if the probability measure is to be defined
on the entire power set of the sample space. This precludes that the power set of
the sample space be used as the σ-field (as we did for the countable case in Section
1.5).

In the present chapter we start to address the challenge of constructing σ-fields
on uncountable sample spaces such as (subsets of) Rp. The basic idea is to tie the
definition to the underlying topological properties of the sample space. This arises
from the need to assign a likelihood of occurrence to certain subsets of the sample
space, said subsets being building blocks of the standard topology on Rp. This
leads to the important notion of the Borel σ-field on Rp and to the related concept
of Borel measurability.

The narrative continues in Chapter 5 and in Chapter 6: In Chapter 5 we intro-
duce an approach due to C. Carathéodory (originally developed to define Lebesgue
measure), and explain how it can be leveraged to construct the desired measures.
Chapter 6 then presents a number of extension results that can be used in the con-
text of some important applications.

47
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4.1 Measurable mappings

We begin by discussing the notion of measurability of a mapping: To fix the no-
tation, let Sa and Sb be arbitrary sets (but possibly identical). For any mapping
g : Sa → Sb, recall that

g−1(Eb) ≡ {sa ∈ Sa : g(sa) ∈ Eb} , Eb ∈ P(Sb).

With Hb denoting a collection of subsets of Sb, it will be natural to extend this
notation to collections of subsets by writing

g−1(Hb) ≡
{
g−1(Eb) : Eb ∈ Hb

}
.

Consider now the situation where the sets Sa and Sb are equipped with σ-fields
Sa and Sb, respectively – Thus, the pairs (Sa,Sa) and (Sb,Sb) are measurable
spaces. In cases where Sa = Sb ≡ S we could in principle have distinct σ-fields
Sa and Sb on S.

Definition 4.1.1
When the sets Sa and Sb are equipped with σ-fields Sa and Sb, respectively,

the mapping g : Sa → Sb is said to be (Sa,Sb)-measurable if the conditions

g−1(Eb) ∈ Sa, Eb ∈ Sb(4.1)

all hold.

The conditions (4.1) can be rewritten more compactly as

g−1(Sb) ⊆ Sa.(4.2)

Adding a third set Sc equipped with a σ-field Sc, we consider now a situation
where there are now three measurable spaces (Sa,Sa), (Sb,Sb) and (Sc,Sc). With
mappings g : Sa → Sb and h : Sb → Sc, we associate the composition mapping
h ◦ g : Sa → Sc given by

(h ◦ g) (sa) ≡ h(g(sa)), sa ∈ Sa.

The measurability of the composition mapping is straightforward.

Fact 4.1.1 If the mapping g : Sa → Sb is (Sa,Sb)-measurable and the mapping
h : Sb → Sc is (Sb,Sc)-measurable, then the composition mapping h◦g : Sa → Sc
is itself (Sa,Sc)-measurable.
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Proof. The conclusion follows from the elementary set-theoretic fact

(h ◦ g)−1 (Ec) = g−1(h−1(Ec)), Ec ∈ P(Sc)(4.3)

when coupled with the (Sb,Sc)-measurability of h and the (Sa,Sb)-measurability
of g. Details are left to the interested reader [Exercise 4.2].

Lemma 4.1.1 given next is key to showing that the measurability of a mapping
can often be determined by checking a reduced set of conditions.

Lemma 4.1.1 Let Hb be a collection of subsets of Sb. For any mapping g : Sa →
Sb, the following statements hold:

(i) IfHb is a σ-field on Sb, then the collection g−1(Hb) is a σ-field on Sa;
(ii) More generally, we always have

g−1 (σ(Hb)) = σ
(
g−1(Hb)

)
.(4.4)

Proof. Claim (i): We leave it as an exercise [Exercise 4.1] to check that the
collection g−1(Hb) is a σ-field on Sa whenHb is a σ-field on Sb.

Claim (ii): We now turn to establishing (4.4): By Part (i) applied to the σ-field
σ(Hb), the collection g−1 (σ(Hb)) is a σ-field which contains g−1(Hb), and the
inclusion σ

(
g−1(Hb)

)
⊆ g−1 (σ(Hb)) is straightforward by virtue of Fact 1.7.2.

To establish the reverse inclusion g−1 (σ(Hb)) ⊆ σ
(
g−1(Hb)

)
, consider the

collectionH?b,g of subsets given by

H?b,g ≡
{
Eb ∈ P(Sb) : g−1(Eb) ∈ σ

(
g−1(Hb)

)}
.(4.5)

It is easy to check thatH?b,g is a σ-field on Sb [Exercise 4.1] containingHb. There-
fore,H?b,g contains σ(Hb) and we get

g−1 (σ(Hb)) ⊆ g−1
(
H?b,g

)
⊆ σ

(
g−1(Hb)

)
where the last inclusion follows by the definition ofH?b,g. This completes the proof
of (4.4).

We now use Lemma 4.1.1 to obtain an equivalent definition of measurability.
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Lemma 4.1.2 If the σ-field Sb on Sb is generated by the collection Hb of subsets
of Sb, i.e., Sb = σ (Hb), then the mapping g : Sa → Sb is (Sa,Sb)-measurable if
and only if the conditions

g−1(Eb) ∈ Sa, Eb ∈ Hb(4.6)

all hold.

In the same way that the conditions (4.2) are equivalent to (4.1), we can write the
conditions (4.6) in the equivalent form

g−1(Hb) ⊆ Sa.(4.7)

The equivalence stated in Lemma 4.1.2 is operationally useful in that only the re-
duced subset (4.6) of conditions (associated with the generatorHb for Sb) needs to
be checked instead of the entire set (4.1) – An important example will be discussed
shortly in the next section.

Proof. The condition (4.2) obviously implies (4.7) since Hb ⊆ Sb. Conversely,
assume that the mapping g : Sa → Sb satisfies (4.7): The equality g−1(Sb) =
g−1(σ (Hb)) obviously holds since Sb = σ (Hb) by assumption, while the equality
g−1(σ (Hb)) = σ

(
g−1(Hb)

)
follows from Lemma 4.1.1 – Combining these two

equalities gives g−1(Sb) = σ
(
g−1(Hb)

)
. Finally, under condition (4.7) we con-

clude that σ
(
g−1(Hb)

)
⊆ Sa as we use the fact that Sa is itself a σ-field; see Fact

1.7.2. This complete the proof of Lemma 4.1.2.

4.2 The Borel σ-field on R

We refer to a subset I of R of the form (a, b) (with a ≤ b in R) as a bounded open
interval. Let I (R) denote the collection of all bounded open intervals of R.

As can be seen from the discussion in Section ??, it is quite natural to consider
assigning a measure to such intervals. This requires at minimum that we consider
the σ-field generated by I (R) as we do next.

Definition 4.2.1
The Borel σ-field on R, denoted B (R), is the smallest σ-field on R containing

all bounded open intervals of R, i.e., B (R) ≡ σ (I (R)).



4.2. THE BOREL σ-FIELD ON R 51

The Borel σ-field B (R) can be generated in many different ways. To see this
consider the following collections of subsets of R:

The bounded open intervals

H0 (R) ≡
{

(a, b),
a ≤ b
a, b ∈ R

}
= I (R) .

The bounded closed intervals

H1 (R) ≡
{

[a, b],
a ≤ b
a, b ∈ R

}
.

The bounded open-closed intervals

H2 (R) ≡
{

(a, b],
a ≤ b
a, b ∈ R

}
.

The bounded closed-open intervals

H3 (R) ≡
{

[a, b),
a ≤ b
a, b ∈ R

}
.

The open semi-intervals

H4 (R) ≡ {(−∞, a), a ∈ R} .

The closed semi-intervals

H5 (R) ≡ {(−∞, a], a ∈ R} .

The open semi-intervals

H6(R) ≡ {(a,+∞) : a ∈ R} .

A key observation is contained in the following result.

Lemma 4.2.1 With the notation above, it holds that

B (R) = σ (Hk (R)) , k = 0, 1, . . . , 6.(4.8)
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The approximation arguments given in the proof of Lemma 4.2.1 can also be used
in the multi-dimensional setting of Section 4.4.

Proof. Fix a and b in R with a ≤ b. The set-theoretic facts [a, b] = ∩∞n=1(a− 1
n , b+

1
n) and (a, b] = ∩∞n=1(a, b+ 1

n) readily implyH1 ⊆ σ (H0) andH2 ⊆ σ (H0). On
the other hand we also have

(a, b) = ∪∞n=n(a,b)

[
a+

1

n
, b− 1

n

]
= ∪∞n=n(a,b)

(
a, b− 1

n

]
with n(a, b) = d2(b − a)−1e. These two equalities readily imply H0 ⊆ σ (H1)
and H0 ⊆ σ (H2), respectively. It immediately follows that σ (H0) = σ (H1) and
σ (H0) = σ (H2). A similar argument also shows that σ (H0) = σ (H3), and we
conclude that B (R) = σ (Hk) for k = 0, 1, 2, 3.

In the same vein, upon noting that (−∞, a] = ∩∞n=1(−∞, a+ 1
n) and (−∞, a) =

∪∞n=1(−∞, a− 1
n ], we conclude thatH5 ⊆ σ (H4) andH4 ⊆ σ (H5), respectively,

and the equality σ (H4) = σ (H5) follows. The fact that σ (H6) = σ (H5) is an
easy consequence of the fact that the complement of any subset in H6 is a subset
inH5, and vice versa.

Next, the inclusionH4 ⊆ σ (H2) holds since (−∞, a] = ∪∞n=0(a−(n+1), a−
n], hence σ (H4) ⊆ σ (H2) = B (R). To get the reverse inclusion, start with the
observation that (a, b) = (−∞, b) ∩ (−∞, a]c. This shows that H0 ⊆ σ (H4) =
σ (H5), hence σ (H0) = B (R) ⊆ σ (H4). The equality σ (H0) = σ (H4) follows,
and the proof of (4.8) for k = 4, 5 is complete.

In spite of its seemingly simple definition, namely B (R) ≡ σ (I (R)), the
Borel σ-field constitutes an extremely large and rather unwieldy collection of ob-
jects. To make this point even more apparent we now provide a characterization of
B (R) in terms of a generator much larger than the ones appearing in Lemma 4.2.1.

We set the stage with a well-known definition from the standard topology on
R:

Definition 4.2.2
A subsetU of R is open if for every x inU , there exists a bounded open interval

Ix (in I(R)) containing x (i.e., x ∈ Ix) and contained in U (i.e., Ix ⊆ U ). A set F
is said to be closed if its complement F c (in R) is open.

Let O (R) denote the collection of all open subsets of R. It is elementary to
check that bounded open intervals and all open semi-intervals in H4(R) are open
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sets, and that bounded closed intervals in H1 (R) and all closed semi-intervals in
H5(R) are closed sets. However the bounded open-closed intervals in H2(R) and
closed-open intervals inH3(R) are neither open nor closed.

The key technical point that highlights the importance of bounded open inter-
vals as building blocks for the usual topology on R is given next; see [?] for a
proof.

Fact 4.2.1 Any open subset U in R can be expressed as the union of a countable
collection of non-overlapping open intervals, i.e., there exists a countable collec-
tion {Ji, i ∈ I} of open intervals of R such that

U = ∪i∈IJi with Jk ∩ J` = ∅, k 6= `
k, ` ∈ I.(4.9)

Fact 4.2.1 leads easily to the following characterization of B (R) in terms of
open sets.

Lemma 4.2.2 The smallest σ-field on R containing all open subsets of R coincides
with the Borel σ-field B (R) on R, i.e., B (R) ≡ σ (O (R)).

Proof. As pointed earlier, we already have I (R) ⊆ O (R), hence σ (I (R)) ⊆
σ (O (R)), and the inclusion B (R) ⊆ σ (O (R)) holds. To obtain the reverse in-
clusion, note that O (R) ⊆ σ (I (R)) by Fact 4.2.1, hence σ (O (R)) ⊆ σ (I (R)).
In other words, σ (O (R)) ⊆ B (R), and the proof is complete.

In short, the collection of all open sets on R generates the Borel σ-field B (R),
thereby highlighting its connection with the standard topology on R.

4.3 Cartesian products

Before discussing the multi-dimensional case we introduce some facts concerning
cartesian products: Let Sa and Sb be two arbitrary sets (possibly identical). If Ha
andHb are collections of subsets of Sa and Sb, respectively, it is natural to set

Ha ×Hb ≡ {Ea × Eb : Ea ∈ Ha, Eb ∈ Hb} .

A set Ea × Eb in Ha ×Hb is called a rectangle with sides Ea in Sa and Eb in Sb.
These notions generalize to more than two factors in an obvious manner.

In general the collectionHa×Hb is not a σ-field (resp. a field) on the Cartesian
product Sa × Sb even if each of the collections Ha and Hb is itself a σ-field (resp.
a field) [Exercise 4.4]. The next result shows how generators on the individual
factors give rise to a natural notion of measurability on Cartesian products.
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Lemma 4.3.1 Let Sa and Sb be two arbitrary sets. IfHa andHb are collections of
subsets of Sa and Sb, respectively, then it holds that

σ (Ha ×Hb) = σ (σ (Ha)× σ (Hb)) .(4.10)

On the basis of (4.10) it is customary to write

σ (Ha ×Hb) = σ (Ha)⊗ σ (Hb) .

Proof. As the inclusion Ha × Hb ⊆ σ (Ha) × σ (Hb) obviously holds, we im-
mediately get the inclusion σ (Ha ×Hb) ⊆ σ (σ (Ha)× σ (Hb)). To establish the
reverse inclusion

σ (σ (Ha)× σ (Hb)) ⊆ σ (Ha ×Hb) ,(4.11)

we proceed as follows: Define the collections

H?a ≡ {Ea ∈ P(Sa) : Ea × Sb ∈ σ (Ha ×Hb)}(4.12)

and
H?b ≡ {Eb ∈ P(Sb) : Sa × Eb ∈ σ (Ha ×Hb)} .(4.13)

It is a simple matter to check thatH?a andH?b are σ-fields on Sa and Sb, respectively
[Exercise 4.5].

Pick an arbitrary subsetE of Sa×Sb that belongs toH?a×H?b . Thus,E = Ea×
Eb with Ea inH?a and Eb inH?b . By definition both cartesian products Ea×Sb and
Sa × Eb belong to the σ-field σ (Ha ×Hb), hence their intersection also belongs
to σ (Ha ×Hb). However, as we note that (Ea × Sb)∩ (Sa × Eb) = Ea×Eb, we
conclude that E is also an element of σ (Ha ×Hb). Put differently, we have just
shown that

H?a ×H?b ⊆ σ (Ha ×Hb) .(4.14)

Obviously Ha ⊆ H?a, hence σ (Ha) ⊆ H?a since H?a is σ-field on Sa [Exercise
4.5]. We similarly have σ (Hb) ⊆ H?b . It follows from (4.14) that

σ (Ha)× σ (Hb) ⊆ σ (Ha ×Hb) .

and the conclusion (4.11) follows. The proof of (4.10) is now complete.
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The discussion easily generalizes to more than two factors. For instance, con-
sider sets Sa, Sb and Sc and let Sa, Sb and Sc be collections of subsets of Sa, Sb
and Sc, respectively. Applying Lemma 4.3.1 repeatedly we get

σ (Sa × (Sb × Sc)) = σ (σ (Sa)× σ (Sb × Sc))
= σ (σ (Sa)× σ (σ (Sb)× σ (Sc)))
= σ (σ (Sa)× (σ (Sb)× σ (Sc))) ,(4.15)

while similar arguments (applied to Sa × (Sb × Sc)) show that

σ (Sa × (Sb × Sc)) = σ ((σ (Sa)× σ (Sb))× σ (Sc)) .(4.16)

In the same vein that Sa × (Sb × Sc) is identified with Sa × (Sb × Sc), a fact
summarily written Sa × Sb × Sc, we identify σ (σ (Sa)× (σ (Sb)× σ (Sc))) with
σ ((σ (Sa)× σ (Sb))× σ (Sc)) and write σ (σ (Sa)× σ (Sb)× σ (Sc)). Combin-
ing these conventions we shall write

σ (Sa × Sb × Sc) = σ (Sa)⊗ σ (Sb)⊗ σ (Sc) .

These conventions and notation readily generalize to situations with multiple fac-
tors.

4.4 The Borel σ-fields on Rp (p = 2, 3, . . .)

As we turn to the multi-dimensional case, let p denote a fixed positive integer. In
higher dimensions it also quite natural to consider assigning a measure to certain
subsets of Rp, say subsets of the form

B1 × . . .×Bp,

where for each k = 1, . . . , p, the set Bk is a subset in one of the collections
H0(R), . . . ,H5(R) introduced in Section 4.2. Specializing this definition toH0(R)
we get the following definitions.

Definition 4.4.1
An bounded open rectangle R in Rp is a product set of the form I1 × . . .× Ip

where for each k = 1, . . . , p, the factor set Ik is a bounded open interval (ak, bk)
(with ak ≤ bk in R). In other words,

R = {(y1, . . . , yp) ∈ Rp : ak < yk < bk, k = 1, 2, . . . , p} .
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Let ROpen (Rp) denote the collection of all bounded open rectangles in Rp.
Obviously we have ROpen (Rp) = H0 (R) × . . . × H0 (R) = H0 (R)p, or in a
slightly different notation,ROpen (Rp) = I (R)× . . .×I (R) = I (R)p, the latter
clearly showing that ROpen (Rp) is a natural multi-dimensional generalization of
I (R). In analogy with Definition 4.2.1 given for p = 1 we now introduce the
notion of a Borel σ-field on Rp.

Definition 4.4.2
The Borel σ-field on Rp, denoted B(Rp), is the smallest σ-field on Rp contain-

ing all bounded open rectangles in Rp, i.e., B(Rp) ≡ σ (ROpen (Rp)).

Not too surprisingly, the Borel σ-field B(Rp) is related to the usual topology
on Rp (as the Borel σ-field B(R) was to the usual topology on R). To clarify
this connection further consider next the usual notion of an open set in Rp whose
definition is analogous to Definition 4.2.1 given for p = 1.

Definition 4.4.3
A subset U of Rp is open if for every x = (x1, . . . , xp) in U , there exists

a bounded open rectangle Rx (in ROpen(Rp)) containing x (i.e., x ∈ Rx) and
contained in U (i.e., Rx ⊆ U ). A set F is said to be closed if its complement F c

(in Rp) is open.

In the notation of Definition 4.4.1, the set U is open in Rp if for every x =
(x1, . . . , xp) in U and each k = 1, . . . , p, there exist scalars ak(x) and bk(x) such
that ak(x) < xk < bk(x) and

{(y1, . . . , yp) ∈ Rp : ak < yk < bk, k = 1, . . .} ⊆ U.

Let O(Rp) denote the collection of all open sets in Rp.
In the scalar case, according to Fact 4.2.1 the bounded open intervals are the

building blocks of the standard topology on R. A similar situation holds in higher
dimensions in that open rectangles in Rp are now the building blocks of the stan-
dard topology on Rp. This is the message of the following well-known fact from
topology [?].

Fact 4.4.1 For any open set U in Rp there exists a countable family of bounded
open rectangles {Ri, i ∈ I} in ROpen(Rp) with countable I such that U =
∪i∈IRi.
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Fact 4.4.1 easily leads to a characterization of B(Rp) in terms of the usual
topology on Rp; the proof, left as an easy exercise, mimics that of Lemma 4.2.2
(with I(R) replaced by ROpen(Rp) and leveraging this time Fact 4.4.1) [Exercise
4.6].

Lemma 4.4.1 The smallest σ-field on Rp containing all open subsets of Rp coin-
cides with the Borel σ-field B (Rp) on Rp, i.e., B (Rp) ≡ σ (O (Rp)).

As in the scalar case discussed in Section 4.2 the Borel σ-field B (Rp) can be
generated in many different ways; we leave it to the reader to explore the appropri-
ate multi-dimensional generalization of Lemma 4.2.1. However, for reasons that
will soon become apparent in later chapters, there is one generating family that oc-
cupies a central place in developing the notion of probability distribution functions
for random variables [Chapter ??]: Let RSW−Closed(Rp) denote the collection of
all closed southwest rectangles, namely

RSW−Closed(Rp) ≡

J1 × . . .× Jp,
Jk = (−∞, ak]

ak ∈ R
k = 1, . . . , p

 .

This family is the p-dimensional analog of the one-dimensional family H5(R), as
can be seen from its representation as the p-fold Cartesian product

RSW−Closed(Rp) = H5(R)× . . .×H5(R) = H5(R)p.

Leveraging the ideas of Section 4.3 we obtain the following alternate represen-
tion of the Borel σ-field B(Rp).

Lemma 4.4.2 The representation B(Rp) = σ (RSW−Closed(Rp)) holds.

Proof. By Lemma 4.2.1 we already haveB(R) = σ (H0(R)) = σ (H5(R)). Using
these facts and the representation RSW−Closed(Rp) = H5(R) × . . . ×H5(R), we
readily get

σ (RSW−Closed(Rp))
= σ (H5(R)× . . .×H5(R))

= σ (σ (H5(R))× . . .× σ (H5(R))) [By Lemma 4.3.1 ]

= σ (σ (H0(R))× . . .× σ (H0(R))) [By Lemma 4.2.1 ]

= σ (H0(R)× . . .×H0(R)) [By Lemma 4.3.1 ]

= σ (ROpen(Rp))
= σ (B(Rp)) [By Definition 4.4.2 ].(4.17)
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An inspection of the proof of Lemma 4.4.2 leads to the following observation.

Lemma 4.4.3 The representation

B(Rp) = σ (B(R)× . . .× B(R)) = B(R)⊗ . . .⊗ B(R)(4.18)

holds.

4.5 Borel mappings

We specialize the definitions of Section 4.1 to the situation when the domain of the
mapping is a measurable space (S,S) and its range space is Rp for some positive
integer p: Thus, in Definition 4.1.1 we write (S,S) for (Sa,Sa), Sb = Rp and it is
understood (unless specified otherwise) that Sb = B(Rp).

Definition 4.5.1
A mapping g : S → Rp defined on a measurable space (S,S) is a Borel

mapping if it is an (S,B(Rp))-measurable mapping in the sense of Definition 4.1.1,
namely that the conditions

g−1(B) ∈ S, B ∈ B(Rp)(4.19)

all hold.

With (Sc,Sc) = (Rq,B(Rq)) for some positive integer q, Fact 4.1.1 takes the
following form.

Fact 4.5.1 If g : S → Rp and h : Rp → Rq are Borel mappings, then the compo-
sition mapping h ◦ g : S → Rq is also a Borel mapping.

In this restricted context Lemma 4.1.2 leads to the following fact which is cru-
cial for understanding the importance of probability distributions.

Lemma 4.5.1 Let H denote any collection of subsets of Rp which generates the
Borel σ-field B(Rp), i.e., B(Rp) = σ (H). The mapping g : S → Rp is a Borel
mapping if and only if the conditions

g−1(E) ∈ S, E ∈ H(4.20)

all hold.
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We close this section by investigating how the measurability of one-dimensional
mappings informs the measurability of vector-valued mappings. We begin by not-
ing that any mapping g : S → Rp can also be viewed as a p-tuple of mappings
g1, . . . , gp : S → R where for each k = 1, . . . , p, the mapping gk : S → R picks
up the kth coordinate of g(s) so that

g(s) = (g1(s), . . . , gp(s)), s ∈ S.

Lemma 4.5.2 The mapping g : S → Rp is a Borel mapping if and only if the
mappings g1, . . . , gp : S → R are all Borel mappings.

Proof. We begin with an easy observation: Consider the rectangle R given by

R ≡ B1 ×B2 × . . .×Bp(4.21)

where B1, B2, . . . , Bp are subsets of R. It is elementary to see that

g−1(R) = {s ∈ S : g(s) ∈ B}
= {s ∈ S : g`(s) ∈ B`, ` = 1, . . . , p}
= ∩p`=1 {s ∈ S : g`(s) ∈ B`}
= ∩p`=1g

−1
` (B`).(4.22)

First assume that the mapping g : S → Rp is a Borel mapping according to
Definition 4.5.1. Fix k = 1, . . . , p and use (4.22) with B` = R for ` = 1, . . . , p
whenever ` 6= k and Bk = (−∞, ak] for some ak in R. It is plain that a set so
constructed is also a Borel subset of Rp – See the proof of Lemma 4.4.2 where
it is shown (among other things) that σ (σ (H5(R))× . . .× σ (H5(R))) coincides
with B (Rp). It is also plain that g−1(R) = g−1

k ((−∞, ak]) since for eack ` 6=
k we have g−1

` (B`) = g−1
` (R) = S. But g−1(R) being an element of S by

the Borel measurabiity of g, it follows that g−1
k ((−∞, ak]) is also an element of

S. Therefore, ak being arbitrary we conclude that g−1
k (H5(R)) ⊆ S, hence gk :

S → R is Borel measurable by virtue of Lemma 4.5.1 and the fact that B(R) =
σ (H5(R)) by Lemma 4.2.1.

Conversely, assume that the mappings g1, . . . , gp : S → R are all Borel map-
pings. By Lemma 4.4.3, the subset R defined at (4.21) will be a Borel subset
of Rp whenever the sets B1, . . . , Bp are all Borel subsets in R. In that case the
assumed Borel measurability of the component mappings implies that the sets
g−1

1 (B1), . . . , g−1
p (Bp) all belongs to S, whence ∩p`=1g

−1
` (B`) also belongs to S

and we conclude that g−1(R) is an element of S.
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4.6 Extended Borel mappings and limits

Sometimes the notion of a Borel mapping defined in Section 4.5 will fail to cover
important situations that arise in applications when the mapping can assume the
values ±∞. Recall that the extended real line is defined as R = [−∞,∞] =
R ∪ {−∞,+∞}.

Definition 4.6.1
Consider a measurable space (S,S). A mapping g : S → R is said to be an

extended Borel mapping if

g−1(B) ∈ S, B ∈ B(R)

where the extended Borel σ-field B(R) on R is defined as

B(R) ≡ σ (B(R), {−∞}, {+∞}) .(4.23)

The Borel measurability of the mapping g : S → B(R) according to Definition
4.6.1 is easily checked [Exercise 4.9] to be equivalent to the conditions

{s ∈ S : g(s) ∈ (−∞, a]} ∈ S, a ∈ R(4.24)

and
S±∞ ≡ {s ∈ S : g(s) = ±∞} ∈ S.(4.25)

Furthermore, any Borel mapping g : S → R is necessarily an extended Borel
mapping [Exercise 4.10]

Lemma 4.6.1 Consider a sequence of extended Borel mappings {gn, n = 1, 2, . . .}
which are all defined on the same measurable space (S,S). The following map-
pings S → [−∞,+∞] derived from the sequence {gn, n = 1, 2, . . .} are all
extended Borel mappings:
(i) The maximum mappings S → R defined by

s→ max
m=1,...,n

gm(s),
n = 1, 2, . . .

s ∈ S

(ii) The minimum mappings S → R defined by

s→ min
m=1,...,n

gm(s),
n = 1, 2, . . .

s ∈ S
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(iii) The supremum mapping S → R defined by

s→ sup
m≥1

gm(s), s ∈ S.

(iv) The infimum mapping S → R defined by

s→ inf
m≥1

gm(s), s ∈ S.

(v) The limsup mapping S → R defined by

s→ lim sup
n→∞

gn(s), s ∈ S.

(vi) The liminf mapping S → R defined by

s→ lim inf
n→∞

gn(s), s ∈ S.

Proof. Fix n = 1, 2, . . .. For each a in R, we note that{
s ∈ S : max

m=1,...,n
gm(s) ≤ a

}
= ∩nm=1 {s ∈ S : gm(s) ≤ a} ∈ S

and {
s ∈ S : min

m=1,...,n
gm(s) > a

}
= ∩nm=1 {s ∈ S : gm(s) > a} ∈ S

since for each m = 1, 2, . . ., the mapping gm : S → R is an extended Borel
mapping with {s ∈ S : gm(s) ≤ a} and {s ∈ S : gm(s) > a} both being subsets
in S. The extended Borel measurability of the maximum and minimum map-
pings follows from Lemma 4.5.1 upon noting that the closed unbounded intervals
H5(R) = {(−∞, a], a ∈ R} generate the σ-field B(R).

[Exercise 4.11]. The Borel measurability of the limsup and liminf mappings is
now straightforward; the details of the proof are left to the interested reader.

It is a simple matter to check [Exercise 4.11] that

S? ≡
{
s ∈ S : lim inf

n→∞
gn(s) = lim sup

n→∞
gn(s)

}
∈ S

and that on the set S?, the limit limn→∞ gn(s) exists (possibly as an element in R),
and is the common value assumed by lim infn→∞ gn and lim supn→∞ gn.
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4.7 Exercises

Ex. 4.1 In the proof of Lemma 4.1.1 show that
a. the collection g−1(Sb) is a σ-field on Sa if Sb is a σ-field on Sb.
b. the collectionHb defined at (4.5) is a σ-field on Sb.

Ex. 4.2 Prove the validity of (4.3) and fill in the details of the proof of Fact 4.1.1 .

Ex. 4.3 Consider the setting of Definition 4.1.1: Let µa : Sa → [0,+∞] a measure
defined on Sa, and define the set function µb : Sb → [0,+∞] by

µb [Eb] ≡ µa
[
g−1 (Eb)

]
, Eb ∈ Sb.

Show that the set function µb : Sb → [0,+∞] is a measure defined on Sb. It is a
probability measure if µa is a probability measure.

Ex. 4.4 Let Ea and Eb be strict non-empty subsets of the sets Sa and Sb, respec-
tively. Show that the complement of Ea ×Eb in Sa × Sb is usually not a rectangle
with sides in Sa and Sb, i.e., Ea × Eb cannot be written as Ga × Gb with Ga and
Gb subsets of Sa and Sb.

Use this fact to conclude that ifHa andHb are collections of subsets of Sa and
Sb, repectively, then the collectionHa ×Hb cannot be a field (σ-field) on Sa × Sb
even ifHa andHb are fields (σ-fields) on Sa and Sb, respectively.

Ex. 4.5 Show that the collections H?a andH?b defined at (4.12) and (4.13), respec-
tively, are σ-fields.

Ex. 4.6 Give a proof of Lemma 4.4.1.

Ex. 4.7 Usually the topology on Rp is characterized in terms of open balls rather
than open bounded rectangles – This allows for natural generalizations to general
metric spaces. With this in mind, with r > 0 and x in Rp, define the open ball
centered at x of radius r to be the subset Br(x) given by

Br(x) ≡ {y ∈ Rp : ‖x− y‖ < r}

where ‖z‖ =
√∑n

i=1 z
2
i for every z = (z1, . . . , zn) in Rp. Let HOpen−Ball(Rp)

denote the collection of all such open balls, namely

HOpen−Ball(Rp) ≡ {Br(x) : r > 0, x ∈ Rp} .

Show that B(Rp) = σ (HOpen−Ball(Rp)) [HINT: Use Fact 4.4.1].
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Ex. 4.8 Most (if not all) mappings Rp → Rq encountered in applications are Borel
mappings. In particular, any continuous mapping Rp → Rq can be shown to be a
Borel mapping! [HINT: Use the fact that a mapping g : Rp → Rq is continuous if
and only if g−1 (O(Rq)) ⊆ O(Rp)].

Ex. 4.9 Consider the mapping g : S → R defined on the same measurable space
(S,S). Show that this mapping is an extended Borel mapping if and only condi-
tions (4.24) and (4.25) all hold.

Ex. 4.10 Show the validity of the following statements:
a. The collection B(R) of subsets of R defined by (4.23) is a σ-field on R.
b. Show that the σ-fieldB(R) is also generated by the collections {[−∞, a], a ∈

R} and {(a,+∞), a ∈ R} of subsets of R.
c. Any Borel mapping g : S → R is necessarily an (extended) Borel mapping

S → R.

Ex. 4.11 Consider the extended Borel mappings g, h : S → R defined on the same
measurable space (S,S).

a. Show that the mapping S → R : s → −g(s) is also an extended Borel
mapping.

b. Show that the set S? ≡ {s ∈ S : g(s) = h(s)} belongs to S .
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Chapter 5

Constructing (probability)
measures: Carathéodory at work

As already mentioned in Chapter 1, determining the appropriate σ-field of events
on which to define probability measures is technically more delicate when the sam-
ple space is uncountable, say Rp (or subsets thereof). In such commonly encoun-
tered situations, the required σ-additivity of the probability measure precludes the
power set of the sample space be used as the σ-field (as we did for the countable
case in Section 1.5).

In Chapter 4 we discussed how assigning a measure to certain “natural” subsets
of Rp, say intervals in R or more generally “rectangles” in Rp, leads to the notion
of Borel σ-fields. We now explore whether the assignments on these generating
families (intimately associated with the usual topology on these sample spaces)
can indeed be “extended” to a full measure that is well defined on the generated
σ-field. As we shall see shortly the existence of such extensions will be guaranteed
with the help of ideas introduced by Carathéodory.

5.1 Facts concerning general measures

In this section we summarize some useful facts concerning general measures. They
are analogous to properties that were discussed earlier for probability measures;
see Chapter 1. Let (S,S, µ) be a measure space as described in Section 1.2 with
the understanding that S is a σ-field on the non-empty set S and the set function
µ : S → [0,+∞] is a measure defined on S.

Proposition 5.1.1 Consider a finitely additive set function µ : S → [0,+∞] de-
fined on some σ-field S carried by the set S; see Definition 1.2.2. The properties

65
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(i)-(iii) listed below are equivalent where
(i) The set function µ : S → [0,+∞] is continuous from below on S: For

every monotone increasing collection {En, n = 1, 2, . . .} of subsets in S (i.e.,
En ⊆ En+1 for all n = 1, 2, . . .), it holds that limn→+∞ µ [En] = µ [∪∞n=1En].

(ii) The set function µ : S → [0,+∞] is continuous from above on S: For
every monotone decreasing collection {En, n = 1, 2, . . .} of subsets in S (i.e.,
En+1 ⊆ En for all n = 1, 2, . . .), it holds that limn→+∞ µ [En] = µ [∩∞n=1En]
provided there exists some index n? such that µ [En? ] < +∞.

(iii) The set function µ : S → [0,+∞] is σ-additive on S: For every disjoint
collection {En, n = 1, 2, . . .} of subsets in S, it holds that

µ [∪∞n=1En] =
∞∑
n=1

µ [En] .(5.1)

The need for the finiteness condition in Part (ii) is explored in Exercise 5.1.

Proof. It is easy to see (say by complementarity and finiteness condition) that
(i) and (ii) are equivalent, and that (iii) implies (i) and (ii) – The arguments are
essentially the same as the ones given in Section 3.1.

Therefore it remains to show that (i) implies (iii): Thus, assume that (i) holds
and consider a collection {En, n = 1, 2, . . .} of disjoint subsets in S. We introduce
the monotone increasing collection {Fn, n = 1, 2, . . .} of subsets in S given by

Fn ≡ ∪nm=1Em, n = 1, 2, . . .

The additivity of µ on S yields

µ [Fn] =
n∑

m=1

µ [Em] , n = 1, 2, . . .(5.2)

Let n go to infinity in this last relation: We get

lim
n→∞

n∑
m=1

µ [Em] =
∞∑
m=1

µ [Em] .

On the other end, using (i) with the sequence {Fn, n = 1, 2, . . .} we find

lim
n→∞

µ [Fn] = µ [∪∞n=1Fn] = µ [∪∞n=1En]

as we note that ∪∞n=1Fn = ∪∞n=1En. This establishes (5.1) and (iii) holds.
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Lemma 5.1.1 For any measure µ : S → [0,+∞] defined on S the following
properties hold:

(i) Monotonicity: For any sets E and F in S, it holds that

µ [E] ≤ µ [F ] , E ⊆ F(5.3)

(ii) Sub-additivity: For any countable collection {Ei, i ∈ I} in S , it holds that

µ [∪i∈IEi] ≤
∑
i∈I

µ [Ei] .(5.4)

The inequality (5.4) is the form the union bound (2.4) takes in this more general
context.

Proof. For any subsets E and F in S the decomposition E ∪ F = E ∪ (F − E)
holds with E ∩ (F − E) = ∅, hence

µ [E ∪ F ] = µ [E] + µ [F − E](5.5)

by the additivity of µ. When E ⊆ F , then E ∪ F = F and (5.5) becomes

µ [F ] = µ [E] + µ [F − E] ,

so that (5.3) is an immediate consequence of the fact that µ [F − E] ≥ 0. This
establishes Claim (i).

We now turn to Claim (ii): For arbitrary subsets E and F in S, we note from
(5.5) that µ [F − E] ≤ µ [F ] by the monotonicity of µ and the inequality

µ [E ∪ F ] ≤ µ [E] + µ [F ]

follows. This establishes Claim (ii) when I has two elements. An easy proof by
induction gives the result when I is finite but arbitrary.

Consider now the case where I is countably infinite, say I = {1, 2, . . .} with-
out loss of generality. The union bound for finite collections (which we have just
established) already implies

µ [∪nk=1Ek] ≤
n∑
k=1

µ [Ek] , n = 1, 2, . . .

Let n go to infinity in this inequality: We note that the subsets {∪nk=1Ek, n =
1, 2, . . .} form a sequence of non-decreasing sets. By Claim (i) of Proposition
5.1.1, namely the continuity from below of µ, we conclude that

lim
n→∞

µ [∪nk=1Ek] = µ [∪∞k=1Ek] .
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On the other hand, limn→+∞
∑n

k=1 µ [Ek] =
∑∞

k=1 µ [Ek]. Combining these ob-
servations completes the proof of Claim (ii).

There are important situations where µ [S] = +∞ but much of measure theory
can still be developed as in the finite case through localization arguments. This
arises when the measure µ : S → [0,+∞] is σ-finite in the following sense:

Definition 5.1.1
Given a collection S of subsets of S, a set function µ : S → [0,+∞] is σ-finite

There exists a sequence of sets {En, n = 1, 2, . . .} in the σ-field S, said sequence
being monotone increasing, i.e.,En ⊂ En+1 for all n = 1, 2, . . ., which “exhausts”
S in that ∪∞n=1En = S and for which µ [En] < +∞ for all n = 1, 2, . . ..

It might be surprising at first but subsets of a set of measure zero are not nec-
essarily themselves measurable (i.e., members of the σ-field where the measure
is defined), in which case they are not of measure zero since no measure can be
assigned to them. The next definition formally addresses this issue.

Definition 5.1.2
A measure space (S,S, µ) is said to be complete (or simply that the measure

µ is complete on S) if whenever a set E in S has zero measure under µ, i.e.,
µ [E] = 0, then every subset E′ of E is also in S (in which case we automatically
have µ [E′] = 0).

There are strategies to construct a complete measure space from a measure space
(S,S, µ); one such approach is described in Exercise 5.4.

5.2 The extension problem

Let S denote a non-empty set, and consider two collections H1 and H2 of subsets
of S.

Definition 5.2.1
WithH1 ⊆ H2, the set functions µ1 : H1 → [0,+∞] and µ2 : H2 → [0,+∞]

are said to agree or coincide onH1, written µ1 = µ2 onH1, if

µ1 [F ] = µ2 [F ] , F ∈ H1.
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It is customary to say that µ1 is a restriction of µ2 onH1 and that µ2 is an extension
of µ1 toH2 if µ1 = µ2 onH1.

The extension problem can be formulated as follows: Find extensions (in the
sense of Definition 5.2.1) of a set function µ1 : H1 → [0,+∞] which preserve
some of its properties. Here we are concerned with extending a σ-additive set
function into a measure: The set function µ1 : H1 → [0,+∞] is known to be
σ-additive on the collection H1 which has minimal structure and is not a σ-field.
We seek to extend the set function µ1 : H1 → [0,+∞] into a measure µ2 : H2 →
[0,+∞] where H2 is a σ-field which contains at the very least the σ-field σ (H1)
generated byH1.

The main difficulty in carrying out such extensions lies in the following obser-
vation: Even when H2 = σ (H1), no obvious constructive way exists for identify-
ing sets which are inH2 but not inH1; only the existence of σ (H1) as the smallest
σ-field containing H1 can be asserted; see Section 1.7. As a result it is hard to
imagine how to construct the extension to µ1 to sets in σ (H1) that are not in H1.
Instead we shall settle in the main for establishing the existence of such extensions.
As shown by C. Carathéodory, there is a way out of this difficulty by invoking the
notion of outer measure and a related idea of measurability.

5.3 Outer measures

Let S be a non-empty set.

Definition 5.3.1
An outer measure on S is a set function µ? : P(S) → [0,+∞] that satisfies

the following properties:

(OM1) µ? [∅] = 0

(OM2) Monotonicity: If E ∈ P(S) and F ∈ P(S) such that E ⊆ F , then µ? [E] ≤
µ? [F ].

(OM3) Countable subadditivity: With I a countable index set, if Ei ∈ P(S) for
each i in I , then

µ? [∪i∈IEi] ≤
∑
i∈I

µ? [Ei] .(5.6)
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The condition (5.6) can be rephrased as saying that the union bound holds for the
set function µ? : P(S) → [0,+∞]. Therefore, a measure defined on the entire
power set of S is an outer measure since a measure always satisfies union bounds;
see Lemma 5.1.1.

Following Carathéodory, with an outer measure µ? : P(S) → [0,+∞] we
associate the following notion of µ?-measurability.

Definition 5.3.2
A subset E of S is µ?-measurable if

µ? [F ] = µ? [F ∩ E] + µ? [F ∩ Ec] , F ∈ P(S).(5.7)

LetM(µ?) denote the collection of all subsets of S which are µ?-measurable.

For any pair of subsets E and F of S, the sets F ∩E and F ∩Ec are disjoint with
F = (F ∩ E) ∪ (F ∩ E). Therefore, by (OM3) it is always the case that

µ? [F ] ≤ µ? [F ∩ E] + µ? [F ∩ Ec] , F ∈ P(S).(5.8)

Thus, to establish the µ?-measurability of the subset E it suffices to show the re-
verse inequality, namely

µ? [F ] ≥ µ? [F ∩ E] + µ? [F ∩ Ec] , F ∈ P(S).(5.9)

The next result, due to Carathéodory, is remarkable for its generality; in partic-
ular it shows how an outer measure always induces a measure on a σ-field!

Theorem 5.3.1 If the set function µ? : P(S) → [0,+∞] is an outer measure on
S, thenM(µ?) is a σ-field on S, and the restriction of µ? toM(µ?) is a measure.

While it is plain from (5.7) that the empty set is contained inM(µ?) and that
M(µ?) is closed under complementation, establishing thatM(µ?) is closed under
countable union is more involved. We refer the reader to References [?, ?, ?, ?] for
a complete proof that the collectionM(µ?) is indeed a σ-field on S and that the
restriction of µ? toM(µ?) is a measure. This measure is complete in the sense of
Definition 5.1.2.

Lemma 5.3.1 For any outer measure µ? : P(S) → [0,+∞], the measure space
(S,M(µ?), µ?) is complete.
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Proof. Consider a set E inM(µ?) with µ? [E] = 0, and let E′ be any subset of E.
For any subset F of S, we note that F ∩E′ ⊆ E′ ⊆ E, hence µ? [F ∩ E′] ≤ µ? [E]
by (OM2). Starting with (5.8) we get

µ? [F ] ≤ µ?
[
F ∩ E′

]
+ µ?

[
F ∩ (E′)c

]
≤ µ? [E] + µ?

[
F ∩ (E′)c

]
= µ?

[
F ∩ (E′)c

]
≤ µ? [F ](5.10)

where the last inequality is again a consequence of (OM2) since F ∩ (E′)c ⊆ F .
It follows that

µ? [F ] = µ?
[
F ∩ E′

]
+ µ?

[
F ∩ (E′)c

]
, F ∈ P(S),

and the set E′ is therefore µ?-measurable. Using (OM2) again we conclude that
µ? [E′] = 0 since 0 ≤ µ? [E′] ≤ µ? [E] = 0.

Going back to the extension problem formulated in Section 5.2 we now present
a way to exploit Theorem 5.3.1 by associating an outer measure with most set
functions.

5.4 Induced outer measures

Outer measures on S are quite easy to find through a construction which associates
an outer measure on S with (almost) any set function defined on a collection of
subsets of S. The following terminology will simplify the presentation.

Definition 5.4.1
LetH denote a collection of subsets of S. For any subsetE of S, the collection

{Ei, i ∈ I} of sets in H is called a countable covering of E by sets in H if I is a
countable index set and the covering condition

E ⊆ ∪i∈IEi

holds. We refer to such a covering of E as a countableH-covering of E.

LetHE denote the collection of all countableH-coverings ofE; the collectionHE
may be empty for some set E.
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Definition 5.4.2
Let H denote a collection of subsets of S. With any set function ν : H →

[0,+∞] we associate the set function µ?ν : P(S)→ [0,+∞] given by

µ?ν [E] ≡ inf
{Ei, i∈I}∈HE

(∑
i∈I

ν [Ei]

)
, E ∈ P(S)(5.11)

with the usual convention that the infimum in (5.11) is set to +∞ if the collection
HE is empty.

The properties of set functions defined by (5.11) are presented next.

Theorem 5.4.1 If the collectionH of subsets of S contains the empty set ∅ and the
set function ν : H → [0,+∞] has the property that ν [∅] = 0, then the set function
µ?ν : P(S) → [0,+∞] defined by (5.11) is an outer measure on S known as the
outer measure induced by ν.

Proof. Obviously, sinceH contains the empty set ∅, we have µ?ν [∅] = 0 under the
assumption ν [∅] = 0, hence (OM1) holds.

To show that (OM2) holds, pick subsets E and F in P(S) such that E ⊆ F . A
countableH-covering of E is also a countableH-covering of F , henceHF ⊆ HE ,
and the conclusion µ?ν [E] ≤ µ?ν [F ] follows.

As we turn to (OM3), let {Ei, i ∈ I} be a countable collection of subsets of
S. We need to show that (5.6) holds. If µ?ν [Ei] = +∞ for some i in I , then (5.6)
automatically holds.

Next consider the situation where µ?ν [Ei] < +∞ for all i in I: For each i
in I , let the collection {Fi|k, k ∈ Ki} of sets in H be a countable H-covering
of Ei. Obviously ∪i∈IEi ⊆ ∪i∈I

(
∪k∈KiFi|k

)
, so that the countable collection

{Fi|k, i ∈ I, k ∈ Ki} is a countableH-covering of ∪i∈IEi, and the inequality

µ?ν [∪i∈IEi] ≤
∑
i∈I

∑
k∈Ki

ν
[
Fi|k

]
obtains by definition. For each i in I , the finiteness of µ?ν [Ei] implies that the
collection {Fi|k, k ∈ Ki} can always be selected so that∑

k∈Ki

ν
[
Fi|k

]
≤ µ?ν [Ei] + ε · ai
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where ε > 0 for some ai > 0. It is always possible to select the scalars {ai, i ∈ I}
so that

∑
i∈I ai < +∞. Combining these facts easily leads to

µ?ν [∪i∈IEi] ≤
∑
i∈I

(µ?ν [Ei] + εȧi) ≤
∑
i∈I

µ?ν [Ei] + ε

(∑
i∈I

ai

)
,

and ε > 0 being arbitrary we obtain (5.6) upon letting ε > 0 go to zero.

5.5 Combining Theorem 5.3.1 and Theorem 5.4.1

With a non-empty set S, let H denote a collection of subsets of S which contains
the empty set ∅, and let the set function ν : H → [0,+∞] have the property that
ν [∅] = 0 As before, let µ?ν : P(S) → [0,+∞] denote the outer measure on S
induced by ν. Applying Theorem 5.3.1 to the outer measure µ?ν , we conclude that
the collectionM(µ?ν) is a σ-field on S, and that the restriction of µ?ν toM(µ?ν) is
a measure – This measure is known as the Carathéodory measure induced by ν.

A solution to the problem of extending the σ-additive set function ν : H →
[0,+∞] to a measure µ : σ (H)→ [0,+∞] is now in sight provided the following
issues can be resolved:

(i) Does the inclusion
H ⊆M(µ?ν)(5.12)

hold? After all there is no guarantee that the sets in H are indeed µ?ν-measurable.
Note that (5.12) would imply σ(H) ⊆M(µ?ν).

(ii) Can we conclude that the conditions

µ?ν(E) = ν(E), E ∈ H(5.13)

hold? This last condition complements (5.12) and expresses the fact that the mea-
sure µ?ν is indeed an extension of ν.

We first address condition (5.13). PickE inH: We always have µ?ν(E) ≤ ν(E)
since E is trivially a countable H-covering of itself. The validity of the reverse
inequality ν(E) ≤ µ?ν(E) is equivalent to requiring

ν [E] ≤
∑
i∈I

ν [Ei](5.14)

for every countable H-covering {Ei, i ∈ I} of E. Although this condition is
reminiscent of the union bound, a word of caution is in order here: Even if the set
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function ν : H → [0,+∞] were σ-additive on H (as is necessary for an extension
to exist), it would satisfy both monotonicity and the union bound property on H
(see comment following Lemma 5.1.1). With this in mind it is tempting to argue
that the following chain of inequalities

ν [E] ≤ ν [∪i∈IEi] ≤
∑
i∈I

ν [Ei]

holds, the first inequality by virtue of the covering condition E ⊆ ∪i∈IEi and the
second inequality by a union bound argument, in which case (5.14) would auto-
matically hold. However, there is no guarantee that ∪i∈IEi belongs to H (which
typically is not going to be a σ-field), and both steps may fail to be valid. If this
were the case then (5.14) would automatically hold – See the proof of Theorem
6.1.1 where H is a σ-field and the aforementioned issue disappears. Therefore, if
condition (5.14) were to hold, additional conditions are needed.

We now turn to condition (5.13). In many (important) applications the collec-
tion H is not even a field of subsets of S. Yet, weaker structural properties can be
imposed on the collection of setsH to ensure the validity of condition (5.13) – One
such notion is introduced in the next section.

5.6 Semi-rings, etc

The notion introduced next expands on the approach originally used for defining
Lesbegue’s measure on Rp.

Definition 5.6.1
The collectionH of subsets of S is said to be a semi-ring onH if the conditions

(SR1)-(SR3) hold where

(SR1) ∅ ∈ H.

(SR2) Closed under intersection: If E ∈ H and F ∈ H, then E ∩ F ∈ H.

(SR3) Relative complements as a finite disjoint union: If E ∈ H and F ∈ H, then
there exists a finite collection F1, . . . , Fn of disjoint sets in H such that the
representation E − F = ∪ni=1Fi holds.

Again (SR2) implies (is in fact equivalent) to the seemingly more general statement
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(SR2b) Closed under finite intersection: For each n = 1, 2, . . ., ifE1 ∈ H, . . . , En ∈
H, then ∩ni=1Ei ∈ H.

There is no guarantee that the set S = ∅c is an element ofH since a semi-ring may
not be closed under taking complements – Only the weaker requirement (SR3)
needs to be satisfied. However, in some literature condition (SR3) is replaced by
the following requirement:

(SR3b) Closed under complements: If E ∈ H, then there exists a finite collection
F1, . . . , Fn of disjoint sets in H such that the representation Ec = ∪ni=1Fi
holds.

As discussed below, this condition is stronger than (SR3).

Fact 5.6.1 If the collection H of subsets of S satisfies (SR1), (SR2) and (SR3b),
then (SR3) holds as well andH is a semi-ring.

Proof. We need only show that (SR3) holds under (SR1), (SR2) and (SR3b): Thus,
pick sets E and F in H. Under (SR3b), there exists a finite collection F1, . . . , Fn
of disjoint sets inH such that the representation F c = ∪ni=1Fi holds. Therefore,

E − F = E ∩ F c = E ∩ (∪ni=1Fi) = ∪ni=1 (E ∩ Fi)

and (SR3) holds because the sets E ∩ F1, . . . , E ∩ Fn are in H under (SR2); they
are obviously disjoint since the sets F1, . . . , Fn are disjoint under (SR3b).

However, under (SR1) and (SR2) the conditions (SR3) and (SR3b) are equiv-
alent when S belongs to S: In that case (SR3) with E = S and F arbitrary in H
yield S − F = S ∩ F c = F c = ∪ni=1Fi where the sets F1, . . . , Fn are disjoint in
H. Thus, F c can be represented as a finite union of disjoint sets in H and (SR3b)
holds.

Even under the stronger condition (SR3b) (applied to E = ∅) it is not possible
in general to ascertain that S belongs to S, but only that S = ∪ni=1Fi for disjoint
sets F1, . . . , Fn in H. To smooth out this technical point, some authors augment
the notion of semi-ring by requiring that S be included in the semi-ring, in which
case such collections are called semi-fields.

A key fact associated with semi-rings is given next and already sheds some
light as to their usefulness in the Carathédory program outlined in Section 5.5.

Lemma 5.6.1 If the collectionH of subsets of S is a semi-ring on S, letH? denote
the collection of all unions of finite disjoint collections of sets in H. Then, H? is
a field of subsets of S containing H. In fact it is the smallest field of subsets of S
containingH, i.e., if G is a field of subsets of S containingH, thenH? ⊆ G.
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5.7 Exercises

Ex. 5.1 Consider the following measure space (S,S, µ) where S = N0, S =
P(N0) and the measure µ : S,→ [0,+∞] is the counting measure; see Exercise
1.4. Consider the monotone decreasing sequence of sets {En, n = 1, 2, . . .}where
En ≡ {k ∈ N0 : k ≥ n} for each n = 1, 2, . . .. Show that limn→+∞ µ [En] =∞
while µ [∪∞n=1En] = 0. Does this contradict Part (ii) of Proposition 5.1.1?

Ex. 5.2 Show that any measure defined on the entire power set of S is necessarily
an outer measure.

Ex. 5.3 Show that a finitely additive outer measure µ? : P(S) → [0,+∞] is
necessarily a measure on P(S).

Ex. 5.4 Completing a probability space: Given a probability triple (Ω,F ,P), letN
denote the collection of all null events (under P), i.e.,N ≡ {N ∈ F : P [N ] = 0}.
Consider now the collectionN ? of all subsets of Ω that are subsets of P-null events,
i.e.,

N ? ≡ {M ∈ P(Ω) : M ⊆ N for some N ∈ N } = ∪N∈NP(N).

Subsets in N ? are not necessarily events in F .
Show that the collection F? ≡ {E ∪M : E ∈ F , M ∈ N ?} is also a σ-field

on Ω (which contains F).
b. Define the set function P? : F? → [0, 1] by

P? [E?] ≡ P [E] ,
E? = E ∪M

E ∈ F , M ∈ N ?.

Show that this definition is well posed in the following sense: If E? admits the two
representations E1 ∪M1 and E2 ∪M2 with Ek ∈ F and Mk ∈ N ?, k = 1, 2,
then P [E1] = P [E2], thereby yielding an unambiguous value for P? [E?] [HINT:
Make use of the following observation: If for each k = 1, 2, Mk ⊆ Nk where Nk

is an element of N , then the equality E1 ∪M1 = E2 ∪M2 implies the inclusions
E1 ⊆M2 ∪N2 and E2 ⊆M1 ∪N1].

c. Show that the set function P? : F? → [0, 1] (which is well defined as per
Part b) is a probability measure on F? which coincides with P on F .

d. Show that the probability measure P? is complete on F? in the sense that if
P? [E?] = 0 for some E? in F?, then for any subset E?? of E?, it holds that E??

belongs to F? with P? [E??] = 0.
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Ex. 5.5 Consider the set function µ? : P(S)→ [0,+∞] defined by

µ?(E) ≡


|E| if E is finite

+∞ if E is not finite.

a. Show that this set function µ? : P(S)→ [0,+∞] is an outer measure on S.
b. Determine the µ?-measurable sets of S.

Ex. 5.6 Define the set function µ? : P(S)→ [0,+∞] by µ? [∅] = 0 and µ? [E] =
+∞ for E 6= ∅.

a. Show that this set function µ? : P(S)→ [0,+∞] is an outer measure on S.
b. Determine the µ?-measurable sets of S.

Ex. 5.7 With S a non-countable set, define the set function µ? : P(S)→ [0,+∞]
by µ? [E] = 0 if E is countable and µ? [E] = 1 if E is not countable.

a. Show that this set function µ? : P(S)→ [0,+∞] is an outer measure on S.
b. Determine the µ?-measurable sets of S.

Ex. 5.8 Start with an outer measure µ? : P(S) → [0,+∞] on S. For a given
subset G of S, define the set function ν?G : P(S)→ [0,+∞] given by

ν?G [E] ≡ µ? [E ∩G] , G ∈ P(S).

a. Show that this set function ν?G : P(S)→ [0,+∞] is an outer measure on S.
b. Determine the relation between the µ?-measurable sets and µ?G-measurable

sets.

Ex. 5.9 WithH ≡ {∅, S, {s}, s ∈ S}, consider the set function ν : H → [0,+∞]
given by

ν [E] ≡


0 if E = ∅
+∞ if E = S
1 if E 6= ∅, E 6= S.

Describe the outer measure µ?ν : P(S)→ [0,+∞] induced by ν.

Ex. 5.10 Assume S to be uncountable. With H ≡ {∅, S, {s}, s ∈ S}, consider
the set function ν : H → [0,+∞] given by

ν [E] ≡
{

1 if E = S
0 if E 6= S.

Describe the outer measure µ?ν : P(S)→ [0,+∞] induced by ν.
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Ex. 5.11 Assume that H is a σ-field on S and the set function ν : H → [0,+∞]
is a measure onH.

a. Show that µ? and ν agree onH.
b. Show that every set inH is µ?ν-measurable.
c. These two facts imply that µ?ν is an extension of ν onM(µ?ν) which may be

larger than the initial σ-fieldH. Give an example when this will happen!

Ex. 5.12 Given a non-empty family {Si, i ∈ I} of σ-fields (resp. fields) on some
arbitrary set S, show that the collection ∩i∈ISi is a σ-field (resp. field) on S.



Chapter 6

Constructing (probability)
measures: Extension results and
examples

In Chapter 4 we discussed how assigning a measure to certain “natural” subsets
of Rp, say intervals in R or more generally rectangles in Rp, leads to the notion
of Borel σ-fields. In Chapter 5 we explored whether the assignments on these
generating families (intimately associated with the usual topology on these sample
spaces) can indeed be “extended” to a full measure that is well defined on the
generated σ-field. The existence of such extensions was guaranteed with the help
of ideas introduced by Carathéodory. In the current chapter we present several
examples of extension results, apply them on various examples.

6.1 Extension results

In this section we build on the ideas developed in Section 5.5. and present various
extension results under progressively weaker conditions; when the proofs are not
given they can found in the cited references.

The setting is as in Section 5.5: With a non-empty set S, let H denote a col-
lection of subsets of S which contains the empty set ∅, and let the set function
ν : H → [0,+∞] have the property that ν [∅] = 0. With µ?ν : P(S) → [0,+∞]
denoting the outer measure on S induced by ν, Theorem 5.3.1 applied to µ?ν yields
that the collectionM(µ?ν) is a σ-field on S, and that the restriction of µ?ν toM(µ?ν)
is a measure, the so-called Carathéodory measure induced by ν.

We proceed with a number of extension results under increasingly weaker con-
ditions on the collection H of subsets of S over which the set function ν : H →

79
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[0,+∞] is originally defined. Obviously, for an extension to a measure to exists it
is necessary for the set function ν : H → [0,+∞] to be σ-additive onH.

The first result confirms the fact that the Carathéodory measure induced by any
measure is indeed an extension of that measure.

Theorem 6.1.1 Assume thatH is a σ-field of subsets of S and that the set function
ν : H → [0,+∞] is a measure onH. Then, the inclusion

H ⊆M(µ?ν)(6.1)

holds and the Carathéodory measure µ?ν : M(µ?ν) → [0,+∞] induced by ν coin-
cides with ν onH, i.e.,

ν(F ) = µ?ν(F ), F ∈ H.(6.2)

In other words, the measure µ?ν extends the measure ν to the larger σ-fieldM(µ?ν).
The proof of Theorem 6.1.1 is available in Section 6.6. Note that µ?ν is complete on
M(µ?ν) while the initial measure ν may not have been complete on H, therefore
creating the possibility that the inclusion (6.1) is strict.

The next result assumes only that the collection H is a field on S; a proof is
available in the references [?][Thm. 11.2, p. 164] and [?][Thm. 1.14, p. 31].

Theorem 6.1.2 Assume that H is a field of subsets of S and that the set function
ν : H → [0,+∞] is σ-additive on H with ν [∅] = 0. Then there exists a measure
νExt : σ (H) → [0,+∞] which is an extension of the set function ν : H →
[0,+∞] to the smallest σ-field σ (H) generated byH: The inclusion

σ (H) ⊆M(µ?ν)(6.3)

holds and
νExt(F ) = µ?ν(F ), F ∈ σ (H) .(6.4)

Furthermore, if the set function ν : H → [0,+∞] is σ-finite onH, then νExt is the
unique extension of ν to the σ-field σ (H) and it is σ-finite on σ (H).

In many situations of interest the collection H is not even a field of subsets of
S. Instead the collectionH has a weaker structure; in particular there are important
applications where H is only a semi-ring on S as defined in Section 5.6. [?][Thm.
11.3, p. 164]. A proof is given in Section 6.7.
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Theorem 6.1.3 Assume thatH is a semi-ring of subsets of S and that the set func-
tion ν : H → [0,+∞] is both finitely additive and countably subadditive on H
with ν [∅] = 0. Then there exists a measure νExt : σ (H) → [0,+∞] which is
an extension of the set function ν : H → [0,+∞] to the smallest σ-field σ (H)
generated byH: The inclusion

σ (H) ⊆M(µ?ν)(6.5)

holds and
νExt(F ) = µ?ν(F ), F ∈ σ (H) .(6.6)

Furthermore, if the set function ν : H → [0,+∞] is σ-finite onH, then νExt is the
unique extension of ν to the σ-field σ (H) and it is σ-finite on σ (H).

6.2 Example 1 – Infinite coin tossings and its generaliza-
tion

Consider a random experiment E modeled by the probability triple (Ω,F ,P) where
the sample space Ω contains a finite numberN of distinct elements, say s1, . . . , sN ,
the σ-field F is the power set P(Ω), and the probability measure P is described
through the probability mass function p = (p(s1, . . . , p(sN )). See Section 1.5.

This experiment is repeated infinitely many times under “identical and inde-
pendent conditions.” Let the resulting random experiment be denoted by E∞. We
now explore how to build an appropriate probability triple (Ω∞,F∞,P∞) to model
experiment E∞.

The sample space For ease of notation, let Ω1, . . . ,Ωk, . . . denote identical copies
of Ω. It is appropriate to take Ω∞ to be the Cartesian product

Ω∞ ≡ ×∞k=1Ωk = Ω1 × Ω2 × . . .× Ωn × . . .

(sometimes also denoted ΩN0). The set Ω∞ is the collection of all infinite length
words drawn from the alphabet {s1, . . . , sN}, and its generic element ω∞ is of the
form

ω∞ = (ω1, ω2, . . . , ωn, . . .),
ωk ∈ Ω = {s1, . . . , sN}

k = 1, 2, . . .

The σ-field of events To construct F∞ we proceed as follows: For each n =
1, 2, . . . let Fn denote the collection of subsets of Ω∞ defined by

Fn ≡ {B1,2,...,n × Ωn+1 × Ωn+2 × . . . : B1,2,...,n ∈ P(Ω1 × . . .Ωn)} .
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It is a simple matter to check that Fn is a σ-field on Ω∞. Let F?∞ denote the
collection of subsets of Ω∞ given by

F?∞ ≡ ∪∞n=1Fn.

While the collection F?∞ is a field on Ω∞, it is not a σ-field on Ω∞ [Exercise
6.1]. This leaves us no choice but to introduce the smallest σ-field containing F?∞,
namely

F∞ ≡ σ (F?∞) .

The probability measure To define P∞ on F∞, we first define it on the field
F?∞ and then invoke Theorem 6.1.2 to ensure its extension on F∞.

Pick E in F?∞. As this set must be in Fn for some n = 1, 2, . . ., it is therefore
of the form

E = B1,2,...,n × Ωn+1 × Ωn+2 × . . .(6.7)

for some setB1,2,...,n inP(Ω1×. . .Ωn). In particular, takeB1,2,...,n = {(ω1, . . . , ωn)}
with ω1, . . . , ωn arbitrary in Ω, in which case it is appropriate to take

P∞ [{(ω1, . . . , ωn)} × Ωn+1 × Ωn+2 × . . .] = p(ω1) . . . p(ωn) =

n∏
k=1

p(ωk)

to reflect the fact that the experiment is repeated under “identical and independent
conditions” as in the coin tossing experiment of Section 2.3. This a modeling as-
sumption reflecting the conditions under which the experiment is carried out! Us-
ing the additivity of P∞ on Fn, it is now straightforward to evaluate the probability
of the sets (6.7), namely

P∞ [E] =
∑

(ω1,...,ωn)∈B1,2,...,n

p(ω1) . . . p(ωn).

It is easy to check that P∞ is well defined on F?∞ in the following sense: If the
event E in Fn were viewed as an event in Fm for some m > n, then (6.7) become

E = B1,2,...,m × Ωm+1 × Ωm+2 × . . .(6.8)

for some set B1,2,...,m in P(Ω1 × . . .Ωm) related to B1,2,...,n through

B1,2,...,m = B1,2,...,n × Ωn+1 × . . .× Ωm.

It is then elementary to check that∑
(ω1,...,ωm)∈B1,2,...,m

p(ω1) . . . p(ωm) =
∑

(ω1,...,ωn)∈B1,2,...,n

p(ω1) . . . p(ωn)(6.9)
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since ∑
ωk∈Ωk

p(ωk) = 1, k = n+ 1, . . . ,m.

With B1, . . . , Bn subsets of Ω, we easily check that the events Ẽ1, . . . , Ẽn
given by

Ẽk ≡ Ω1 × . . .Ωk−1 ×Bk × Ωk+1 × . . .× Ωn × . . . , k = 1, . . . , n

are mutually independent under P∞!

Example 1 – Tossing a coin infinitely often When Ω = {0, 1}, the model dis-
cussed here captures the situation when a coin is tossed infinitely often under iden-
tical and independent conditions – See the discussion in Section 2.3 where the coin
was tossed a finite number of times. In that setting, Ω∞ = {0, 1}N0 and with p
(resp. 1 − p) denoting the probability that the outcome of an individual toss is
Head (= 1) (resp. Tail (= 0)), the previous calculations become

P∞ [{(ω1, . . . , ωn)} × {0, 1} × {0, 1} × . . .]
= p

∑n
k=1 ωk(1− p)

∑n
k=1(1−ωk)

for every n = 1, 2, . . . and every (ω1, . . . , ωn) in {0, 1}n. As expected we recover
the model presented in Section 2.3.

6.3 Example 2 – Borel measures on B(R)

The Borel σ-field B(R) supports an important class of measures – The terminology
will not surprise you!

Definition 6.3.1
A measure µ : B(R)→ [0,+∞] is called a Borel measure.

With any Borel measure µ : B(R) → [0,+∞], we associate the mapping
Fµ : R→ R given by

Fµ(x) ≡ µ [(−∞, x]] , x ∈ R.(6.10)

The mapping Fµ : R → R is monotone increasing and right-continuous [Exercise
6.2], and the additivity of µ yields

Fµ(b) = Fµ(a) + µ [(a, b]] ,
a < b

a, b ∈ R.
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Furthermore, if the Borel measure µ is finite (i.e., µ [R] <∞, then

µ [(a, b]] = Fµ(b)− Fµ(a),
a < b

a, b ∈ R.(6.11)

It is natural to wonder whether this process can be reversed: Consider a map-
ping F : R→ R which is monotone increasing and right-continuous. Monotonic-
ity guarantees the existence of left limits at every point, i.e., limy↑x F (x) = F (x−)
for every x in R, and the limits limx→−∞ F (x) ≡ F (−∞) and limx→+∞ F (x) ≡
F (+∞) are both well defined, possibly infinite. Does there exist a measure µF :
B(R)→ [0,+∞] such that

µF [(a, b]] = F (b)− F (a),
a < b
a, b ∈ R

as we take our cue from (6.11). The case where F (x) = x for all x in R would
correspond to the usual “length” measure.

To answer this question, consider the collectionH of subsets of R given by

H ≡ H2(R) ∪H5(R) ∪H6(R)

where the collections H2(R), H5(R) and H6(R) were introduced in Section 4.2
– Thus, subsets in H are either of the form (a, b] or (−∞, b] or (a,+∞) with
−∞ ≤ a < b < +∞. It is easy to check thatH is a semi-ring [Exercise 6.3].

With the mapping F : R→ R we associate the set function νF : H → [0,+∞]
given by

νF [(a, b]] ≡ F (b)− F (a), −∞ ≤ a ≤ b < +∞

and
νF [(a,∞)] ≡ F (+∞)− F (a), −∞ ≤ a

6.4 Example 3 – Product measures

6.5 Examples

Examples of semi-rings include
On R:

H2(R) =

{
(a, b],

a ≤ b
a, b ∈ R

}
and

H?2(R) = H2(R) ∪ {(−+∞, b], b ∈ R} ∪ {(a,+∞), a ∈ R}
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On Rp:
H2(R)× . . .×H2(R)

and
H?2(R)× . . .×H?2(R)

On {0, 1}N0

6.6 A proof of Theorem 6.1.1

Start with the definition of the set function µ?ν : P(S)→ [0,+∞]: It is given by

µ?ν [E] ≡ inf
{Ei, i∈I}∈HE

(∑
i∈I

ν [Ei]

)
, E ∈ P(S)(6.12)

whereHE denotes the collection of all countableH-coverings of E.
Pick E inH. Obviously, E is a countableH-covering of itself, hence µ?ν [E] ≤

ν [E]. To prove that ν [E] ≤ µ?ν [E] we proceed as follows: Let {Ei, i ∈ I}
be a countable H-covering of E. Since E ⊆ ∪i∈IEi, we obviously have E =
(∪i∈IEi) ∩ E = ∪i∈I (Ei ∩ E). But ν is a measure on the σ-fieldH, hence

ν [E] = ν [∪i∈I (Ei ∩ E)] ≤
∑
i∈I

ν [Ei ∩ E]

by the union bound, while ∑
i∈I

ν [Ei ∩ E] ≤
∑
i∈I

ν [Ei]

by the monotonicity of the measure ν on H. Combining these inequalities we
conclude that

ν [E] ≤
∑
i∈I

ν [Ei] .

and the conclusion ν [E] ≤ µ?ν [E] follows since this inequality is valid for any
countableH-covering of E.

In order to show the inclusion H ⊆ M (µ?ν), we need to show that any subset
E inH is µ?ν-measurable, namely that

µ?ν [F ] = µ?ν [F ∩ E] + µ?ν [F ∩ Ec] , F ∈ P(S).

As per the discussion following Definition 5.3.2, it suffices to show that

µ?ν [F ] ≥ µ?ν [F ∩ E] + µ?ν [F ∩ Ec] , F ∈ P(S).(6.13)
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PickF inP(S). By definition, withHF denoting the collection of all countable
H-coverings of F , we get

µ?ν [F ] = inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi]

)

= inf
{Fi, i∈I}∈HF

(∑
i∈I

(ν [Fi ∩ E] + ν [Fi ∩ Ec])

)

= inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi ∩ E] +
∑
i∈I

ν [Fi ∩ Ec]

)
(6.14)

where the following observation was used: For each i in I , Fi is in H and so is
E, therefore Fi ∩ E and Fi ∩ Ec are disjoint sets which both are in the σ-field
H with Fi = (Fi ∩ E) ∪ (Fi ∩ Ec). It then follows by additivity that ν [Fi] =
ν [Fi ∩ E] + ν [Fi ∩ Ec].

Next, standard properties of the infimum operation yield

µ?ν [F ] ≥ inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi ∩ E]

)

+ inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi ∩ Ec]

)
.(6.15)

If {Fi, i ∈ I} is a countableH-covering of F , then because E is in the σ-fieldH,
it is plain that {Fi ∩ E, i ∈ I} is a countableH-covering of F ∩ E, hence

inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi ∩ E]

)
≥ µ?ν [F ∩ E] .(6.16)

A similar argument, with Ec replacing E, leads to

inf
{Fi, i∈I}∈HF

(∑
i∈I

ν [Fi ∩ Ec]

)
≥ µ?ν [F ∩ Ec](6.17)

Combining the inequalities (6.15), (6.16) and (6.17) we conclude that (6.13) holds.
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6.7 A proof of Theorem 6.1.3

A natural definition We start by defining the set function µ : H? → [0,+∞]:
Pick any set E in the field H?. By Lemma 5.6.1 membership of E in the field H?
implies that it can be represented as a finite union of disjoint sets {Ei, i ∈ I} in
H, i.e., E = ∪i∈IEi. Additivity suggests that we define

µ [E] ≡
∑
i∈I

ν [Ei] .(6.18)

A well-posed definition This definition is well posed and independent of the
representation used for E: Indeed, let E admit another representation as a finite
union of disjoint sets {Gj , j ∈ J} inH such that E = ∪j∈JGj . Note the obvious
set equalities

Ei = E ∩ Ei = ∪j∈J (Ei ∩Gj) , i ∈ I

where for each i in I and j in J the intersections Ei ∩ Gj are elements of H.
Therefore, ∑

i∈I
ν [Ei] =

∑
i∈I

ν [E ∩ Ei]

=
∑
i∈I

∑
j∈J

ν [Ei ∩Gj ]


=

∑
j∈J

(∑
i∈I

ν [Ei ∩Gj ]

)
=

∑
j∈J

ν [Gj ](6.19)

as we repeatedly use the assumed additivity of ν onH.

Uniqueness Let µ̃ : H? → [0,+∞] denote another extension of ν which is
additive on H. If E is any element in H?, then there exists {Ei, i ∈ I} disjoint
sets inH such that E = ∪i∈IEi. By the additivity of µ̃ onH?, hence onH, we get

µ̃ [E] =
∑
i∈I

µ̃ [Ei] =
∑
i∈I

ν [Ei] = µ [E](6.20)

where the second equality follows from the fact that µ̃ is an extensions of ν. This
shows that the extensions µ and µ̃ coincide onH.
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Additivity From the definition (6.18) it is easy to see that the set function µ :
H? → [0,+∞] is additive on the fieldH?.

Next, if we assume that the set function ν : H → [0,+∞] is σ-additive on
H, we now show that the set function µ : H? → [0,+∞] is itself σ-additive on
H?: Let {Ei, i ∈ I} denote a countable collection of disjoint elements ofH?, and
assume that E = ∪i∈IEi is itself an element ofH?. We need to show then that

µ [E] =
∑
i∈I

µ [Ei] .

Since E is an element of H?, it admits a representation of the form E = ∪j∈JFj
for some finite union of disjoint sets {Fj , j ∈ J} in H, i.e., E = ∪j∈JFj . Note
that

Ei = Ei ∩ E = Ei ∩ (∪j∈JFj) = ∪j∈J (Ei ∩ Fj) , i ∈ I(6.21)

with the sets {Ei ∩ Fj , i ∈ I, j ∈ J} all being disjoint sets in H. Using these
facts we get ∑

i∈I
µ [Ei] =

∑
i∈I

µ [Ei ∩ E]

=
∑
i∈I

∑
j∈J

µ [Ei ∩ Fj ]


=

∑
j∈J

(∑
i∈I

µ [Ei ∩ Fj ]

)
=

∑
j∈J

µ [Fj ]

= µ [E] .(6.22)

For each j in J , the equality
∑

i∈I µ [Ei ∩ Fj ] = µ [Fj ] is a consequence of the
σ-additivity of ν onH. This completes the proof of Theorem 6.1.3.

6.8 Exercises

Ex. 6.1 In the discussion of Section 6.2 show the following facts:
a. For each n = 1, 2, . . ., the collection Fn is a σ-field on Ω∞.
b. The collection F?∞ ≡ ∪∞n=1Fn is a field on Ω∞.
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c. Although the collection F?∞ is a field on Ω∞, it is not a σ-field on Ω∞
[HINT: Take the countable collection {En, n = 1, 2, . . .} given by

En ≡ {ω} × . . .× {ω} × Ωn+1 × Ωn+2 × . . . , n = 1, 2, . . .

for some ω in Ω. For each n = 1, 2, . . ., the set En belongs to Fn, hence to F∞.
Identify the set ∩∞n=1En and determine whether it belongs to F?∞.]

Ex. 6.2 Consider the mapping Fµ : R → R associated via (6.10) with a Borel
measure µ : B(R) → [0,+∞]. Show that this mapping is monotone increasing
and right-continuous with left limits.

Ex. 6.3 With the collectionsH2(R),H5(R) andH6(R) introduced in Section 4.2,
check thatH ≡ H2(R) ∪H5(R) ∪H6(R) is a semi-ring.
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Chapter 7

Random variables and their
distributions

So far we have been concerned with modeling the full random experiment E , and
this has led us to introduce the notion of a probability triple (Ω,F ,P). However, in
many settings there is interest not in the full model itself but rather in various nu-
merical characteristics associated with the experiment. This is formalized through
the notion of random variable (rv) and of its probability distribution, notions which
we introduce next and which we study in some generality in Chapter 7. The discus-
sion will be specialized to discrete rvs in Chapter 8 and to (absolutely) continuous
rvs in Chapter 9.

7.1 Random variables

Throughout we assume given a probability triple (Ω,F ,P) which is held fixed
during the discussion. Also let p be an arbitrary positive integer.

Definition 7.1.1
A mapping X : Ω → Rp is a random variable (rv) defined on (Ω,F) if the

conditions

X−1 (B) = {ω ∈ Ω : X(ω) ∈ B} ∈ F , B ∈ B(Rp)(7.1)

all hold.

In other words, the mapping X : Ω→ Rp is a rv if it is a Borel mapping X : Ω→
Rp in the sense of Definition 4.5.1 with S = Ω (the sample space) and S = F

91
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(the σ-field of events). It is customary to write [X ∈ B] in lieu of X−1 (B) and
P [X ∈ B] for P [[X ∈ B]].

As in Section 4.5, the rv X : Ω → Rp can also be viewed as a p-tuple of
mappings X1, . . . , Xp : Ω → R where for each k = 1, . . . , p, the mapping Xk :
Ω→ R picks up the kth coordinate of X so that

X(ω) = (X1(ω), . . . , Xp(ω)) , ω ∈ Ω.

Translating Lemma 4.5.2 to the setting of Definition 7.1.1 we conclude that the
mapping X : Ω → Rp is then a rv if and only if each of the component mappings
X1 : Ω→ R, . . . , Xp : Ω→ R is a rv. This requires that the conditions

{ω ∈ Ω : Xk(ω) ≤ xk, k = 1, . . . , p} ∈ F , (x1, . . . , xp) ∈ Rp(7.2)

all be satisfied. Sometimes it is convenient to rewrite them in equivalent form as
either

∩pk=1 [Xk ≤ xk] ∈ F , (x1, . . . , xp) ∈ Rp.(7.3)

or
[X ∈ R(x)] ∈ F , (x1, . . . , xp) ∈ Rp(7.4)

where
R(x) ≡ (−∞, x1]× . . .× (−∞, xp].

7.2 Probability distribution functions

Consider an Rp-valued rv X : Ω → Rp as given in Definition 7.1.1. Thus far,
this is a deterministic object. We attach to it probabilistic content by taking into
account the probability measure P under which the likelihood of events for the
experiment E is evaluated.

Definition 7.2.1
The probability distribution (function) of the rv X (under P) is the mapping

FX : Rp → [0, 1] defined by

FX(x) ≡ P [X ∈ (−∞, x1]× . . .× (−∞, xp]]
= P [X1 ≤ x1, . . . , Xp ≤ xp] , x = (x1, . . . , xp) ∈ Rp.(7.5)

with the notation X = (X1, . . . , Xp).
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This definition is well posed in view of the equivalent conditions (7.2)-(7.4). Note
that the the values

{P [X ∈ B] , B ∈ B(Rp)}(7.6)

constitute the entire probabilistic information concerning the rvX (under P). How-
ever it turns out that there is as much probabilistic information in the probability
distribution FX : Rp → [0, 1] as in the entire collection (7.6). This is quite for-
tunate since the probability distribution is a mapping Rp → [0, 1] whereas (7.6)
describes a set function B(Rp)→ [0, 1].

In fact, knowledge of FX : Rp → R uniquely determine the values (7.6):
Indeed, it is a simple matter to check that the set function PX : B(Rp) → [0, 1]
defined by

PX [B] ≡ P [X ∈ B] , B ∈ B(Rp)(7.7)

is a probability measure on B(Rp) [Exercise 7.1]. The probability distribution
FX : Rp → R thus specifies PX on the collection of all semi-infinite boxes{

p∏
k=1

(−∞, xk] , (x1, . . . , xp) ∈ Rp
}
.

and therefore can be uniquely extended toB(Rp) as a consequence of Carathéodory’s
Theorem ??.

The fact that the set function PX : B(Rp)→ [0, 1] defined by (7.7) is a proba-
bility measure onB(Rp) suggests the following useful interpretation: The probabil-
ity triple (Ω,F ,P) was selected as a model for the underlying random experiment
E . The rv X : Ω → Rp can be viewed as itself inducing a random experiment,
denoted EX , whose elementary outcomes are the values {X(ω), ω ∈ Ω} – After
all, if the outcome ω in E can only be known if the experiment E is realized, then
outcomeX(ω) of the experiment EX will be known only after ω has been observed
and the numerical value X(ω) evaluated.

With this in mind it is natural to think of the triple (Rp,B(Rp),PX) as a
natural probability model associated with the random experiment EX . If there
is interest only in this associated experiment (and not in the underlying experi-
ment E), we need only focus on the triple (Rp,B(Rp),PX) since the probability
measure PX carries all the probabilistic information related to it. Working with
(Rp,B(Rp),PX) instead of with (Ω,F ,P) often affords an advantageous model
reduction. Furthermore, the equivalence between PX and FX means that for many
purposes it will suffice to learn about the properties of the probability distribution
function FX .

In what follows, unless stated otherwise all rvs are defined on the same proba-
bility triple (Ω,F ,P).
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7.3 Marginalization

The following situation arises in many settings: Consider k distinct rvs X1 : Ω→
Rp1 , . . . , Xk : Ω → Rpk with p1, . . . , pk positive integers. We can alternatively
view this collection of rvs as a single rv X : Ω→ Rp given by

X = (X1, . . . , Xk)

with p = p1 + . . .+ pk – In this notation we implicitly assume that all vectors are
row vectors. As usual we have

P [X ∈ B] = P [X1 ∈ B1, . . . , Xk ∈ Bk] ,
B` ∈ B(Rp`)
` = 1, . . . , k

when taking rectangles of the form

B = B1 × . . .×Bk.

In particular, by taking B` = (−∞, x`] with arbitrary x` in Rp` for each ` =
1, . . . , k, we conclude that the probability distribution function of the rv X :
Ω → Rp (or equivalently, the joint probability distribution function of the rvs
X1, . . . , Xk) is given by

F(X1,...,Xk)(x1, . . . , xk)

= P [X1 ≤ x1, . . . , Xk ≤ xk] ,
x` ∈ Rp`

` = 1, . . . , k.
(7.8)

Now, pick any subset J ⊆ {1, . . . , k} with 1 ≤ |J | and note that

[X1 ≤ x1, . . . , Xk ≤ xk] = (∩`∈J [X` ≤ x`]) ∩ (∩`∈Jc [X` ≤ x`]) .

for each x = (x1, . . . , xk) in Rp. Next, let the coordinates x` each go (componen-
twise) monotonically to +∞ for each ` ∈ Jc (where Jc is the complement of J
with respect to the index set {1, . . . , k}). It is elementary to check that

lim
x`→∞, `∈Jc

F(X1,...,Xk)(x1, . . . , xk)

= lim
x`→∞, `∈Jc

P [X1 ≤ x1, . . . , Xk ≤ xk]

= lim
x`→∞, `∈Jc

P [(∩`∈J [X` ≤ x`]) ∩ (∩`∈Jc [X` ≤ x`])]

= P [X` ≤ x`, ` ∈ J ]

= F(X`, `∈J)(x`, ` ∈ J),
x` ∈ Rp`
` ∈ J.(7.9)



7.4. POPERTIES OF PROBABILITY DISTRIBUTION FUNCTIONS (P = 1)95

This is an easy consequence of Lemma 3.1.1 when combined with the observation
that

lim
x`→∞, `∈Jc

∩`∈Jc [X` ≤ x`] = ∩`∈Jc [X` ∈ R] = Ω.

The passage from F(X1,...,Xk) to F(X`, `∈J) is known as marginalization, and is
implemented by setting (the components of ) x` = +∞ in F(X1,...,Xk) for each `
in Jc.

Through marginalization the joint probability distribution of the Rp-valued
rv X = (X1, . . . , Xk) determines the probability distribution of any subset of
components of X . However, we stress that the converse is not true in general
– The marginalization process cannot be reversed unless additional assumptions
are in place, the most common one being the mutual independence of the rvs
{X1, . . . , Xk}; see Section 7.9. Put simply, in general knowledge of the indi-
vidual probability distributions of the rvs {X1, . . . , Xk} will not be sufficient to
reconstruct the probability distribution of the concatenated rv X = (X1, . . . , Xk).

7.4 Poperties of probability distribution functions (p = 1)

It is easy to see that the following properties hold when p = 1.

Proposition 7.4.1 Given a rv X : Ω → R with probability distribution function
FX : R→ [0, 1] under P, the following properties hold:

(i) Monotonicity:

FX(x) ≤ FX(y),
x < y

x, y ∈ R.

(ii) Right-continuity:
lim
y↓x

FX(y) = FX(x), x ∈ R.

(iii) Existence of a left limit:

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ R.

(iv) Behavior at infinity: Monotonically we have limx→−∞ FX(x) = 0 and
limx→∞ FX(x) = 1.
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Proof. (i) The monotonicity of FX is inherited from that of P once we note that
with x and y in R, we have [X ≤ x] ⊆ [X ≤ y] as soon as x < y, whence

P [X ≤ y] = P [X ≤ x] + P [x < X ≤ y]

or equivalently,
FX(y)− FX(x) = P [x < X ≤ y] ≥ 0.

(ii) Pick x in R, and let {yn, n = 1, 2, . . .} denote a decreasing sequence in R
such that x < yn for each n = 1, 2, . . . with limn→∞ yn = x. By comments in (i)
we have

FX(yn)− FX(x) = P [x < X ≤ yn] , n = 1, 2, . . .

The sets {[x < X ≤ yn], n = 1, 2, . . .} form a decreasing sequence of events with
∩∞n=1[x < X ≤ yn] = ∅. The conclusion limn→∞ P [x < X ≤ yn] = 0 follows
from Lemma 3.1.2. This last limit being independent of the sequence used, we
have limn→∞ FX(yn) = FX(x) as desired.

(iii) Similarly, pick x in R, and let {yn, n = 1, 2, . . .} denote an increasing
sequence in R such that yn < x for each n = 1, 2, . . . with limn→∞ yn = x.
Again, by comments in (i) we have

FX(x)− FX(yn) = P [yn < X ≤ x] , n = 1, 2, . . .

The sets {[yn < X ≤ x], n = 1, 2, . . .} form a decreasing sequence of events
with ∩∞n=1[yn < X ≤ x] = [X = x]. This time, using Lemma 3.1.2, we get
limn→∞ P [yn < X ≤ x] = P [X = x]. The limit P [X = x] being independent
of the sequence used, we conclude that the limit limn→∞ FX(yn) exists and is
independent of the sequence used. The desired result follows.

(iv) Finally, let {yn, n = 1, 2, . . .} denote an increasing sequence in R with
limn→∞ xn = ∞ monotonically. It is plain that the events {[X ≤ xn], n =
1, 2, . . .} form a increasing sequence of events with

∪∞n=1[X ≤ yn] = [X ∈ R] = Ω

and applying Lemma 3.1.1 yields the desired result.
Similarly, let {xn, n = 1, 2, . . .} denote a decreasing sequence in R with

limn→∞ xn = −∞ monotonically. The events {[X ≤ yn], n = 1, 2, . . .} form an
increasing sequence of events with ∩∞n=1[X ≤ xn] = ∅, and the desired result is
obtained by applying Lemma 3.1.1.

Similar arguments lead to the following useful fact which complements Claim
(iii) of Proposition 7.4.1 [Exercise 7.3].
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Fact 7.4.1 Given a rv X : Ω → R with probability distribution function FX :
R→ [0, 1] under P, it holds that

P [X < x] = FX(x−), x ∈ R.

Definition 7.4.1
Let C(FX) denote the set of points in R where FX : R→ [0, 1] is continuous,

i.e.,
C(FX) = {x ∈ R : FX(x−) = FX(x)}.

The complement C(FX)c of C(FX) in R consists of the points where FX :
R→ [0, 1] is not continuous. It is customary to call C(FX) (resp. C(FX)c) the set
of continuity (resp. discontinuity) points of the probability distribution function of
the rv X .

Lemma 7.4.1 For any rv X : Ω → R, its probability distribution function FX :
R→ [0, 1] has the property that C(FX)c is a countable subset of R.

Proof. For each n = 1, 2, . . ., let Dn denote the collection of points of disconti-
nuity in C(FX)c whose discontinuity jump lies in the interval ( 1

n+1 ,
1
n ], i.e.,

Dn ≡
{
x ∈ C(FX)c :

1

n+ 1
< FX(x)− FX(x−) ≤ 1

n

}
.

Noting that

|Dn| ·
1

n+ 1
≤
∑
x∈Dn

(FX(x)− FX(x−)) ≤ 1,

it follows that |Dn| ≤ n+ 1. The desired result is now immediate since C(FX)c =
∪∞n=1Dn.

7.5 Poperties of probability distribution functions (p > 1)

The case p ≥ 1 is more involved: As the quantity P [xk < Xk ≤ yk] can be ex-
pressed solely in terms of FX : Rp → [0, 1], it provides a constraint that a prob-
ability distribution function must satisfy! For instance with p = 2, it is easy to
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check that

P [a < X1 ≤ b, α < X2 ≤ β]

= P [X1 ≤ b, α < X2 ≤ β]− P [X1 ≤ a, α < X2 ≤ β]

= (P [X1 ≤ b,X2 ≤ β]− P [X1 ≤ b,X2 ≤ α])

− (P [X1 ≤ a,X2 ≤ β]− P [X1 ≤ a,X2 ≤ α])

=
(
F(X1,X2)(b, β)− F(X1,X2)(b, α)

)
−
(
F(X1,X2)(a, β)− F(X1,X2)(a, α)

)
,

a < b
α < β

(7.10)

We list below the properties that characterize the probability distribution

Proposition 7.5.1 Given a rv X : Ω → Rp with probability distribution function
FX : Rp → [0, 1], the following properties hold:

(i) Monotonicity:

(ii) Right-continuity: With the understanding that yk ↓ xk for each k = 1, . . . p,
we have

lim
y↓x

FX(y) = FX(x), x ∈ Rp

(iii) Existence of a left limit: With the understanding that yk ↑ xk for each k =
1, . . . , p, we have

lim
y↑x

FX(y) = FX(x−) with P [X = x] = FX(y)− FX(x−), x ∈ Rp

(iv) Behavior at infinity: Monotonically we have

lim
min(xk, k=1,...,p)→−∞

FX(x) = 0

and
lim

min(xk, k=1,...,p)→∞
FX(x) = 1.

7.6 Probability distribution functions (p = 1)

For p = 1, we turn the four properties established in Proposition 7.4.1 into a def-
inition and introduce the concept of a probability distribution (function) with no
reference to a measurable mapping defined on some probability triple (Ω,F ,P).
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Definition 7.6.1
A probability distribution (function) on R is any mapping F : R→ [0, 1] such

that

(i) Monotonicity:

F (x) ≤ F (y),
x < y

x, y ∈ R.

(ii) Right-continuity:
lim
y↓x

F (y) = F (x), x ∈ R.

(iii) Existence of left limits:

lim
y↑x

F (y) = F (x−) x ∈ R.

(iv) Behavior at infinity: Monotonically, we have

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Obviously, if X : Ω→ R is a rv, then its probability distribution function FX :
R → [0, 1] is a probability distribution function in the sense of Definition 7.6.1.
The converse given next shows that any probability distribution function in the
sense of Definition 7.6.1 can always be understood as the probability distribution
of a rv defined on some probability triple as defined in the sense of Definition 7.2.1.
To present this construction we need the following notion that formalizes how to
“invert” an arbitrary monotone increasing mapping R→ R+.

Definition 7.6.2
Consider a mapping F : R → R+ which is monotone non-decreasing, i.e.,

F (x) ≤ F (y) whenever x < y in R. The generalized inverse associated with F is
the mapping F← : R+ → [−∞,+∞] given by

F←(u) ≡ inf (x ∈ R : u ≤ F (x)) , u ≥ 0(7.11)

with F←(u) = +∞ if the set {x ∈ R : u ≤ F (x)} is empty.
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Lemma 7.6.1 For any probability distribution function F : R → [0, 1], there ex-
ists a probability triple (Ω?,F?,P?) and a rv X? : Ω? → R defined on it such that
its probability distribution under P? coincides with F , i.e.,

P? [X? ≤ x] = F (x), x ∈ R.

This is the basis of Monte-Carlo simulation. There exists a multi-dimensional
analog to this fact to be discussed later on.

Proof. Take Ω? = [0, 1], F? = B([0, 1]) and P? = λ. Define the rv X? : Ω? → R
by setting

X?(ω?) = F−(ω?), ω? ∈ [0, 1]

where F← : [0, 1]→ [−∞,∞] is the generalized inverse of F defined at (7.11). It
is easy to check that

P? [X? ≤ x] = F (x), x ∈ R

and the probability distribution of the rv X? under P? is indeed the probability dis-
tribution function F : R→ [0, 1].

7.7 Probability distribution functions (p ≥ 1)

7.8 Functions of rvs

Consider a rvX : Ω→ Rp. For any Borel mapping g : Rp → Rq for some positive
integer q. define the mapping Y : Ω→ Rq by composing the rv X : Ω→ Rp with
g, namely

Y (ω) = g(X(ω)), ω ∈ Ω.(7.12)

We know that Y : Ω → Rq is a rv. A natural question is how to determine the
probability distribution function FY : Rp → [0, 1] of the rv Y in terms of the
probability distribution function FX : Rp → [0, 1] of the rv X . The basic idea is
contained in the following observation: For any Borel subset B in Rq, it holds that

P [Y ∈ B] = P [g(X) ∈ B]

= P
[
X ∈ g−1(B)

]
, B ∈ Rq.(7.13)
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It immediately follows that

FY (y) = P [Y ≤ y]

= P [g(X) ≤ y] = P
[
g−1 ((−∞, y])

]
, y ∈ Rq(7.14)

as we takeB = (−∞, y] in (7.8). From this last expression it is plain that in general
there is no simple relationship between the probability distribution function of Y
and the probability distribution function ofX . In order to make progress additional
assumptions are needed. Here is one example, but others will be discussed in the
next two chapters.

Fact 7.8.1 Assume p = q = 1.
(i) If the mapping Borel mapping R → R is strictly monotone increasing, i.e.,

g(x) < g(y) whenever x < y in R, then

FY (y) = FX(g−1(y)), y ∈ R y ∈ R

(ii) If the mapping Borel mapping R → R is strictly monotone decreasing, i.e.,
g(y) < g(x) whenever x < y in R, then

FY (y) = 1− FX(g−1(y)−), y ∈ R.

Proof. The proof is elementary: Use (7.14) with the following observation based
on the strict monotonicity of g: For Claim (i) we have Y ≤ y if and only if
X ≤ g−1(y), and for Claim (ii) we have Y ≤ y if and only if g−1(y) ≤ X .

7.9 Independence of rvs

Consider a collection of rvs {Xi, i ∈ I} which are all defined on some probability
triple (Ω,F ,P). Assume that for each i in I , the rv Xi is a Rpi-valued rv for some
positive integer pi.

Definition 7.9.1
With I finite, the rvs {Xi, i ∈ I} are mutually independent if for any selection

Bi in B(Rpi) for each i in I , the events

{[Xi ∈ Bi], i ∈ I}

are mutually independent.
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Applying the definitions given in Section 2.2, we see that the rvs {Xi, i ∈ I}
are mutually independent according to Definition 7.9.1 if the conditions

P [Xj ∈ Bj , j ∈ J ] =
∏
j∈J

P [Xj ∈ Bj ] ,
Bj ∈ B(Rpj ), j ∈ J

J ⊆ I
1 ≤ |J | ≤ |I|

(7.15)

all hold. It is now easy to see that the rvs {Xi, i ∈ I} are mutually independent if
and only if the smaller set of conditions

P [Xi ∈ Bi, i ∈ I] =
∏
i∈I

P [Xi ∈ Bi] ,
Bi ∈ B(Rpi)

i ∈ I(7.16)

hold. Indeed, while (7.15) implies (7.16), it is easy to see that (7.16) implies (7.15)
– Just take Bj = Rpj ) for j in I − J!

Definition 7.9.2
More generally, with I arbitrary (and possibly uncountable), the rvs {Xi, i ∈

I} are mutually independent if for every finite subset J ⊆ I , the rvs {Xj , j ∈ J}
are mutually independent.

In view of the previous comments, it is plain that the rvs {Xi, i ∈ I} are mutually
independent if and only if

P [Xi ∈ Bi, i ∈ I] =
∏
i∈I

P [Xi ∈ Bi] ,
Bi ∈ B(Rpi)

i ∈ I(7.17)

hold.
With k some fixed integer, in what follows consider a collection {X1, . . . , Xk}

of rvs which are all defined on the same probability triple (Ω,F ,P). For each
i = 1, . . . , k, the rv Xi is a Rpi-valued rv for some positive integer pi. Again we
concatenate these k rvs into a single Rp-valued rv, denoted (X1, . . . , Xk), where
p = p1 + . . .+ pk.

The following characterization of the mutual independence of a finite number
of rvs is useful.

Lemma 7.9.1 The rvs {X1, . . . , Xk} are mutually independent if and only if

FX1,...,Xk(x1, . . . , xk) =
k∏
i=1

FXi(xi),
xi ∈ Rpi

i = 1, . . . , k
(7.18)

where for each i = 1, . . . , n, FXi : Rpi → [0, 1] is the probability distribution
function of the rv Xi, while FX1,...,Xk : Rp → [0, 1] is the probability distribution
function of the Rp-valued rv (X1, . . . , Xk).
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Proof. If the rvs {X1, . . . , Xk} are mutually independent, then (7.16) holds. For
every i = 1, . . . , k, use Bi = (−∞, xi] with xi in Rpi , and (7.16) becomes

P [Xi ≤ xi, i = 1, . . . , k] =
k∏
i=1

P [Xi ≤ xi] ,
xi ∈ Rpi

i = 1, . . . , k
(7.19)

This shows that (7.18) indeed holds.
Conversely, assume that (7.18) holds, or equivalently, that

P [Xi ≤ xi, i = 1, . . . , k] =

k∏
i=1

P [Xi ≤ xi] ,
xi ∈ Rpi

i = 1, . . . , k
(7.20)

7.10 Taking limits

Tailoring Definition 4.6.1 to the context of probability models we introduce the
notion of an extended rv.

Definition 7.10.1
A mapping X : Ω → R is said to be an extended rv if it an extended Borel

mapping in the sense of Definition 4.6.1, i.e., we have

X−1(B) ∈ F , B ∈ B(R)

where the extended Borel σ-field B(R) on R is defined by (4.23).

Consider a sequence {Xn, n = 1, 2, . . .} of of extended rvs which are all
defined on the same probability triple (Ω,F ,P). Using Lemma 4.6.1 we readily
conclude that the following mappings Ω→ [−∞,∞] are rvs in the extended sense:

The maximum mappings S → R defined by

s→ max
m=1,...,n

Xm(ω),
n = 1, 2, . . .
ω ∈ Ω

The minimum mappings S → R defined by

s→ min
m=1,...,n

Xm(ω),
n = 1, 2, . . .
ω ∈ Ω
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The supremum mapping Ω→ [−∞,∞] defined by

ω → sup
n≥1

Xm(ω), ω ∈ Ω

The infimum mapping Ω→ [−∞,∞] defined by

ω → inf
n≥1

Xm(ω), ω ∈ Ω.

The limsup mapping Ω→ [−∞,∞] defined by

ω → lim sup
n→∞

Xn(ω), ω ∈ Ω.

The liminf mapping Ω→ [−∞,∞] defined by

ω → lim inf
n→∞

Xn(ω), ω ∈ Ω.

It follows that

Ω? ≡
[
lim inf
n→∞

Xn = lim sup
n→∞

Xn

]
∈ F

and on Ω?, limn→∞Xn exists (possibly as an element in [−∞,∞]), and is the
common value assumed by lim infn→∞Xn and lim supn→∞Xn.

When P [Ω?] = 1 it is customary to say that the sequence {Xn, n = 1, 2, . . .}
converges almost surely (a.s.) (under P), written

lim
n→∞

Xn P-a.s.

In that case, for any rv X : Ω→ R such that

X(ω) = lim
n→∞

Xn(ω), ω ∈ Ω?

we shall write
lim
n→∞

Xn = X P-a.s.

Such a rv X always exists when P [Ω?] = 1 but is not unique. Existence is imme-
diate since we can always take

X(ω) ≡


lim infn→∞Xn(ω) = lim supn→∞Xn(ω) if ω ∈ Ω?

Z(ω) if ω 6∈ Ω?

where Z : Ω→ R is some arbitrary rv, and non-uniqueness is obvious.
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7.11 Exercises

Ex. 7.1 Show that the set function PX : B(Rp) → [0, 1] defined by (7.7) is a
probability measure on B(Rp). See also Exercise 4.3.

Ex. 7.2 Consider a pair of rvs X,Y : Ω→ R. Give direct arguments to show that
the following mappings Ω→ R are rvs:

a. U = |X|.
b. V = max (X,Y ).
c. W = min (X,Y ).
d. Z = αX + βY with α and β arbitrary in R.

Ex. 7.3 Give a proof of Fact 7.4.1.

Ex. 7.4 Consider a mapping F : R→ R+ which is monotone non-decreasing, i.e.,
F (x) ≤ F (y) whenever x < y in R. Recall the definition (7.11) of the generalized
inverse associated with F . Assume that F is a probability distribution function
F : R→ [0, 1],

a. What is the value of F←(u) when F (x−) ≤ u < F (x) for some x in R
(which is a point of discontinuity for F )?

b. Find the generalized inverse associated with

F (x) =


0 if x < 0
1− p if 0 ≤ x < 10
1 if 10 ≤ x

with 0 < p < 1. Draw the graph of F← : R+ → [−∞,∞]. Compute F←(F (x)
for all x in R.

c. Find the generalized inverse associated with

F (x) = 1− e−λx+ , x ∈ R

with λ > 0 and x+ = max(0, x) for all x in R. Compute F←(F (x) for all x in R.

Ex. 7.5 Let F1, . . . , Fn denote probability distribution functions R → [0, 1]. De-
termine which of the following mappings G : R → R defined below is also a
probability distribution function:

a. With α1, . . . , αn in (0, 1) such that α1 + . . . + αn = 1, the convex combi-
nation

G(x) =
n∑
k=1

αkFk(x), x ∈ R
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b. The product

G(x) = F1(x) . . . Fn(x), x ∈ R.

c. The product
G(x) = F1(x−)F1(x), x ∈ R.

d. With 0 < u < 1,

G(x) = 1− uF1(x), x ∈ R.

e. With r1 > 0, . . . , rn > 0,

G(x) =
n∏
k=1

Fk(x)rk , x ∈ R.

f. With r1 > 0, . . . , rn > 0,

G(x) = 1−
n∏
k=1

(1− Fk(x)rk) , x ∈ R.

Ex. 7.6 Let F denote a probability distribution function R → [0, 1]. Determine
which of the following mappings R → R defined below is also a probability dis-
tribution function:

H(x) = F (x) + (1− F (x)) log (1− F (x)) , x ∈ R

and
K(x) = − (1− F (x)) e+ e1−F (x), x ∈ R.

Ex. 7.7 For k = 1, 2, consider the rv Xk : Ωk → Rp defined on the probability
triple (Ωk,Fk,Pk). Assume the rvs X1 and X2 to have the same probability dis-
tribution under P1 and P2, respectively, written (X1,P1) = (X2,P2). If the proba-
bility triples (Ω1,F1,P1) and (Ω2,F2,P2) are identical, we write X1 =st X2. For
any Borel mapping g : Rp → Rq, show that the rvs g(X1) and g(X2) have the
same probability distribution under P1 and P2, respectively.

Exercises 7.8–7.8 deal with the notion of a symmetric rv: A rv X : Ω→ Rp is
said to have a symmetric probability distribution (or more simply to be a symmetric
random variable) if the rvsX and−X have the same probability distribution (under
P), i.e., X =st −X .
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Ex. 7.8 Consider a symmetric rv X : Ω → Rp. Give necessary and sufficient
conditions on FX : R → [0, 1] for the rv X to have a symmetric probability
distribution.

Ex. 7.9 Assume the rv X : Ω → Rp defined on the probability triple (Ω,F ,P)
to be a symmetric rv. For any Borel mapping g : Rp → Rq, show that the rv
g(X) : Ω → Rq is also a symmetric rv if the mapping is odd symmetric, i.e.,
g(−x) = −g(x) for all x in Rp.

Ex. 7.10 Consider a symmetric rv X : Ω → R. Fix a > 0. With the rv X , we
associate the rv Ya : Ω→ R given by

Ya ≡


X if |X| ≤ a

−X if a < |X|.

If X has a symmetric probability distribution, show that the rv Ya has the same
distribution as the rv X . This problem is often formulated with X ∼ N(0, 1) but
the result holds more generally and requires very little computation. Again the
power of probabilistic thinking at work!

Ex. 7.11 This problem deals with joint probability distribution functions.
a. Consider two rvs X,Y : Ω → R defined on some probability triple

(Ω,F ,P), and as usual let FX,Y : R2 → [0, 1] denote their joint probability distri-
bution function (under P). If X = Y a.s. (under P), show that

FX,Y (x, y) = H(min(x, y)), x, y ∈ R

for some mapping H : R→ [0, 1]. Identify this mapping!
Next you are told that the function F : R2 → [0, 1] is of the form

F (x, y) = K(min(x, y)), x, y ∈ R

for some mapping K : R→ [0, 1].
b. What properties should the mapping K : R→ [0, 1] exhibit in order for the

function F : R2 → [0, 1] to be the joint probability distribution of a pair of rvs U
and V defined on some probability triple (Ω,F ,P)?

c. If the function F : R2 → [0, 1] is indeed the joint probability distribution of
a pair of rvs U and V defined on some probability triple (Ω,F ,P), discuss whether
the rvs U and V can be independent under P?

d. Under the conditions obtained in Part b, is it always the case that U = V
a.s.? Explain [HINT: Note that [U < V ] = ∪x∈Q[U < xV ], compute P [U < xV ]
and use the union bound].
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Ex. 7.12 Consider a rv X : Ω → R defined on some probability triple (Ω,F ,P),
Show that if P [X > 0] > 0, then there exists δ > 0 such that P [X ≥ δ] > 0
[HINT: Combine the continuity from below of P with the fact that ∪∞n=1An =
[X, 0] where An ≡ [X ≥ 1

n ] for each n = 1, 2, . . .].



Chapter 8

Discrete random variables

A particularly important class of rvs is the class of discrete rvs. They are explored
in this chapter.

8.1 Discrete distributions

Definition 8.1.1
A rv X : Ω → Rp is a discrete rv if there exists a countable subset SX ⊆ Rp

such that
P [X ∈ SX ] = 1.

We refer to the countable SX entering this definition as the support of the discrete
rvX . It is often more convenient to characterize the distributional properties of the
rv X through its probability mass function (pmf) pX ≡ (pX(x), x ∈ SX) given
by

pX(x) = P [X = x] , x ∈ SX .

The importance of the pmf of a discrete rv is easily understood from the fol-
lowing easy fact.

Fact 8.1.1 For any discrete rv X : Ω→ Rp with support S, it holds that

P [X ∈ B] =
∑

x∈B∩SX

P [X = x]

=
∑

x∈B∩SX

pX(x), B ∈ B(Rp).(8.1)

109
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Proof. Pick B in B(Rp). Under Definition 8.1.1, write SX = ∪x∈SX{x} and note
that P [X /∈ SX ] = 0. With this in mind we have

P [X ∈ B] = P [X ∈ B,X ∈ SX ] + P [X ∈ B,X /∈ SX ]

= P [X ∈ B,X ∈ ∪x∈SX{x}]
=

∑
x∈SX

P [X ∈ B,X = x](8.2)

by σ-additivity since SX is countable. This complete the proof of (8.1).

Note that

0 ≤ pX(x) ≤ 1, x ∈ SX and
∑
x∈SX

pX(x) = 1.

This observation and Fact 8.1.1 together lead to the following definition:

Definition 8.1.2
With S a countable subset of Rp, a pmf with support on S is any collection

p = (p(x), x ∈ S) such that

0 ≤ p(x) ≤ 1, x ∈ S and
∑
x∈S

p(x) = 1.

Lemma 7.6.1 has the following analog for pmfs; its proof is elementary and
does not require the use of the generalized inverse of a monotone increasing func-
tion.

Lemma 8.1.1 With S a countable subset of Rp, for any pmf p = (p(x), x ∈ S)
with support on S, there exists a probability triple (Ω?,F?,P?) and a rv X? :
Ω? → R defined on it such that

P? [X? = x] = p(x), x ∈ S.

It follows that X? is a discrete rv with support S and pmf p = (p(x), x ∈ S).

Proof. Take Ω? = S, F? = P(S) and as was done in Section 1.5, define the
probability measure P? on P(S) by setting

P? [E] =
∑
ω?∈E

p(ω?), E ∈ P(S).
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The rv X? : Ω? → Rp defined by

X?(ω?) = ω?, ω? ∈ Ω?

is clearly a discrete rv supported by S. For each x in S we have [X? = x] = {x}
so that

P? [X? = x] = p(x), x ∈ S
and p is indeed the pmf of X? under P?.

8.2 Marginalization

We revisit the process of marginalization in the context of discrete rvs; the setup
is that of Section 7.3: With positive integers p1, . . . , pk, consider k distinct rvs
X1 : Ω → Rp1 , . . . , Xk : Ω → Rpk . Again we view this collection of rvs as a
single rv X : Ω → Rp given by X = (X1, . . . , Xk) with p = p1 + . . . + pk – In
this notation we implicitly assume that all vectors are row vectors.

The first observation is straightforward, and states that the rv X : Ω→ Rp is a
discrete rv if and only if for each ` = 1, . . . , k, the rv X` : Ω → Rp` is a discrete
rv. More precisely:

Lemma 8.2.1 (i) If for each ` = 1, . . . , k, the rv X` : Ω → Rp` is a discrete rv
with support SX` ⊆ Rp` and pmf pX` , then the rv X : Ω → Rp is necessarily a
discrete rv whose support SX ⊆ Rp satisfies the inclusion

SX ⊆
k∏
`=1

SX` .(8.3)

(ii) Conversely, if the rv X : Ω → Rp is a discrete rv with support SX ⊆ Rp and
pmf pX , then for each ` = 1, . . . , k, the rv X` : Ω → Rp` is a discrete rv with
support SX` ⊆ Rp` satisfying the inclusion

SX` ⊆ ProjRp` (SX) .(8.4)

The pmf pX` is given by

pX`(x`) =
∑?`

pX(x1, . . . , x`−1, x`, x`+1, . . . , xk), x` ∈ SX`(8.5)

with the summation
∑?` taken over the set countable set S−` given by

S−` ≡
{
x1 ∈ SX1 , . . . , x`−1 ∈ SX`−1

, x`+1 ∈ SX`+1
, . . . , xk ∈ SXk

}
.
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Proof.

8.3 Independence of rvs

We now discuss the notion of independence for discrete rvs by specializing the
results obtained in Section 7.9: Consider a collection of discrete rvs {Xi, i ∈ I}
which are all defined on some probability triple (Ω,F ,P). Assume that for each i
in I , with some positive integer pi, the rv Xi → Rpi is a discrete rv with support
SXi ⊆ Rpi and pmf pXi .

The following characterization of the mutual independence of a finite number
of rvs is useful.

Lemma 8.3.1 If for each ` = 1, . . . , k, the rv X` : Ω → Rp` is a discrete rv
with support SX` ⊆ Rp` and pmf pX` , then the rvs {X1, . . . , Xk} are mutually
independent if and only if

p(X1,...,Xk)(x1, . . . , xk) =
k∏
i=1

pXi(xi),
xi ∈ SXi
i = 1, . . . , k

(8.6)

where p(X1,...,Xk) is the pmf of the discrete Rp-valued rv (X1, . . . , Xk) with sup-
port SX given by

SX =
k∏
`=1

SX` .(8.7)

Note the contrast with the situation encountered in Lemma 8.2.1 where only the
inclusion (8.3) could be asserted.

Proof. The mutual independence of the rvs X1, . . . , Xk implies

P [X1 = x1, . . . , Xk = xk] =
k∏
`=1

P [X` = x`] ,
x` ∈ Rp`

` = 1, . . . , k

as we make use of (7.16) with the singletons B1 = {x1}, . . . , Bk = {xk}. It is
also immediate that (8.7) holds.
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Conversely, assume that (8.6)–(8.7) hold. As already noted earlier, e.g., in the
proof of Fact 8.1.1, we have

P
[
X` ∈ ScX`

]
= 0, ` = 1, . . . , k.

It follows that For any choiceB1 in B(Rp1), . . .,Bk in B(Rpk), this last fact allows
us to write

P [X1 ∈ B1, . . . , Xk ∈ Bk]
= P [X1 ∈ B1 ∩ SX1 , . . . , Xk ∈ Bk ∩ SXk ](8.8)

It then follows that

P [X1 ∈ B1, . . . , Xk ∈ Bk]
=

∑
x1∈B1∩SX1

. . .
∑

xk∈B1∩SXk

P [X1 ∈ B1, . . . , Xk ∈ Bk]

=
∑

x1∈B1∩SX1

. . .
∑

xk∈B1∩SXk

P [X1 = x1, . . . , Xk = xk](8.9)

Through marginalization the joint probability distribution of the Rp-valued rvX =
(X1, . . . , Xk) determines the probability distribution of any subset of components
of X . However, we stress that the converse is not true in general as the marginal-
ization process cannot be reversed unless additional assumptions are in place, the
most common one being the mutual independence of the rvs {X1, . . . , Xk}; see
Section 7.9. Put simply, in general knowledge of the individual probability distri-
butions of the rvs {X1, . . . , Xk}will not be sufficient to reconstruct the probability
distribution of the concatenated rv X = (X1, . . . , Xk).

8.4 Functions of discrete rvs

We return to Section 7.8 where functions of rvs, not necessarily discrete, were
discussed: Consider a rv X : Ω → Rp. For any Borel mapping g : Rp → Rq, we
introduced the rv Y : Ω→ Rq defined at (7.12) by composing the rv X : Ω→ Rp
with g. For any Borel subset B in Rq, the relationships

P [Y ∈ B] = P [g(X) ∈ B] = P
[
X ∈ g−1(B)

]
, B ∈ Rq(8.10)

were shown to hold.
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Fact 8.4.1 Consider a discrete rv X : Ω → Rp with support SX ⊆ Rp and pmf
pX = (pX(x), x ∈ SX). Then, for any Borel mapping g : Rp → Rq, the rv
Y : Ω→ Rq defined at (7.12) is a discrete rv with support SY ≡ {g(x) : x ∈ SX}
and pmf pY = (pY (Y ), y ∈ SY ) determined through

pY (y) =
∑

x∈SX : g(x)=y

pX(x), y ∈ SY .(8.11)

Proof. Under the assumptions on the rv X , the set SY ≡ {g(x) : x ∈ SX} is a
countable subset of Rq, hence a Borel subset of Rq. From (8.10) we also note that

P [Y ∈ SY ] = P
[
X ∈ g−1(SY )

]
= P

[
X ∈ g−1(SY ) ∩ SX

]
+ P

[
X ∈ g−1(SY ) ∩ ScX

]
= P

[
X ∈ g−1(SY ) ∩ SX

]
= P [X ∈ SX ] = 1(8.12)

since SX ⊆ g−1 (SY ), and the rv Y is therefore a discrete rv with support SY .
To determine the pmf of the rv Y pick y in SY and consider the set By ≡ {x ∈

SX : g(x) = y} – Note that By = g−1({y}) ∩ SX . Using Fact 8.1.1 with By we
then conclude from (8.10) that

P [Y = y] = P
[
X ∈ g−1({y})

]
= P

[
X ∈ g−1({y}) ∩ SX

]
=

∑
x∈By

P [X = x]

=
∑

x∈SX : g(x)=y

P [X = x]

and the relation (8.11) is established.

Note that a non-discrete rvX : Ω→ Rp can also give rise to a discrete rv when
composed with a mapping as discussed here, the obvious case occurring when the
mapping g : Rp → Rq itself has a countable range, i.e., the set g(Rp) is countable.

In Sections 8.5–8.9 we present well-known discrete rvs and their probability
distributions through their pmfs. Unless mentioned otherwise we
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8.5 Uniform rvs

Discrete uniform rvs are characterized by a finite range in Z, say {a, a+1, . . . , b−
1, b} with a ≤ b in Z. The rv Ua,b : Ω→ R is said to be a discrete uniform rv over
the range {a, a + 1, . . . , b − 1, b}, written X ∼ U ({a, a+ 1, . . . , b− 1, b}), if a
Bernoulli rv with parameter p (0 ≤ p ≤ 1), written B(p) ∼ Ber(p), if

P [Ua,b = z] =
1

b− a+ 1
, z = a, a+ 1, . . . , b1, b.(8.13)

8.6 Bernoulli rvs

Bernoulli rvs arise naturally in the modeling of coin tossing, and are the simplest
of discrete rvs. With p in [0, 1] the rv B(p) : Ω → R is said to be a Bernoulli rv
with parameter p (0 ≤ p ≤ 1), written B(p) ∼ Ber(p), if

P [B(p) = 1] = 1− P [B(p) = 0] = p.(8.14)

This is a discrete rv with support S = {0, 1} and pmf given by

p(1) = p and p(0) = 1− p.(8.15)

In some contexts binary rvs taking the symmetric values ±1, known as Walsh
rvs, are more appropriate: With p in [0, 1] the rv W (p) : Ω → R is said to be a
Walsh rv with parameter p (0 ≤ p ≤ 1), written W (p) ∼Walsh(p), if

P [W (p) = 1] = 1− P [W (p) = −1] = p.(8.16)

This is a discrete rv with support S = {−1, 1} and pmf given by

p(1) = p and p(−1) = 1− p.(8.17)

The Bernoulli rv and the corresponding Wlash rv are easily related to each other
through the relations

W (p) = 2B(p)− 1 and B(p) =
1 +W (p)

2
.

8.7 Binomial rvs

Binomial rvs are discrete rvs whose pmfs are parametrized by a positive integer n
and a probability parameter p in [0, 1]. A rv X is said to be a Binomial rv with
parameters n = 1, 2, . . . and p (0 ≤ p ≤ 1), written X ∼ Bin(n, p), if

P [X = x] =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . , n.(8.18)
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This is a discrete rv with support S = {0, 1, . . . , n}.
Binomial rvs naturally occur as follows: Consider n mutually independent

Bernoulli rvs X1(p), . . . , Xn(p) with parameter p which are defined on the same
probability triple (Ω,F ,P) – A natural setting is the model introduced in Section
2.3. Their sum Sn(p) is the rv given by

Sn(p) ≡
n∑
k=1

Xk(p).(8.19)

This rv is a discrete rv with support S = {0, 1, . . . , n}. With x = 0, 1, . . . , n,
the event Sn(p) = x can occur in exactly

(
n
x

)
ways, where x of the n Bernoulli

rvs assume the value 1 while the remaining n − x take the value 0. Each of this
situation is occurring with probability px(1− p)n−x as we invoke the fact that the
n Bernoulli rvs X1(p), . . . , Xn(p) are mutually independent. With this in mind we
get

P [Sn(p) = x] = P

[
n∑
k=1

Xk(p) = x

]

=

(
n

x

)
P
[

Xk(p) = 1, k = 1, . . . , x
X`(p) = 0, ` = x+ 1, . . . , n

]
=

(
n

x

)
px(1− p)n−x.(8.20)

8.8 Poisson rvs

A rv X : Ω → N is said to be a Poisson rv with parameter λ > 0, written X ∼
Poi(λ), if

P [X = x] =
λx

x!
e−λ, x = 0, 1, . . .

The fact that
∞∑
x=0

λx

x!
e−λ =

( ∞∑
x=0

λx

x!

)
e−λ = eλ · e−λ = 1

shows the family pλ = (pλ(x), x = 0, 1, . . .) given by

pλ(x) =
λx

x!
e−λ, x = 0, 1, . . .(8.21)

is a pmf with support N. We refer to this pmf as the Poisson pmf with parameter λ.
The Poisson pmf naturally emerges through the following limiting process: Let

{pn, n = 1, 2, . . .} denote a collection of scalars in (0, 1) Fix x = 0, 1, . . . and
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consider the rv Sn(pn) defined at (8.19). For each n = x, x + 1, . . ., we observe
that

P [Sn(pn) = x] =

(
n

x

)
· pxn · (1− pn)n−x

=
n!

x!(n− x)!
· pxn · (1− pn)n−x

=
n(n− 1) . . . (n− x+ 1)

x!
pxn · (1− pn)n−x

=
1

x!
·

(
x−1∏
`=0

(n− `)pn

)
· (1− pn)n−x

=
(npn)x

k!
·

(
x−1∏
`=0

(
1− `

n

))
· (1− pn)n−x.(8.22)

Assume that limn→∞ npn = λ: It is easy to see that limn→∞
(npn)x

k! = λx

x! and that
limn→∞

∏x−1
`=0

(
1− `

n

)
= 1. On the other hand, standard facts lead to

lim
n→∞

(1− pn)n−x = lim
n→∞

((
1− npn

n

)n)n−xn
= e−λ.(8.23)

Letting n go to infinity in (8.22) we get

lim
n→∞

P [Sn(pn) = x] =
λx

x!
e−λ

and the Poisson pmf emerges!

8.9 Geometric rvs

A rvX : Ω→ N is said to be a geometric rv with parameter p (0 ≤ p ≤ 1), written
X ∼ Geo(p), if

P [X = x] = p(1− p)x−1, x = 1, 2, . . .

The fact that
∞∑
x=1

p(1− p)x−1 = p

∞∑
x=0

(1− p)x =
1

1− (1− p)
= 1

shows that the family pp = (pp(x), x = 0, 1, . . .) given by

pp(x) = p(1− p)x−1, x = 1, 2, . . .(8.24)
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is a pmf with support N0. We refer to this pmf as the geometric pmf with parameter
p.

Sometimes it is more appropriate to consider a related pmf, namely the pmf
p?p =

(
p?p(x), x = 0, 1, . . .

)
given by

p?p(x) = p(1− p)x, x = 0, 1, . . .(8.25)

with support N.
Geometric rvs occur naturally in the context of the game of chance where a

two-sided coin is tossed infinitely many times under identical and independent con-
ditions. If we assume that on a single toss the likelihood of head (resp. tail) is p
(resp. 1 − p with 0 < p < 1), then the probability model (Ω,F ,P) developed in
Section 6.2 adequately model this random experiment – Here we take Ω = {0, 1}N0

with the usual understanding that the outcomes Head and Tail are encoded as 1 and
0, respectively. In that model consider the mapping X : Ω→ N∪ {+∞} given by

X(ω) ≡
{

The number of tosses before
the first Head appears in the sample ω

}
, ω ∈ Ω

withX(ω) = +∞ if Heads never appears in the in the sample ω. It is easy to show
that

P [X = x] = p(1− p)x−1, x = 1, 2, . . .

8.10 Exercises

Unless specified otherwise, all rvs are assumed to be defined on the same probabil-
ity triple (Ω,F ,P).

Ex. 8.1 Consider a rv X : Ω→ R which is uniformly distributed over the interval
(−a, a) for some a > 0.

a. Give its probability distribution function FX : R→ [0, 1].
b. Find the probability distribution function FX+ : R→ [0, 1] of the rv X+ =

max (0, X). Is the rv X+ a discrete rv?

Ex. 8.2 This is a continuation of Exercise 7.8: Consider a symmetric rv X : Ω→
Rp. Specialize your answer obtained in Exercise 7.8 to the case when X is a
discrete rv with support S ⊆ Rp and pmf p = (p(x), x ∈ S). In particular, show
that a discrete rv with support S ⊆ Rp and pmf p = (p(x), x ∈ S) is symmetric
if and only if S = −S and p(x) = p(−x) for all x in S.
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Ex. 8.3 Consider two independent discrete rvs X and Y which are identically dis-
tributed; their common p = (p(z), z ∈ Z) has support S = Z.

a. Compute P [X = Y ] explicitly in terms of (p(z), z = 0,±1,±2, . . .).
b. Without doing any calculations show that P [X < Y ] = P [Y < X].
c. Using Parts a and b show that P [X < Y ] = 1

2

(
1−

∑
z∈Z p(z)

2
)
.

Ex. 8.4 Consider a collection {Xn, n = 1, 2, . . .} of discrete rvs with Xn dis-
tributed uniformly over the set {1, . . . , n} for each n = 1, 2, . . .. For any positive
integer k compute the probability that an infinite number of the rvs will assume the
value k, namely P [Xn = k i.o.].

Ex. 8.5 Let X1, . . . , Xn be n discrete rvs Ω→ N defined on the same probability
triple (Ω,F ,P). They are assumed to be mutually independent. Define the sum rv
Sn ≡ X1 + . . .+Xn.

a. Compute the pmf of the rv Sn if for all k = 1, . . . , n, Xk ∼ Ber(p) for
some 0 < p < 1.

b. Compute the pmf of the rv Sn if for all k = 1, . . . , n, Xk ∼ Bin(nk, p) for
some 0 < p < 1 and positive integer nk. Can you use Part a to conclude without
having to do any calculations?

c. Compute the pmf of the rv Sn if for all k = 1, . . . , n, Xk ∼ Poi(λk) for
some λk > 0.

Ex. 8.6 This problem arises in the context of Eschenauer-Gligor random key pre-
distribution scheme: Let P andK be two positive integers such thatK < P . Given
is a pool of P distinct keys, labelled 1, 2, . . . , P – Write P ≡ {1, . . . , P}. Each of
n devices selects uniformly at random exactly K keys from the key pool P , said
selections being mutually independent. For each i = 1, . . . , n, let Γi denote the
random set of K keys selected by device i. According to the Eschenauer-Gligor
scheme, two devices that can communicate wirelessly will be able to do so securely
if they share at least one key in common.

a. Construct a probability model (Ω,F ,P) to study this situation.
b. Compute

P [Γi = S] ,
S ⊆ P
|S| = K.

Now define the binary rvs

χij = 1 [Γi ∩ Γj 6= ∅] ,
i 6= j

i, j = 1, . . . , n.

Note that χij = 1 (resp. χij = 0 ) means that nodes i and j have a key in common
(resp. do not have a key in common) in their key rings.
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c. Compute the probabilities

P [χij = 1] = P [Γi ∩ Γj = ∅] , i 6= j
i, j = 1, . . . , n.

d. Do the rvs {χ1j , j = 2, . . . , n} form a collection of mutually independent
rvs?

e. Are the rvs χ12, χ23 and χ31 mutually independent?

Ex. 8.7 This problem deals with the following random experiment: A coin is
tossed infinitely many times under identical and independent conditions. It is as-
sumed that on a single toss the likelihood of head is p (with 0 < p < 1). To
model this experiment use the probability model (Ω,F ,P) developed in Section
6.2 (where Ω = {0, 1}N0).

a. Define the mapping X : Ω→ N ∪ {+∞} given by

X(ω) =

{
The number of tosses before

the first Head appears in the sample ω

}
, ω ∈ Ω

with X(ω) = +∞ if Heads never appears in the in the sample ω. Explain why the
mapping X : Ω→ R so defined is indeed a rv. Is it a discrete rv?

c. Find the pmf of this rv, i.e., {P [X = m] , m = 1, 2, . . .}.
d. On the probability triple used here (and discussed in Section 6.2), is it

possible to define a rv Y : Ω → R which is not a discrete rv? In the affirmative
give an example.

Ex. 8.8 A rv X : Ω → R is said to have a symmetric probability distribution
(or more simply to be a symmetric random variable) if the rvs X and −X have the
same probability distribution (under P), i.e.,X =st −X . Specialize your answer to
the case whenX is a discrete rv with support S ⊆ Rp and pmf p = (p(x), x ∈ S).

Ex. 8.9 Let X and Y be two independent Poisson rvs Ω → R, say X ∼ Poi(λ)
and Y ∼ Poi(µ) with λ, µ > 0. Show that the rv Z = X + Y is also a Poisson
rv and identify its parameter, i.e., Z ∼ Poi(ν) for some ν > 0. Generalize to K
mutually independent Poisson rvs X1, . . . , XK with

Xk =st Poi(λk)
λk > 0

k = 1, . . . ,K

Carefully explain your reasoning.
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Ex. 8.10 Let N be a Poisson rv, and let {Bn, n = 1, 2, . . .} be a collection of
Bernoulli rvs with

P [Bn = 1] = 1− P [Bn = 0] = p,
n = 1, 2, . . .
0 < p < 1.

If the rvs {N,Bn, n = 1, 2 . . .} are mutually independent, show that (i) the rvs X
and Y defined by

X :=
N∑
i=1

Bi and Y :=
N∑
i=1

(1−Bi)

are independent, and that (ii) the rvs X and Y are Poisson rvs with parameters λp
and λ(1−p), respectively. Can you use this result to provide an alternative solution
to Exercise 8.9. Explain! Again a case of probabilistic reasoning at work!

Ex. 8.11 Consider the discrete rv Z : Ω → Z whose pmf pZ = (pZ(z), z ∈ Z)
(under P) is given by

pZ(z) = Cq|z|, z ∈ Z

for some C > 0 and 0 < q < 1.
a. Determine the value of C as a function of q.

Ex. 8.12 Let B and X be two independent rvs Ω → N with B ∼ Ber(1
2) and

X ∼ Geo(p) with 0 < p < 1, i.e., P [B = 1] = p and P [B = 0] = 1 − p, while
P [X = `] = p(1 − p)`−1 for ` = 1, 2, . . .. Define the rv Y : Ω → [0,+∞) given
by

Y ≡ B ·X + (1−B) · 1

X
=


X if B = 1

X−1 if B = 0

a. Determine its support SY of the discrete rv Y and find its pmf pY .
b. Introduce the discrete rv Z : Ω → [0,+∞) given by Z ≡ Y −1. Determine

the support SZ of the discrete rv Z. and find its pmf pZ .

Ex. 8.13 LetX1, . . . , Xn be n discrete rvs Ω→ N defined on the same probability
triple (Ω,F ,P). They are assumed to be mutually independent and to be geomet-
rically distributed in the sense that for each k = 1, . . . , n, we have Xk ∼ Geo(pk)
for some 0 < pk < 1 (not necessarily identical).

a. For each k = 1, 2, . . . , n, compute P [Xk > x] for each x = 0, 1, . . ..
b. Find the pmf of the rv Vn ≡ min{X1, . . . , Xn} [HINT: Compute P [Vn > x]

for each x = 0, 1, . . . and identify the pmf!].
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Ex. 8.14 Let P,U1, . . . , Un be n+1 mutually independent rvs defined on the same
probability triple (Ω,F ,P). Assume that the rvs U1, . . . , Un are uniformly dis-
tributed on the interval [0, 1], and that the rv P is simple rv of the form

P =
∑
i∈I

pk1 [Ak]

for some finite F-partition {Ai, i ∈ I} and scalars {pi, i ∈ I} in [0, 1] all distinct.
Define the discrete rvs X1, . . . , Xn to be

Xk ≡ 1 [Uk ≤ P ] , k = 1, 2, . . .

a. Assume first that |I| = 1. What is the common pmf of the rvs X1, . . . , Xn?
Are the rvs X1, . . . , Xn pairwise independent? Are they mutually independent?

Assume next that |I| ≥ 2 with {pi, i ∈ I} ⊂ (0, 1).
b. Find the common pmf of the rvs X1, . . . , Xn.
c. Are the rvs X1, . . . , Xn pairwise independent? Are they mutually indepen-

dent?



Chapter 9

(Absolutely) continuous random
variables

A particularly important class of rvs is the class of discrete rvs. They are explored
in this chapter.

9.1 Continuous distributions

Definition 9.1.1
A rv X : Ω→ Rp is a continuous rv if such that

.

9.2 Marginalization

9.3 Exercises

Unless specified otherwise, all rvs are assumed to be defined on the same probabil-
ity triple (Ω,F ,P).
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Chapter 10

Mathematical expectations:
Definitions

The probability distribution function of a rv X : Ω→ R is a complicated object –
For all intent and purposes, it is an infinite-dimensional object since it needs to be
specified at every point x in R. Yet much information concerning the probabilistic
behavior of the rv can already be gleaned from lower-dimensional measures associ-
ated with its probability distribution. In the frequentist context, such quantities can
be viewed as averages. In this chapter we make sense of them through the notion
of expected value or expectation of a rv. This requires us to appeal to Lebesgue
integration (and its generalization) as developed in the context of Measure Theory.
This is developed in the next section under the following algebraic conventions:
No meaning is attributed to ∞ −∞. Furthermore, we shall make the following
conventions:

0 · (±∞) = ±0,

c±∞ = ±∞, c ∈ R

and

c · (±∞) = sgn(c) · (±∞) ,
c 6= 0
c ∈ R

10.1 Natural requirements

Throughout the discussion we assume given a probability triple (Ω,F ,P) on which
all rvs are defined. Whenever possible, with any rv X : Ω → R we seek to
associate a (possibly infinite) scalar in [−∞,∞], denoted E [X]; this value can
be interpreted as an average value for X as weighted by its probability distribution

125
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FX . We shall refer to E [X], when it exists, as the expectation ofX . This definition
for the expectation operator is guided by the following requirements.

R1. Expectation is determined solely by the probability distribution of X –
The expectation E [X] should be determined solely by the probability distribution
FX : R → R: Thus, if X ′ : Ω′ → R is another rv (possibly defined on some
different probability triple (Ω′,F ′,P′)) with distribution FY ′ : R → R (under P′),
then the distributional equality FX = FY ′ implies E [X] = E′[X ′] (when it exists).
Put differently, the existence of E [X] is determined, and its value computable, on
the basis of FX alone.

The definition of the quantity E [X] does not depend on the type of distribu-
tion of the rv X , say discrete or absolute continuous, but does coincide with the
usual definitions given in elementary courses in Probability Theory. The first step
towards realizing this requirement will follow from the next requirements.

R2. Expectation generalizes probabilities – The expectation of the indicator
function of an event A in F should coincide with its probability under P, namely
if X = 1 [A], then

E [X] = E [1 [A]] = P [A] , A ∈ F .

R3. Expectations for non-negative rvs – The expectation of non-negative rvs
is always well defined (although it could be infinite) with E [X] ≥ 0 whenever
X ≥ 0.

R4. Linearity – The expectation operator is linear in the following sense: Con-
sider rvs X,Y : Ω → R defined on the same probability triple (Ω,F ,P). If their
expectations exist, then for any scalars a and b, the equality

E [aX + bY ] = aE [X] + bE [Y ]

holds whenever the expression aE [X] + bE [Y ] is well defined. In particular this
will happen when E [X] and E [Y ] are both finite. When at least one of the expec-
tations E [X] and E [Y ] is infinite, this requirement may put conditions on the sign
of a and b for the right-hand side to be well defined.

A definition of E [X] that meets the requirements R1-R4 is given through a
three-stage process discussed in the next sections:

• Step 1: For indicator rvs and for simple rvs.
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• Step 2: For non-negative rvs through an approximation argument (via a lim-
iting process) in terms of simple rvs (to be defined next).

• Step 3: For arbitrary rvs through a decomposition in positive and negative
parts.

As will become shortly apparent, this three-step definition is quite concrete in
spite of the many mathematical details (which can be omitted in first reading) that
need to be considered. We shall see that the expectation operation so constructed
has a couple of useful by-products:

Monotonicity The operation that associates an expectation with a rv is monotone
in the following sense: If two rvs X,Y : Ω → R are ordered in the sense that
X ≤ Y , then Y −X ≥ 0. If in addition both expectations E [X] and E [Y ] are well
defined and finite, then E [Y −X] ≥ 0 by R3 while E [Y −X] = E [Y ] − E [X]
by linearity R4. As a result, E [X] ≤ E [X]. It turns out that a somewhat stronger
result holds when the expectations are not finite.

Interchange of limits and expectations Consider a sequence of rvs {X,Xn, n =
1, 2, . . .} all defined on the probability triple (Ω,F ,P) such that limn→∞Xn(ω) =
X(ω) for each ω in an event Ω? inF with P [Ω?] = 1. Furthermore assume that the
expectations of the rvs {X,Xn, n = 1, 2, . . .} are all well defined. Under certain
conditions we shall see that the first limit below exists, and that the interchange of
limit and expectation

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
(= E [X])

is valid.

10.2 Simple rvs

Simple rvs to be defined shortly are the building blocks of this construction. First
a couple of definitions and some terminology.

Definition 10.2.1
With I an index set, an F-partition of Ω is a collection {Ai, i ∈ I} of events

in F such that

Ai ∩Aj = ∅, i 6= j
i, j ∈ I and ∪i∈I Ai = Ω.
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Such an F-partition is said to be finite (resp. countable) if the index set I is
finite (resp. countable). In most cases of interest, the events {Ai, i ∈ I} are
non-empty.

Definition 10.2.2
A rv X : Ω→ R is said to be a simple rv if it is of the form

X =
∑
i∈I

ai1 [Ai](10.1)

for some finite F-partition {Ai, i ∈ I} and a collection {ai, i ∈ I} of scalars in
R.

A simple rvX is well defined due to the fact that {Ai, i ∈ I} is anF-partition:
Indeed, for each ω in Ω, there exists exactly one index i in I such that ω belongs to
Ai, in which case X(ω) = ai. In this definition, some of the events in the partition
could be empty and the scalars values {ai, i ∈ I} are not necessarily all distinct
of each other. Thus, the representation (10.2.2) of a simple rv is not necessarily
unique. However, in many arguments there is no loss of generality in assuming the
values {ak, k ∈ I} to be distinct scalars and the events {Ak, k ∈ I} forming the
F-partition to be all non-empty, in which case {X(ω), ω ∈ Ω} = {ak, k ∈ I}
with

Ak = [X = ak] , k ∈ I.

We refer to this representation as the generic representation of the simple rv. It is
easy to see that it is unique.

Here are some easy facts concerning simple rvs; the proofs are left as exercises.

Fact 10.2.1 If X,Y : Ω → R are simple rvs, then the rvs X + Y and cX (with
scalar c) are also simple rvs.

A number of proofs (including that of Fact 10.2.1) will rely on the following
simple observation (mentionned here for easy reference): Assume thatX : Ω→ R
is a simple rv with finite F-partition {Ai, i ∈ I} and collection {ai, i ∈ I} of
scalars in R, and that Y : Ω→ R is a simple rv with finiteF-partition {Bj , j ∈ J}
and collection {bj , j ∈ J} of scalars in R. It is plain that

X =
∑
i∈I

∑
j∈J

ai1 [Ai ∩Bj ] and Y =
∑
i∈I

∑
j∈J

bj1 [Ai ∩Bj ] .

In other words, the rv X (resp. Y ) can be interpreted as a simple rv with finite
F-partition {Ci,j , (i, j) ∈ I × J} and collection {ai,j , (i, j) ∈ I × J} (resp.
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{bi,j , (i, j) ∈ I × J}) of scalars in R where for each pair (i, j) in I × J , we have
defined Ci,j = Ai ∩ Bj with scalars ai,j = ai and bi,j = bj . Put differently, when
considering two simple rvs, there is no loss of generality in assuming that they are
constructed on the same finite F-partition.

10.3 Approximating with simple rvs

The next definition is central to the definition of expectation presented in later
sections.

Definition 10.3.1
The sequence of rvs {Xn, n = 1, 2, . . .} is called a (monotone) staircase ap-

proximation from below for the rv X : Ω → R if for each n = 1, 2, . . ., the rv
Xn : Ω→ R is a simple variable such that

(i) The sequence is pointwise non-decreasing in the sense that for every ω in
Ω, the sequence {Xn(ω), n = 1, 2, . . .} is non-decreasing with

Xn(ω) ≤ Xn+1(ω) ≤ X(ω), n = 1, 2, . . .(10.2)

(ii) The sequence converges pointwise with

lim
n→∞

Xn(ω) = X(ω), ω ∈ Ω.(10.3)

The existence of the limit (10.3) is ensured by the monotonicity (10.2).

Throughout we shall drop the qualifiers monotone and from below. For the
purpose of defining expectations the key observation concerning simple rvs is con-
tained in the following lemma which deals with non-negative rvs.

Lemma 10.3.1 For any non-negative rv X : Ω→ R+, there always exists a stair-
case approximation {Xn, n = 1, 2, . . .} of X made of simple non-negative rvs
Ω→ R+ with

Xn = gn(X), n = 1, 2 . . .

for some Borel mapping gn : R→ R+.

The sequence {Xn, n = 1, 2, . . .} whose existence is announced in Lemma
10.3.1 is not unique as can be seen by a careful examination of the proof below
[Exercise 10.2].



130 CHAPTER 10. MATHEMATICAL EXPECTATIONS: DEFINITIONS

Proof. For each n = 1, 2, . . ., consider the rv Xn : Ω→ R+ given by

Xn =


k2−n if

k2−n ≤ X < (k + 1)2−n,
k = 0, 1, . . . , 4n − 1

0 if X ≥ 2n.

(10.4)

The reader will readily check that the rv Xn is a simple rv associated with the
F-partition {An,k, k = 0, 1, . . . , 4n − 1, 4n} given by

An,k =


[k2−n ≤ X < (k + 1)2−n] if k = 0, 1, . . . , 4n − 1

[X ≥ 2n] if k = 4n
(10.5)

and associated values {an,k, k = 0, 1, . . . , 4n − 1, 4n} given by

an,k =


k2−n if k = 0, 1, . . . , 4n − 1

0 if k = 4n.

The partition (10.5) is an F-partition by virtue of the fact that X is a rv.
Parts (i) and (ii) are immediate consequence of the following observation (whose

proof is left as an exercise): Fix x arbitrary in R, and set

kn(x) ≡ bx2nc and xn ≡ kn(x)2−n, n = 1, 2, . . .

As we note that 2kn(x) ≤ x2n+1, it is a simple matter to check that 2kn(x) ≤
kn+1(x), whence xn ≤ xn+1 ≤ x with xn ≤ x < xn + 2−n. The sequence
{xn, n = 1, 2, . . .} is therefore monotone increasing with limn→∞ xn = x. Obvi-
ously we have xn ≥ 0 for all n = 1, 2, . . . if x ≥ 0.

Note that for each n = 1, 2, . . ., the rv Xn in Lemma 10.3.1 can be defined as

Xn =


bX2nc2−n if 0 ≤ X < 2n

0 otherwise.
(10.6)

Therefore, it is indeed the case that Xn = gn(X) with Borel mapping gn : R →
R+ given by

gn(x) =


bx2nc2−n if 0 ≤ x < 2n

0 otherwise.
(10.7)
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10.4 Defining the expectation of a rv

We are now ready to define the expectation of a rv X : Ω→ R. This will be done
according to the three steps announced earlier.

Step 1 – Simple rvs
Consider a simple rv X : Ω→ R of the form (10.1) for some finite F-partition

{Ai, i ∈ I} with associated collection {ai, i ∈ I} of scalars in R. We define its
expectation E [X] by

E [X] ≡
∑
i∈I

aiP [Ai] .(10.8)

It follows immediately that if X ≡ c for some scalar c in R, then E [X] = x.
Furthermore, given the requirements laid down in Section 10.1 the definition (10.8)
is the only definition possible: Indeed, we must have

E [X] = E

[∑
i∈I

ai1 [Ai]

]
=

∑
i∈I

aiE [1 [Ai]] [By linearity R4]

=
∑
i∈I

aiP [Ai] [By R2](10.9)

The definition (10.8) does not depend on the particular representation used for the
simple rv X , and is therefore well posed [Exercise 10.2].

Linearity and monotonicity of expectation both hold on the class of simple rvs.
This follows by an easy use of the observation concluding Section 10.2, and is left
as an easy exercise.

Lemma 10.4.1 Assume the rvs X,Y : Ω → R to be simple rvs. The following
holds:

(i) Linearity: For arbitrary scalars a and b in R,

E [aX + bY ] = aE [X] + bE [Y ]

where the rv aX + bY is also a simple rv by Fact 10.2.1;
(ii) Monotonicity: If X ≤ Y , then E [X] ≤ E [Y ].
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Step 2 – Non-negative rvs
Consider a non-negative rv X : Ω → R+, and let {Xn, n = 1, 2, . . .} denote

any collection of simple non-negative rvs which form a staircase approximation of
X: We define E [X] by the limiting process

E [X] ≡ lim
n→∞

E [Xn] .(10.10)

The expectation E [X] defined at (10.10) always exists as an element in [0,+∞];
this is a consequence of the fact that the sequence {E [Xn] , n = 1, 2, . . .} is non-
decreasing in R+ by Part (ii) of Lemma 10.4.1 (since the sequence {Xn, n =
1, 2, . . .}) is monotone non-decreasing).

At this point the reader may wonder whether this definition is independent of
the staircase approximation sequence {Xn, n = 1, 2, . . .} being used in (10.10).
Before showing that it is indeed the case, we prove the following fact whose proof
is given in Section 10.6.

Lemma 10.4.2 Consider a non-negative rv X : Ω → R+, and let {Xn, n =
1, 2, . . .} denote any collection of simple non-negative rvs which form a staircase
approximation for X . For any simple non-negative rv Y : Ω → R+ such that
Y ≤ X , it holds that

E [Y ] ≤ lim
n→∞

E [Xn] .(10.11)

This observation has the following consequence:

Lemma 10.4.3 Consider a non-negative rv X , and let {X1,n, n = 1, 2, . . .} and
{X2,n, n = 1, 2, . . .} be collections of simple non-negative rvs which form a
staircase approximation of X, i.e., for each k = 1, 2, we haveXk,n ≤ Xk,n+1 ≤ X
for n = 1, 2, . . . with limn→∞Xk,n = X pointwise. It holds that

lim
n→∞

E [X1,n] = lim
n→∞

E [X2,n] .(10.12)

This indeed shows that the definition (10.10) of E [X] is independent of the
staircase approximation sequence for X being used.

Proof. Fix k = 1, 2 and note thatXk,n ≤ X for all n = 1, 2, . . .. For ` = 1, 2 with
` 6= k, Lemma 10.4.2 yields E [X`,m] ≤ limn→∞ E [Xk,n] for each m = 1, 2, . . .
(when applied with Y = X`,m). It immediately follows that

lim
m→∞

E [X`,m] ≤ lim
n→∞

E [Xk,n] .
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Exchanging the role of k and ` in this last inequality we conclude to the validity of
(10.12).

Step 3 – The general case
Setting X+ = max (0, X) and X− = max (0,−X), we recall the decomposi-

tions
X = X+ −X− and |X| = X+ +X−.(10.13)

We define
E [X] ≡ E

[
X+
]
− E

[
X−
]

(10.14)

with the understanding that at least one of the terms E [X+] and E [X−] is finite.
This definition is indeed the natural definition if one is to expect the expectation to
have a chance to be linear.

There are four possible cases: (i) If both E [X+] and E [X−] are finite, then
E [|X|] = E [X+] + E [X−] < ∞; (ii) If E [X+] = ∞ with E [X−] finite, then
E [X] = ∞; (iii) If E [X−] = ∞ with E [X+] finite, then E [X] = −∞. in
both these cases E [|X|] = E [X+] + E [X−] = ∞. (iv) Finally, if E [X+] =
E [X−] = ∞, then E [X] cannot be defined, yet E [|X|] = ∞. We summarize
these observations through the following definition:

Definition 10.4.1
The expectation E [X] of the rv X is said to exist if

min
(
E
[
X+
]
,E
[
X−
])
<∞.

It will be finite if the stronger condition E [X+] + E [X−] < ∞ holds, in which
case the rv X is said to be integrable.

10.5 The expectation of a rv depends only on its probabil-
ity distribution

As we now show the expectation operation defined in Section 10.4 does satisfy the
requirement R1.

Lemma 10.5.1 For any rv X : Ω → R, whenever it exists, the expectation E [X]
is fully determined by the probability distribution FX of the rv X .
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Proof. We start with the case where X is a non-negative rv. Let {Xn, n =
1, 2, . . .} denote the collection of simple non-negative rvs introduced in the proof
of Lemma 10.3.1 to show the existence of a staircase approximation to X . For
each n = 1, 2, . . . we note that

E [Xn] =
4n−1∑
k=0

k2−nP
[
k2−n ≤ X < (k + 1)2−n

]
=

4n−1∑
k=0

k2−n
(
FX((k + 1)2−n−)− FX(k2−n−)

)
,

and E [Xn] indeed depends only onFX . The definitional equality E [X] = limn→∞ E [Xn]
thus implies that E [X] depends only on the probability distribution FX of X .

For the general case, introduce the non-negative rvs X+ and X−. By the first
part of the proof, we conclude that the expectations E [X+] and E [X−], while
possibly infinite, are determined by the probability distributions FX+ and FX− ,
respectively. However, it is plain that the probability distribution of X+ is deter-
mined by that of X since

P
[
X+ ≤ x

]
=


FX(x) if x ≥ 0

0 if x < 0
(10.15)

by elementary calculations. Therefore, the expectation E [X+] depends only on
the probability distribution FX of X . A similar argument shows that the expecta-
tion E [X−] depends only on the probability distribution FX of X , and the desired
conclusion concerning E [X] (when well defined) follows

10.6 A proof of Lemma 10.4.2

The expectations E [Y ] and E [Xn], n = 1, 2, . . ., are well defined since they in-
volve simple rvs, and limn→∞ E [Xn] is well defined by monotonicity (see Part (ii)
of Lemma 10.4.1).

Pick ε > 0, and fix n = 1, 2, . . .: Define the event An(ε) ≡ [Xn ≥ Y − ε].
The rv Xn being non-negative it is plain that

Xn ≥ Xn · 1 [An(ε)]

≥ (Y − ε) · 1 [An(ε)]



10.7. AN ALTERNATE DEFINITION OF E [X] WHEN THE RVX IS NON-NEGATIVE135

= Y · 1 [An(ε)]− ε · 1 [An(ε)]

= Y − Y · 1 [An(ε)c]− ε · 1 [An(ε)]

≥ Y − C · 1 [An(ε)c]− ε(10.16)

whereC = maxk∈K ck if the simple rv Y has the representation Y =
∑

k∈ ck1 [Ck]
with F-partition {Ck, k ∈ K} and non-negative associated scalars {ck, k ∈ K}.

Take expectations in (10.16) and note that all the rvs involved, namely Xn, Y
and 1 [An(ε)c], are all simple rvs. Therefore, using Lemma 10.4.1 repeatedly, we
readily conclude that

E [Xn] ≥ E [Y ]− C · P [An(ε)c]− ε.(10.17)

We now let n go to infinity in the inequality (10.17): The sequence {An(ε), n =
1, 2, . . .} is a monotonically increasing sequence of events (withAn(ε) ⊆ An+1(ε)
for all n = 1, 2, . . . since Xn ≤ Xn+1) such that

∪n=1,2,...An(ε) = Ω.

Using continuity from below of Lemma 3.1.1 we get limn→∞ P [An(ε)] = P [Ω] =
1, or equivalently, limn→∞ P [An(ε)c] = 0, and the conclusion limn→∞ E [Xn] ≥
E [Y ]− ε obtains. The desired result (10.11) follows upon observing that ε > 0 is
arbitrary.

10.7 An alternate definition of E [X] when the rvX is non-
negative

In this section we return to the case of non-negative rvs: Let {Xn, n = 1, 2, . . .}
denote a(ny) staircase approximation for the non-negative rvX : Ω→ R+. By Part
(ii) of Lemma 10.4.1, the sequence {E [Xn] , n = 1, 2, . . .} being non-decreasing,
the definitional limit limn→∞ E [Xn] exists with

E [X] ≡ lim
n→∞

E [Xn] = sup
n=1,2,...

E [Xn] .(10.18)

Since limn→∞Xn = X monotonically, it is also the case that

X = lim
n→∞

Xn = sup
n=1,2,...

Xn.(10.19)
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Combining these two simple observations we can rewrite (10.18) as an interchange
of the supremum and integration operations, namely

E [X] = E
[

sup
n=1,2,...

Xn

]
= sup

n=1,2,...
E [Xn] .(10.20)

However, Lemma 10.4.3 implies that the quantity supn=1,2,... E [Xn] is inde-
pendent of the sequence {Xn, n = 1, 2, . . .} used as a staircase approximation
for the rv X . As a way to understand why this may occur consider the following
arguments: With the non-negative rv X : Ω → R+, we associate the set S(X) of
simple non-negative rvs which are bounded above by X , namely

S(X) ≡
{
Y : Ω→ R+ :

Simple non-negative rv
Y ≤ X

}
.

Lemma 10.3.1 ensures that S(X) is not empty, and the equality

X = sup
Y ∈S(X)

Y(10.21)

is easily seen to hold [Exercise 10.4]. Comparing (10.19) and (10.21) it is then
not unreasonable to expect (10.20) to generalize in the form of the following inter-
change:

Lemma 10.7.1 For any non-negative rv X : Ω→ R+, it holds that

E

[
sup

Y ∈S(X)
Y

]
= sup

Y ∈S(X)
E [Y ](10.22)

Proof. Set
Sup(X) ≡ sup {E [Y ] : Y ∈ S(X)} .

Note that Sup(X) is well defined by Step 1 since the rvs in S(X) are all non-
negative and simple. It is plain that (10.22) is equivalent to

Sup(X) = E

[
sup

Y ∈S(X)
Y

]
(= E [X])(10.23)

where the last equality is a direct consequence of the observation (10.21)
Let {Xn, n = 1, 2, . . .} denote any collection of simple non-negative rvs

which form a staircase approximation for X . Obviously, for each n = 1, 2, . . .,
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the rv Xn is an element of S(X), whence E [Xn] ≤ Sup(X), and the conclusion
E [X] ≤ Sup(X) follows by virtue of (10.18).

To establish the reverse inequality we proceed as follows: By the very defi-
nition of Sup(X) as a supremum, there exists a sequence of simple non-negative
rvs {Yn, n = 1, 2, . . .} in S(X) such that limn→∞ E [Yn] = Sup(X). The rvs
{Yn, n = 1, 2, . . .} may not form a monotone sequence, but the simple non-
negative rvs {Zn, n = 1, 2, . . .} defined by

Zn = max (Xn,max (Y1, . . . , Yn)) , n = 1, 2, . . .

form a non-decreasing sequence in S(X). Noting that Xn ≤ Zn ≤ X for each
n = 1, 2, . . ., we conclude that limn→∞ Zn = X by the fact that the rvs {Xn, n =
1, 2, . . .} form a staircase approximation for X . Thus, the rvs {Zn, n = 1, 2, . . .}
also form a staircase approximation for X , and we have limn→∞ E [Zn] = E [X]
by definition (10.10) (and Lemmas 10.4.3).

From the definitions we conclude that E [Yn] ≤ E [Zn] (since Yn ≤ Zn) for
each n = 1, 2, . . . with limn→∞ E [Yn] = Sup(X) by construction while we al-
ready have limn→∞ E [Zn] = E [X]. Therefore, we have Sup(X) ≤ E [X] upon
using the fact that limn→∞ E [Yn] ≤ limn→∞ E [Zn]. This complete the proof of
10.23.

Lemma 10.7.1 provides an alternate definition for the expectation of non-negative
rvs, namely

E [X] ≡ sup
Y ∈S(X)

E [Y ](10.24)

for any non-negative rvX . While compact, this alternate definition is not construc-
tive and therefore lacks any operational meaning for evaluating expectations.

10.8 Exercises

All rvs are defined on the same probability triple (Ω,F ,P).

Ex. 10.1 Prove Fact 10.2.1.

Ex. 10.2 By revisiting the proof of Lemma 10.3.1 show that the staircase approx-
imation {Xn, n = 1, 2, . . .} whose existence is discussed there is not unique, i.e.,
show an alternative construction.



138 CHAPTER 10. MATHEMATICAL EXPECTATIONS: DEFINITIONS

Ex. 10.3 Consider the simple rv X : Ω → R, and assume it admits two represen-
tations, namely for k = 1, 2, it holds that

X =
∑
ik∈Ik

ak,ik1 [Aik ]

for some finite F-partition {Aik , ik ∈ Ik} with associated collection {ak,ik , ik ∈
Ik} of scalars in R. Show by a direct argument that we necessarily have∑

i1∈I1

a1,i1P [Ai1 ] =
∑
i2∈I2

a2,i2P [Ai2 ]

so that the expectation E [X] of the simple rv X defined at (10.8) is independent of
its representation.

Ex. 10.4 Establish (10.21).

Ex. 10.5 Let the rv X : Ω→ R be a symmetric rv, i.e., X =st −X .
a. Can E [X+] and E [X−] assume different values?
b. Give conditions under which E [X] is well defined and finite, and show that

E [X] = 0 in that case.
c. Give an example of a symmetric rv X for which E [X] is not well defined.

Ex. 10.6 With positive scalar M > 0, the rv X : Ω→ R is said to be M -bounded
if |X| ≤ M , i.e., |X(ω)| ≤ M for all ω in Ω. Show that the expectation of an
M -bounded rv X always exists and is finite with |E [X] | ≤M .

Ex. 10.7 Consider two rvsX,X ′ : Ω→ R with the property that P [X 6= X ′] = 0.
Show that E [X] and E [X ′] are both well defined simultaneously, in which case
E [X] = E [X ′] (finite or not), or neither is well defined [HINT: Use Lemma
10.5.1].

Ex. 10.8 Let X : Ω→ R be a rv with finite expectation, i.e., E [|X|] <∞.
a. IfX ≥ 0, show that limn→∞ nP [X ≥ n] = 0 (so that limn→∞ nP [X > n] =

0 as well). [HINT: If X ≥ 0, recall that the value E [X] does not depend on the
approximating staircase sequence used in defining the expectation!]

b. What happens to this statement when X can take both positive or negative
values?

c. If E [|X|r] <∞ for some r > 0, show that limn→∞ n
rP [|X| > n] = 0.
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Ex. 10.9 Let X : Ω→ R be a discrete rv such that P [X ∈ N] = 1. Using the fact
that X =

∑∞
n=0 1 [X > n] and the Monotone Convergence Theorem shows that

E [X] =

∞∑
n=0

P [X > n]

regardless of whether E [X] < ∞ or not. Compare with the proof suggested in
Exercise ??.

Ex. 10.10 Let X : Ω → R be a discrete rv such that P [X ∈ N] = 1. Show that
E [X] can also be evaluated as

E [X] =
∞∑
n=0

P [X > n] =
∞∑
n=1

P [X ≥ n]

regardless of whether E [X] <∞ or not. [HINT: Note that P [X = n] = P [X ≥ n]−
P [X ≥ n+ 1] for each n = 0, 1, . . .].

Ex. 10.11 Let X : Ω→ R be a rv with finite expectation, i.e., E [|X|] <∞.
a. IfX ≥ 0, show that limn→∞ nP [X ≥ n] = 0 (so that limn→∞ nP [X > n] =

0 as well). [HINT: If X ≥ 0, recall that the value E [X] does not depend on the
approximating staircase sequence used in defining the expectation!]

b. What happens to this statement when X can take both positive or negative
values?

Ex. 10.12 With a rv ξ : Ω → R, we define the rvs X,Y, Z : Ω → R given by
X ≡ sin (ξ), Y ≡ ξ

1+ξ2
and Z ≡ ξ · cos (ξ).

a. For each of these three rvs, determine whether the expectation exists and
whether it is finite if no additional assumption is imposed on the probability distri-
bution function of ξ. In each case justify your answer!

In what follows, assume ξ to be a symmetric rv under P in the sense that the
rvs ξ and −ξ have the same probability distribution under P.

b. Evaluate E [X] and E [Y ] – This can be done without any calculations and
without knowing anything more about the rvs!

c. Give an example that shows that E [Z] may not always exist. Give an addi-
tional condition on ξ to ensure that the expectation E [Z] can be evaluated and find
its value.
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Chapter 11

Mathematical expectations (I):
Basic properties

The present and next chapters are devoted to a discussion of useful properties of the
expectation operator introduced in Chapter 10. The basic properties discussed in
Chapter 11 are easy consequences of the three step definition of expectation given
in Section 10.4. Proofs have been included for the sake of completeness; they are
straightforward, albeit at times tedious, and can be omitted in a first reading.

Throughout we are given rvs all defined on the same probability triple (Ω,F ,P).

11.1 Basic properties (I)

A. Mutiplying by a constant
If E [X] exists, then for each c in R, E [cX] also exists and it holds that

E [cX] = cE [X].

The desired conclusion is clearly true for simple rvs – See the first part of
Lemma 10.4.1 with a = c and b = 0.

If X is a non-negative rv, let the rvs {Xn, n = 1, 2, . . .} be the simple non-
negative rvs associated with X in Lemma 10.3.1, so that E [X] = limn→∞ E [Xn]
by definition. For each c in R, the rvs {cXn, n = 1, 2, . . .} are also simple rvs and
E [cXn] = cE [Xn] for all n = 1, 2, . . . by the first part of the proof.

If c ≥ 0 the rvs {cXn, n = 1, 2, . . .} are non-negative and non-decreasing with
limn→∞ cXn = cX pointwise. Therefore, using the definition for non-negative
rvs, we get

141
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E [cX] = lim
n→∞

E [cXn]

= lim
n→∞

cE [Xn]

= c lim
n→∞

E [Xn] = cE [X] .

If c < 0, then (cX)+ = 0 and (cX)− = −cX = |c|X . As a result, E [(cX)+] = 0
and E [(cX)−] = E [|c|X] = |c|E [X] by the earlier part of the proof, and we
conclude E [X] = −E [(cX)−] = −|c|E [X] = cE [X] as desired.

For the general case, first consider c > 0. Noting that (cX)+ = cX+ and
(cX)− = cX−, we obtain E [(cX)+] = E [cX+] = cE [X+] and E [(cX)−] =
E [cX−] = cE [X−] by the result for non-negative rvs. Therefore, E [cX] is well
defined as soon as E [X] is well defined with E [cX] = E [(cX)+]− E [(cX)−] =
cE [X+] − cE [X−] = cE [X]. The case c < 0 is handled mutatis mutandi and is
left to the interested reader.

B. Monotonicity
If X ≤ Y , then E [X] ≤ E [Y ] as soon as both E [X] and E [Y ] exist (possibly

infinite). In particular, (i) if −∞ < E [X], then −∞ < E [Y ] and E [X] ≤ E [Y ],
or (ii) if E [Y ] <∞, then E [X] <∞ and E [X] ≤ E [Y ].

We start with X and Y being both simple rvs, in which case the desired result
is simply Part (ii) of Lemma 10.4.1.

Next we consider the case when the rvs X and Y are non-negative rvs satisfy-
ing X ≤ Y . Let rvs {Xn, n = 1, 2, . . .} (resp. {Yn, n = 1, 2, . . .}) form a stair-
case approximation for the rv X (resp. Y ). The rvs {max(Xn, Yn), n = 1, 2, . . .}
are simple non-negative rv which also form a staircase approximation for the rv
Y : Indeed, since limn→∞Xn = X and limn→∞ Yn = Y by construction, it holds
that

lim
n→∞

max(Xn, Yn) = max( lim
n→∞

Xn, lim
n→∞

Yn) = max(X,Y ) = Y,

while the monotonicity of the staircase approximations for X and Y also yields
max(Xn, Yn) ≤ max(Xn+1, Yn+1) for each n = 1, 2, . . .. In particular, E [Y ] =
limn→∞ E [max(Xn, Yn)] by the usual construction (independent of the staircase
approximation used). However, we note that Xn ≤ max(Xn, Yn) for each n =
1, 2, . . ., whence E [Xn] ≤ E [max(Xn, Yn)] by the first part of the proof. Letting
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n go to infinity we readily conclude that E [X] ≤ E [Y ]. The desired result holds
for non-negative rvs.

Finally we turn to arbitrary rvs X and Y such that X ≤ Y . By direct in-
spection we have X+ ≤ Y + and Y − ≤ X−, whence E [X+] ≤ E [Y +] and
E [Y −] ≤ E [X−] since monotonicy of expectations was shown to always hold for
non-negative rvs. The desired conclusion

E [X] = E
[
X+
]
− E

[
X−
]
≤ E

[
Y +
]
− E

[
Y −
]

= E [Y ]

follows (under the usual caveat that the expectations E [X] and E [Y ] are well de-
fined).

C. Taking absolute values
If E [X] exists, then |E [X] | ≤ E [|X|].

Note that −|X| ≤ X ≤ |X| and apply Property B twice, once to −|X| ≤ X
and once to X ≤ |X|.

D. Localization
If E [X] exists, then E [X1 [A]] exists for any event A in F . Furthermore, if

E [X] is finite, then E [X1 [A]] is also finite.

For any A in F , introduce the rv XA = X1 [A]. We have 0 ≤ X±A = X±1 [A]
by direct inspection so that X±A ≤ X±. Obviously E

[
X±A
]
≤ E [X±] by Prop-

erty B, whence min
(
E
[
X+
A

]
,E
[
X−A
])
≤ min (E [X+] ,E [X−]) and E

[
X+
A

]
+

E
[
X−A
]
≤ E [X+] + E [X−]. The conclusions are now straightforward from Def-

inition 10.4.1 as min (E [X+] ,E [X−]) < ∞ (resp. E [X+] + E [X−] < ∞)
implies min

(
E
[
X+
A

]
,E
[
X−A
])
<∞ (resp. E

[
X+
A

]
+ E

[
X−A
]
<∞).

E. Adding rvs
We have E [X + Y ] = E [X] + E [Y ] if (i) the rvs X and Y are non-negative

or (ii) if E [X] and E [Y ] are both finite.

We start with X and Y being both simple rvs, in which case the desired result,
namely E [X + Y ] = E [X] + E [Y ] was already established as Part (i) of Lemma
10.4.1 with a = b = 1.
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Next we consider the case when the rvs X and Y are non-negative rvs, and let
the rvs {Xn, n = 1, 2, . . .} (resp. {Yn, n = 1, 2, . . .}) form a staircase approxi-
mation for the rvX (resp. Y ). The simple rvs {Xn+Yn, n = 1, 2, . . .} also form a
staircase approximation for the rvX+Y , hence E [X + Y ] = limn→∞ E [Xn + Yn].
By the first part of the proof we have E [Xn + Yn] = E [Xn] + E [Yn] for each
n = 1, 2, . . . and letting n go to infinity in these equalities we conclude that
E [X + Y ] = E [X] + E [Y ] as we recall that E [X] = limn→∞ E [Xn], and
E [Y ] = limn→∞ E [Yn] by construction.

Finally, we turn to the case when X and Y are arbitrary rvs with E [X] and
E [Y ] both finite, or equivalently, E [|X|] < ∞ and E [|Y |] < ∞. Decomposing
each of the rvs X , Y and X + Y according to (10.13) we find

X + Y =
(
X+ −X−

)
+
(
Y + − Y −

)
as well as

X + Y = (X + Y )+ − (X + Y )− .

Combining these two expressions for the sum X + Y and rearranging terms, we
obtain

X+ + Y + + (X + Y )− = X− + Y − + (X + Y )+ .

Taking expectations on both sides of this last relationship between non-negative
rvs yields

E
[
X+ + Y + + (X + Y )−

]
= E

[
X− + Y − + (X + Y )+](11.1)

where each of these expectations can be expressed as

E
[
X+ + Y + + (X + Y )−

]
= E

[
X+
]

+ E
[
Y +
]

+ E
[
(X + Y )−

]
and

E
[
X− + Y − + (X + Y )+] = E

[
X−
]

+ E
[
Y −
]

+ E
[
(X + Y )+]

upon using the first part of the proof – Indeed all the rvs involved are non-negative,
so all the expectations exist and additivity holds.

Returning to (11.1) we conclude to the equality

E
[
X+
]

+ E
[
Y +
]

+ E
[
(X + Y )−

]
= E

[
X−
]

+ E
[
Y −
]

+ E
[
(X + Y )+] .(11.2)
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Note that |X + Y | ≤ |X| + |Y |, whence E [|X + Y |] ≤ E [|X|] + E [|Y |] by
Property B and again by the first part of the proof. Therefore, under the assump-
tion that E [|X|] < ∞ and E [|Y |] < ∞, we have E [|X + Y |] < ∞ with both
E
[
(X + Y )+] and E

[
(X + Y )−

]
being finite. The representation

E [X + Y ] = E
[
(X + Y )+]− E

[
(X + Y )−

]
thus holds with E [X + Y ] finite, and (11.2) can now be rewritten as

E
[
(X + Y )+]− E

[
(X + Y )−

]
= E

[
X+
]

+ E
[
Y +
]
− E

[
X−
]
− E

[
Y −
]
.

In other words, E [X + Y ] = E [X] + E [Y ] as desired.

Extensions are discussed in Exercises 11.2 and 11.3.

11.2 Basic properties (II)

The next group of properties will make use of the following notion: We consider
situations where a property P may or not hold for every sample ω in Ω. We shall
say that property P holds almost surely (under P) if the event

{ω ∈ Ω : Property P holds at ω}

has probability one. We shall often write P holds a.s. or P holds P-a.s. when we
wish to emphasize the fact that relevant probabilities are evaluated under P. For
instance, for rvs X,Y : Ω → R, we write X = Y a.s. (resp. X ≤ Y a.s.) to
express the fact that P [X = Y ] = 1 (resp. P [X ≤ Y ] = 1).

F.
If X = 0 a.s., then E [X] is well defined with E [X] = 0.

First assume the rv X to be simple with X =
∑

i∈I ai1 [Ai] for some finite F-
partition {Ai, i ∈ I} and a collection {ai, i ∈ I} of scalars in R. The condition
X = 0 a.s. implies P [Ai] = 0 whenever ai 6= 0 [Exercise 11.4], whence E [X] =∑

i∈I aiP [Ai] = 0.
If X ≥ 0, then any staircase approximation {Xn, n = 1, 2, . . .} satisfies 0 ≤

Xn ≤ X for all n = 1, 2, . . ., and the constraint X = 0 a.s. implies Xn = 0 a.s.
for all n = 1, 2, . . ., whence E [Xn] = 0 by the first part of the proof. Therefore,
E [X] = limn→∞ E [Xn] = 0 by the definition of E [X].
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For arbitrary rv X , note that X± = 0 a.s. if X = 0 a.s., whence E [X±] = 0
and E [X] = E [X+]− E [X−] = 0.

Another proof of this result uses the fact outlined in Exercise 10.7: Recall that
E [X] = c if X ≡ c for some scalar c, whence E [X] = c if X = c a.s.

G. Almost sure (a.s.) equality
If X = Y a.s. with E [|X|] <∞, then E [|Y |] <∞ and E [X] = E [Y ].

Write
E ≡ {ω ∈ Ω : X(ω) = Y (ω)} .

Recall that X = X1 [E] +X1 [Ec] and Y = Y 1 [E] + Y 1 [Ec], so that

E [X] = E [X1 [E] +X1 [Ec]]

= E [X1 [E]] + E [X1 [Ec]] [By Property D and Property E]

= E [Y 1 [E]] + E [X1 [Ec]] [Since X = Y on E]

= E [Y 1 [E]] [By Property F]

as we note that X1 [Ec] = 0 a.s. But it is also the case that Y 1 [Ec] = 0 a.s.,
hence E [Y 1 [Ec]] = 0 by Property F and we conclude that E [X] = E [Y 1 [E]] +
E [Y 1 [Ec]]. These arguments applied to |X| and |Y | (instead of X and Y ) also
show that E [|X|] = E [|Y |1 [E]] + E [|Y |1 [Ec]] = E [|Y |] by Property E, hence
E [|Y |] < ∞. It follows that E [X] = E [Y 1 [E]] + E [Y 1 [Ec]] = E [Y ] by Prop-
erty D and Property E.

Another proof of this result is outlined in Exercise 10.7.

H.
If X ≥ 0 with E [X] = 0, then X = 0 a.s.

Consider the sets E ≡ {ω ∈ Ω : X(ω) > 0} and

En ≡
{
ω ∈ Ω : X(ω) ≥ 1

n

}
, n = 1, 2, . . .

These events clearly belong to F . We need to establish that P [E] = 0.
For each n = 1, 2, . . ., define the rv Xn ≡ X1 [En]. It is plain that 0 ≤ Xn ≤

X so that 0 ≤ E [Xn] ≤ E [X] by Property B. Fix n = 1, 2, . . . The assumption
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E [X] = 0 implies E [Xn] = 0, and the obvious inequalities 0 ≤ 1
n1 [En] ≤ Xn

then yield

0 ≤ 1

n
P [En] ≤ E [Xn] = 0

upon using Property B again, whence P [En] = 0. Finally, the sequence of events
{En, n = 1, 2, . . .} being increasing with E = ∪∞n=1En, it follows that P [E] =
limn→∞ P [En] = 0 by invoking continuity from below of Lemma 3.1.1.

I.
Assume E [|X|] < ∞ and E [|Y |] < ∞. If E [X1 [A]] ≤ E [Y 1 [A]] for all A

in F , then X ≤ Y a.s.

By Property D, the condition E [|X|] < ∞ (resp. E [|Y |] < ∞) implies the
finiteness of E [X1 [A]] (resp. E [Y 1 [A]]) for all A in F . Define the event B by

B ≡ {ω ∈ Ω : Y (ω) < X(ω)} .

It is plain that Y 1 [B] ≤ X1 [B] whence E [Y 1 [B]] ≤ E [X1 [B]] by Property B,
while E [X1 [B]] ≤ E [Y 1 [B]] by assumption, and the conclusion E [X1 [B]] =
E [Y 1 [B]] follows, or equivalently, E [(X − Y )1 [B]] = 0. But (X−Y )1 [B] ≥ 0
and Property H yields (X − Y )1 [B] = 0 a.s.

WithA ≡ [(X−Y )1 [B] = 0], pick ω inA so that (X(ω)−Y (ω))1 [B] (ω) =
0. If ω also lies in B, then 1 [B] (ω) = 1 and the equality X(ω) = Y (ω) fol-
lows. On the other hand, we also have X(ω) − Y (ω) > 0 by the definition of B,
and a contradiction occurs. Thus, A ∩ B = ∅ or equivalently, A ⊆ Bc, whence
P [A] ≤ P [Bc] with P [A] = 1. In fine, P [Bc] = 1 and the conclusion X ≤ Y a.s.
follows.

J. Extended rvs
For any extended rv X : Ω → [−∞,∞], the condition E [|X|] < ∞ implies

|X| <∞ a.s.

With A ≡ {ω ∈ Ω : |X(ω)| = ∞}, assume that P [A] > 0. Then, by
Property D we have E [|X|1 [A]] ≤ E [|X|]. But∞ · P [A] ≤ E [|X|1 [A]] while
E [|X|] < ∞ by assumption, and a contradiction follows. Thus, P [A] = 0 neces-
sarily.
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11.3 Simple variables vs. discrete rvs

The notion of simple rv is a set-theoretic one, as it requires only the existence of
the measurable space (Ω,F) on which it is defined. On the other hand, defining
discrete rvs requires the existence of a probability measure P on the underlying
measurable space (Ω,F). While a simple rv is always a discrete rv (with finite
support), a discrete rv (even with finite support) is not necessarily a simple rv. This
is made clear by the following example.

Example 11.3.1 Take Ω = [0, 1], F = B([0, 1]) and with a < b in [0, 1], define
the probability measure P on F by setting

P [E] =
|E ∩ {a, b}|

2
, E ∈ F .

The rv X : Ω → R : ω → ω is not a simple rv since X(Ω) = [0, 1] but it
is definitely a discrete rv with support S = {a, b} since P [X ∈ S] = 1 by the
definition of P.

The next result shows that the evaluation of the expectation of a discrete rv
can be carried out by using the expression presented in the elementary treatment of
Probability Theory.

Proposition 11.3.1 If X : Ω→ R is a discrete rv with (countable) support S, then

E [X] =
∑
x∈S

x · P [X = x](11.3)

if either the rvX is a.s. non-negative (with S ⊆ R+) or if the absolute summability
condition ∑

x∈S
|x| · P [X = x] <∞(11.4)

holds.

Proof. Assume first that the set S contains only finitely many elements. The rv
X? : Ω→ R defined by

X? ≡
∑
x∈S

x · 1 [X = x] + 0 · 1 [X 6∈ S]

is a simple rv with expectation given by

E [X?] =
∑
x∈S

x · P [X = x] .
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Note that X = X? on [X ∈ S], hence X = X? a.s.. Using Property G, we
conclude that E [|X|] < ∞ since E [|X?|] < ∞ and the equality E [X] = E [X?]
follows, hence

E [X] =
∑
x∈S

x · P [X = x] .

Assume now that S is countably infinite. If S ⊆ R+, then X = X1 [X ∈ S]
a.s. with X1 [X ∈ S] ≥ 0. Introduce the simple non-negative rvs {Xn, n =
1, 2, . . .} given by

Xn ≡
n∑
`=1

x` · 1 [X = x`] , n = 1, 2, . . .

where {x`, ` = 1, 2, . . .} is a labeling of S. By the first part of the proof we have

E [Xn] =

n∑
`=1

x` · P [X = x`] , n = 1, 2, . . .

The sequence {Xn, n = 1, 2, . . .} is monotone increasing with limn→∞Xn =
X1 [X ∈ S], and is therefore a staircase approximation for the rv X1 [X ∈ S]
(albeit not necessarily the one presented in Lemma 10.3.1). The constructive defi-
nition of E [X1 [X ∈ S]] then yields

E [X1 [X ∈ S]] = lim
n→∞

E [Xn]

= lim
n→∞

(
n∑
`=1

x` · P [X = x`]

)

=
∞∑
`=1

x` · P [X = x`]

=
∑
x∈S

x · P [X = x]

where in the equality before last the series converges (possibly to +∞) by mono-
tonicity since S ⊆ R+. Using Property G, if E [X1 [X ∈ S]] <∞, then E [|X|] <
∞ and we conclude

E [X] = E [X1 [X ∈ S]] =
∑
x∈S

x · P [X = x] .

Finally, for an arbitrary discrete rv X , it is plain that X+ and X− are both
discrete rvs with P [X± ∈ S±] = 1 where S+ = {x ∈ S : x ≥ 0} and S− =
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{x ∈ S : x ≤ 0}, respectively. The previous discussion yields

E
[
X±
]

=
∑
x∈S±

(±x) · P [X = x] ,

whence

E [X] = E
[
X+
]
− E

[
X−
]

=
∑

x∈S: x≥0

x · P [X = x]−
∑

x∈S: x≤0

(−x) · P [X = x]

=
∑
x∈S

x · P [X = x](11.5)

where the last step is justified under the condition (11.4).

11.4 Exercises

Ex. 11.1 Use the alternate definition (10.24) for the expectation of non-negative
rvs to establish Properties A and B.

Ex. 11.2 Regarding Property E, explain why E [X + Y ] = E [X]+E [Y ] may fail
to hold for rvs X and Y whose expectations E [X] and E [Y ] are well defined but
possibly infinite.

Ex. 11.3 Generalizing Property E: Show that E [X + Y ] = E [X] + E [Y ] still
holds for rvsX and Y for which E [X+]+E [Y +] =∞ and E [X−]+E [Y −] <∞
(resp. E [X−] + E [Y −] = ∞ and E [X+] + E [Y +] < ∞). What is the value of
E [X + Y ]?

Ex. 11.4 Consider a simple rv X with X =
∑

i∈I ai1 [Ai] for some finite F-
partition {Ai, i ∈ I} and a collection {ai, i ∈ I} of scalars in R. Show that the
condition X = 0 a.s. implies P [Ai] = 0 whenever ai 6= 0 [HINT: Make use of
the set Ω0 ≡ [X = 0]].

Ex. 11.5 Compute the expectation

E
[

1

1 + Y +

]
when the rv Y : Ω→ R is
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a. a binomial rv Bin(n; p) with n = 1, 2, . . . and 0 < p < 1,
b. a Poisson rv Poi(λ) with λ > 0,
c. a geometric rv Geo(p) with 0 < p < 1,

In each case explain why the expectation E
[

1
1+Y +

]
always exists.
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Chapter 12

Mathematical expectations (II):
Advanced properties

12.1 Independence and expectations

The next fact is used in many calculations. It highlights the usefulness of indepen-
dence when evaluating the expectation of expressions formed through products of
independent rvs.

Proposition 12.1.1 Consider two independent rvs X,Y : Ω→ R. It holds

E [XY ] = E [X]E [Y ](12.1)

if either (i) the rvs are a.s. non-negative or (ii) both expectations E [X] and E [Y ]
exist and are finite.

Proof. Assume first that both rvs X and Y are simple rvs, say

X =
∑
i∈I

ai1 [Ai] and Y =
∑
j∈J

bj1 [Bj ]

with a finite F-partition {Ai, i ∈ I} with associated collection {ai, i ∈ I}
of scalars in R, and a finite F-partition {Bj , j ∈ J} with associated collection
{bj , j ∈ J} of scalars in R. There is no loss of generality in assuming that the
scalars {ai, i ∈ I} (resp. {bj , j ∈ J}) are distinct so that [X = ai] = Ai for each
i in I , and [Y = bj ] = Bj for each j in J . The rvs X and Y being independent, it
follows that

P [Ai ∩Bj ] = P [Ai]P [Bj ] , i ∈ I, j ∈ J

153
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since the events [X = ai] and [Y = bj ] are independent.
Noting that

XY =
∑
i∈I

∑
j∈J

aibj1 [Ai]1 [Bj ] =
∑
i∈I

∑
j∈J

aibj1 [Ai ∩Bj ] ,

we conclude that

E [XY ] = E

∑
i∈I

∑
j∈J

aibj1 [Ai ∩Bj ]


=

∑
i∈I

∑
j∈J

aibjE [1 [Ai ∩Bj ]]

=
∑
i∈I

∑
j∈J

aibjP [Ai ∩Bj ]

=
∑
i∈I

∑
j∈J

aibjP [Ai]P [Bj ]

=

(∑
i∈I

aiP [Ai]

)∑
j∈J

bjP [Bj ]


= E [X]E [Y ] .

Next we assume that both rvs X and Y are non-negative, so that XY is also
a non-negative rv. Let {Xn, n = 1, 2, . . .} and {Yn, n = 1, 2, . . .} denote the
monotone non-negative staircase approximations of X and Y identified in Lemma
10.3.1. Note that the rvs {XnYn, n = 1, 2, . . .} form a monotone sequence of
staircase approximations for the rv XY since

0 ≤ XnYn ≤ Xn+1Yn ≤ Xn+1Yn+1, n = 1, 2, . . .

by the non-negativity of the rvs involved, and by the monotone nature of each
sequence. For each n = 1, 2, . . ., the rvs Xn and Yn are independent rvs since
Xn = gn(X) and Yn = gn(Y ) with Borel mapping gn : R → R defined at (10.7)
– See the construction in the proof of Lemma 10.3.1. Obviously, limn→∞XnYn =
(limn→∞Xn) (limn→∞ Yn) = XY , whence

E [XY ] = lim
n→∞

E [XnYn] [By the definition of E [XY ]]

= lim
n→∞

(E [Xn]E [Yn]) [By independence and the first part of the proof]

=
(

lim
n→∞

E [Xn]
)(

lim
n→∞

E [Yn]
)

= E [X]E [Y ] . [By the definition of E [X] and E [Y ]]
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It follows from this proof that E [XY ] is finite if and only if both expectations
E [X] and E [Y ] are finite.

For the general case, start with the decompositions X = X+ −X− and Y =
Y + − Y −, and note that

XY =
(
X+ −X−

) (
Y + − Y −

)
= X+Y + −X+Y − −X−Y + +X−Y −.(12.2)

The R2
+-valued rvs (X+, X−) and (Y +, Y −) are independent, a fact inherited

from the independence of the rvs X and Y . If the expectations E [X] and E [Y ]
are both finite, then the expectation E [X±] and E [Y ±] are all finite, whence by
the earlier part of the proof (for non-negative rvs) the expectations E [X+Y +],
E [X+Y −], E [X−Y +] and E [X−Y −] are all finite and given by E [X+]E [Y +],
E [X+]E [Y −], E [X−]E [Y +] and E [X−]E [Y −], respectively. Thus, by Prop-
erty E we get

E [XY ] = E
[
X+Y + −X+Y − −X−Y + +X−Y −

]
= E

[
X+Y +

]
− E

[
X+Y −

]
− E

[
X−Y +

]
+ E

[
X−Y −

]
= E

[
X+
]
E
[
Y +
]
− E

[
X+
]
E
[
Y −
]

− E
[
X−
]
E
[
Y +
]

+ E
[
X−
]
E
[
Y −
]

=
(
E
[
X+
]
− E

[
X−
]) (

E
[
Y +
]
− E

[
Y −
])

= E [X]E [Y ](12.3)

as announced.

Proposition 12.1.1 has the following often used consequence.

Lemma 12.1.1 Consider the mutually independent rvs X1 : Ω → Rp1 , . . ., Xk :
Ω→ Rpk . With Borel mappings g1 : Rp1 → R, . . ., gk : Rpk → R, define the rvs

Y` = g`(X`), ` = 1, . . . , k.

The R-valued rvs Y1, . . . , Yk are mutually independent, and

E

[
k∏
`=1

Y`

]
=

k∏
`=1

E [Y`]

whenever E [|Y`|] <∞ for all ` = 1, . . . , k.
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A seemingly more involved version of the impact of independence on the
evaluation of expectations is given next: In the setting of Lemma 12.1.1, parti-
tion the index set {1, . . . , k} into r subsets, say I1, . . . , Ir with Is ∩ It = ∅ for
distinct s, t = 1, . . . , r and ∪rs=1Is = {1, . . . , k}. For each s = 1, . . . , r, set
qs =

∑
`∈Is p`.

Lemma 12.1.2 Consider the mutually independent rvs X1 : Ω → Rp1 , . . ., Xk :
Ω → Rpk . With Borel mappings h1 : Rq1 → R, . . ., hr : Rqr → Rqr , define the
rvs

Zs = hs((X`, ` ∈ Is)), s = 1, . . . , r.

The R-valued rvs Z1, . . . , Zs are mutually independent, and

E

[
r∏
s=1

Ys

]
=

s∏
s=1

E [Zs]

whenever E [|Zs] <∞ for all s = 1, . . . , r.

The proof of Lemma 12.1.1 and Lemma 12.1.2 is left as an exercise [Exercise
12.1]

12.2 Convergence results for expectations and interchange

In this section we are interested in conditions that allow the interchange of the ex-
pectation and limit operations. To set the stage consider a collection {X,Y, Z,Xn, n =
1, 2, . . .} of R-valued rvs which are all defined on the same probability triple
(Ω,F ,P).

Monotone Convergence Theorem We begin with the situation when the rvs
{Xn, n = 1, 2, . . .} are monotone; the non-decreasing and non-increasing cases
are both discussed.

Theorem 12.2.1 (i) Assume that X ≤ Xn ≤ Xn+1 for all n = 1, 2, . . .. If the
expectation E [X] exists with −∞ < E [X], then we have

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
(12.4)

monotonically.
(ii) Assume that Xn+1 ≤ Xn ≤ Y for all n = 1, 2, . . .. If the expectation

E [Y ] exists with E [Y ] < +∞, then we have

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
(12.5)
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monotonically.

Under the assumptions of Theorem 12.2.1 in both settings, the limit limn→∞Xn

exists pointwise (and is a (possibly extended) rv), the expectations E [Xn] exist for
all n = 1, 2, . . . and the limit limn→∞ E [Xn] also exists by monotonicity. It is
plain that Claims (i) and (ii) are equivalent Exercise 12.2]. The integrability condi-
tions on either X or Y can not be dropped as the following counterexample shows:

Counterexample 12.2.1 Consider a discrete rv Z with support SZ = N with pmf
pZ = (pZ(z), z = 0, 1, . . .) given by

pZ(z) =
C

1 + z2
, z = 0, 1, . . .

for some C > 0. This rv Z is defined on some probability triple (Ω,F ,P), say the
probability triple used in the proof of Lemma 8.1.1. First we note that

E
[
(Z − n)+

]
=

∞∑
z=0

(z − n)+pZ(z)

=
∞∑

t=n+1

tpZ(n+ t)

= C

∞∑
t=n+1

t

1 + (t+ n)2
=∞.(12.6)

For Claim (i), define Xn ≡ − (Z − n)+ for n = 1, 2, . . .. The rvs {Xn, n =
1, 2, . . .} form an increasing sequence with limn→∞Xn = 0 so that E [limn→∞Xn] =
0. On the other hand, we have E [Xn] = ∞ for each n = 1, 2, . . . and the inter-
change (12.4) fails! The condition that there exists a rv X such that X ≤ Xn for
all n = 1, 2, . . . and E [X] | exists with −∞ < E [X] does not hold here since we
automatically would have E [X] = −∞.

Similarly, for Claim (ii), define Xn ≡ (Z − n)+ for n = 1, 2, . . .. The rvs
{Xn, n = 1, 2, . . .} form a decreasing sequence with limn→∞Xn = 0 so that
E [limn→∞Xn] = 0. On the other hand, we have E [Xn] = −∞ for each n =
1, 2, . . . and the interchange (12.5) fails! There cannot be a rv Y such that Y ≤ Xn

for all n = 1, 2, . . . and E [Y ] | exists with −∞ < E [Y ] for it would necessarily
satisfy E [Y ] =∞.

An important consequence of the Monotone Convergence Theorem is its use
on series with non-negative terms: Let {Xn, n = 1, 2, . . .} denote a sequence of
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R+-valued rvs. It follows from the Monotone Convergence Theorem that

E

[ ∞∑
n=1

Xn

]
=
∞∑
n=1

E [Xn] .(12.7)

This is because, with

Sn =
n∑
k=1

Xk, n = 1, 2, . . .

non-negativity implies 0 ≤ Sn ≤ Sn+1 for all n = 1, 2, . . ., whence

lim
n→∞

E [Sn] = E
[

lim
n→∞

Sn

]
by (12.4) (with X = 0 here). By linearity, we have E [Sn] =

∑n
k=1 E [Xk] for

each n = 1, 2, . . ., so that limn→∞ E [Sn] =
∑∞

n=1 E [Xn], while limn→∞ Sn =∑∞
n=1Xn – Both limiting statements are valid by the monotonocity implied by the

non-negativity of the summands. The interchange (12.7) holds.

Fatou’s Lemma Fatou’s Lemma given next deals with situations when the limit
either does not exist or is not known (yet) to exist.

Theorem 12.2.2 (i) If X ≤ Xn for all n = 1, 2, . . . and E [X] exists with −∞ <
E [X], we have

E
[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E [Xn] .(12.8)

(ii) If Xn ≤ Y for all n = 1, 2, . . . and E [Y ] exists with E [Y ] <∞, we have

lim sup
n→∞

E [Xn] ≤ E
[
lim sup
n→∞

Xn

]
.(12.9)

As with the Monotone Convergence Theorem, under the assumptions of Theo-
rem 12.2.2 in both settings, the expectations E [Xn] exist for all n = 1, 2, . . .. The
proof of Fatou’s Lemma is an easy consequence of the Monotone Convergence
Theorem.

Proof. We establish only Claim as it is easy to check that Claim (i) and Claim (ii)
are in fact equivalent [Exercise 12.3].

With the sequence {Xn, n = 1, 2, . . .} we associate the sequence {Xn, n =
1, 2, . . .} given by

Xn = inf
m≥n

Xm, n = 1, 2, . . .(12.10)
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This sequence of rvs is monotonically increasing with X ≤ Xn for all n =
1, 2, . . .. As we have assumed that E [X] exists with −∞ < E [X], we can now
apply the Monotone Convergence Theorem, namely Part (i) of Theorem 12.2.2, to
the sequence {Xn, n = 1, 2, . . .}. This yields

lim
n→∞

E [Xn] = E
[

lim
n→∞

Xn

]
.(12.11)

Obviously Xn ≤ Xn for all n = 1, 2, . . ., hence E [Xn] ≤ E [Xn] for all n =
1, 2, . . .. As a result,

lim inf
n→∞

E [Xn] ≤ lim inf
n→∞

E [Xn] .(12.12)

Combining (12.11) and (12.12) readily implies (12.8) because limn→∞Xn =
lim infn→∞Xn, and lim infn→∞ E [Xn] = limn→∞ E [Xn] as these limits both
exist.

The following example shows that the bounding conditions cannot be elimi-
nated.

Counterexample 12.2.2 Take Ω = (0, 1) andF = B((0, 1)) with P being Lebesgue
measure λ. The rvs {Xn, n = 1, 2, . . .} are given by

Xn(ω) =


0 if ω /∈ [ 1

n ,
2
n ]

−n if ω ∈ [ 1
n ,

2
n ]

,
ω ∈ Ω

n = 2, 3, . . .

Obviously, E [Xn] = n−1(−n) = −1 for all n = 1, 2, . . ., so that lim infn→∞ E [Xn] =
−1, while lim infn→∞Xn = 0 so that E [lim infn→∞Xn] = 0.

An interesting consequence of Fatou’s Lemma is obtained by combining both
parts.

Corollary 12.2.1 Consider a sequence of rvs {Xn, n = 1, 2, . . .} such that X ≤
Xn ≤ Y for all n = 1, 2, . . .. Assume that E [X] exists with−∞ < E [X] and that
E [Y ] exists with E [Y ] <∞. If limn→∞Xn exists, then the interchange

E
[

lim
n→∞

Xn

]
= lim

n→∞
E [Xn](12.13)

holds

The next two results are illustrations of this fact.
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Bounded Convergence Theorem The Bounded Convergence Theorem shows
that the interchange always holds when the rvs {Xn, n = 1, 2, . . .} form a bounded
sequence.

Theorem 12.2.3 Assume there exists a rv X : Ω → R such that limn→∞Xn =
X . If there exists M > 0 such that |Xn| ≤ M, for each n = 1, 2, . . ., then E [X]
exists and is finite with

E
[

lim
n→∞

Xn

]
= lim

n→∞
E [Xn] = E [X] .(12.14)

Dominated Convergence Theorem The Dominated Convergence Theorem gen-
eralizes the Bounded Convergence Theorem by requiring only that the sequence of
rvs {Xn, n = 1, 2, . . .} can be uniformly bounded by a positive rv whose expec-
tation is finite.

Theorem 12.2.4 Assume there exists a rv X : Ω → R such that limn→∞Xn =
X . If there exists a rv Y : Ω→ R+ with E [Y ] <∞ such that |Xn| < Y for each
n = 1, 2, . . ., then E [X] exists and is finite with

E
[

lim
n→∞

Xn

]
= lim

n→∞
E [Xn] = E [X] .(12.15)

We close this section with a discussion of counterexamples to Theorem 12.2.3
and Theorem 12.2.4

Counterexample 12.2.3 Take Ω = (0, 1) andF = B((0, 1)) with P being Lebesgue
measure λ. The rvs {Xn, n = 1, 2, . . .} are given by

Xn(ω) =


0 if 0 < ω < 1− an

bn if 1− an ≤ ω < 1
,

ω ∈ Ω
n = 1, 2, . . .

where 0 < an < 1 and bn 6= 0. For each n = 1, 2, . . ., it is plain that E [Xn] =
anbn. If limn→∞ an = 0, then limn→∞Xn = 0. However, it is possible to
drive limn→∞ E [Xn] to any value c 6= 0 by suitably selecting an and bn: If
we select bn = ca−1

n , then limn→∞ E [Xn] = c, and with bn = ±a−2
n , then

limn→∞ E [Xn] = ±∞.
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12.3 Change of variable formula for discrete rvs

We are in the setting of Section 8.4: Consider a discrete rv X : Ω → Rp with
support SX ⊆ Rp and pmf pX = (pX(x), x ∈ SX). For any Borel mapping
g : Rp → R, we introduced the rv Y : Ω→ R defined at (??) by composing the rv
X : Ω→ Rp with g, namely Y = g(X).

According to Fact 8.4.1, the rv Y : Ω → R is a discrete rv with support
SY ≡ {g(x) : x ∈ SX} and pmf pY = (pY (Y ), y ∈ SY ) determined through
(8.11), namely

pY (y)
∑

x∈SX : g(x)=y

pX(x), y ∈ SY .(12.16)

We seek to evaluate the expectation E [Y ] or equivalently, E [g(X)]. By Propo-
sition 11.3.1 we have

E [Y ] =
∑
y∈SY

y · pY (y)(12.17)

if either the rv Y is a.s. non-negative (with SY ⊆ R+) or if the absolute summa-
bility condition

∑
y∈SY |y|pY (y) <∞ holds.

The difficulty with this approach is that it requires the availability of the pmf of
the rv Y before one can even attempt to evaluate the sum (12.17). In many instances
it is preferable to use a different computational strategy that we now explore and
which requires only that the pmf of the rv X be available.

The point of departure is still the expression (12.17) but this time we use the
expression (12.16) for the pmf of the rv Y : More precisely,

E [g(X)] =
∑
y∈SY

y · pY (y)

=
∑
y∈SY

y ·

 ∑
x∈SX : g(x)=y

pX(x)


=

∑
y∈SY

y ·

∑
x∈SX

1 [g(x) = y] pX(x)


=

∑
x∈SX

∑
y∈SY

y · 1 [g(x) = y]

 pX(x)

=
∑
x∈SX

∑
y∈SY

g(x)1 [g(x) = y]

 pX(x)
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=
∑
x∈SX

∑
y∈SY

1 [g(x) = y]

 g(x)pX(x).(12.18)

12.4 Change of variable formula

In view of the definition we have developed it is natural to write

E [X] =

∫
Ω
X(ω)dP(ω)

whenever E [X] exists as this notation mimics the expression used for simple rvs.
However, as shown in Section 10.5 this quantity depends only on the probability
distribution FX : R→ [0, 1].

Recall that any rv X : Ω → Rp naturally induces a probability triple on its
range, namely (Rp,B(Rp),PX) where PX : B(Rp) → [0, 1] is the probability
measure defined by

PX [B] = P [X ∈ B] , B ∈ B(Rp).

In fact, the identity mapping Id : Rp → Rp : x→ x defines a rv Rp → Rp whose
probability distribution (under PX ) coincides with the probability distribution of
X (under P) since

PX [Id ∈ B] = PX [B] = P [X ∈ B] , B ∈ B(Rp).

Obviously, say with p = 1, the expectation of X computed under P has to coincide
with that of the rv Id computed under PX with the understanding that if one exists
(resp. and is finite) so it is for the other, leading us to write

E [X] =

∫
R
xdPX(x).

Finally, by Carathéodory’s Theorem that FX and PX contain the same proba-
bilistic information concerning the rv X , we shall often adopt the notation

E [X] =

∫
R
xdFX(x).

Proposition 12.4.1 Consider an Rp-valued rv X : Ω → Rp. With Borel mapping
g : Rp → R, it holds that

E [g(X)] =

∫
Rp
g(x)dFX(x)(12.19)

with the understanding that if one of the quantities is well defined, so is the other
and their values coincide.
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Proof. If g : Rp → R is of the form

g(x) = 1 [x ∈ B] , x ∈ Rp

for some Borel set B in B(Rp), then

E [g(X)] = P [X ∈ B] = PX [B] = EX [g(·)] =

∫
Rp
g(x)dFX(x)

Assume now that g : Rp → R is simple in the sense that

g(x) =
∑
i∈I

gi1 [x ∈ Bi] , x ∈ Rp

Then,

E [g(X)] = E

[∑
i∈I

gi1 [X ∈ Bi]

]
=

∑
i∈I

giE [1 [X ∈ Bi]]

=
∑
i∈I

giP [X ∈ Bi]

=
∑
i∈I

gi

∫
Rp

1 [Bi] (x)dFX(x)

=

∫
Rp
g(x)dFX(x)(12.20)

If g : Rp → R+, then we generate the sequence of simple mappings {gn, n =
1, 2, . . .} where for each n = 1, 2, . . ., the Borel mapping gn : Rp → R is given by

gn(x) =

n−1∑
m=0

2n−1∑
k=0

k

2n
1

[
k

2n
< x ≤ k + 1

2n

]
, x ∈ Rp

We already have

E [gn(X)] =

∫
Rp
gn(x)dFX(x), n = 1, 2, . . .

and the conclusion
E [g(X)] =

∫
Rp
g(x)dFX(x),



164CHAPTER 12. MATHEMATICAL EXPECTATIONS (II):ADVANCED PROPERTIES

follows by the Monotone Convergence Theorem (under P and PX ).
In the general case g : Rp → R, write

g(x) = g(x)+ − g(x)−, x ∈ Rp

and by linearity, we get

E [g(X)] = E
[
g(X)+

]
− E

[
g(X)−

]

12.5 Riemann-Stieltjes vs. Lebesgue integration

12.6 Exercises

Ex. 12.1 Prove Lemma 12.1.1 and Lemma 12.1.2

Ex. 12.2 Show that Claim (i) and Claim (ii) of the Monotone Convergence Theo-
rem 12.2.1 are equivalent – This is already apparent in the Counterexample 12.2.1.

Ex. 12.3 Show that Claim (i) and Claim (ii) of Fatou’s Lemma [Theorem 12.2.2]
are equivalent.

Ex. 12.4 Let W1, . . . ,Wn denote n mutually independent Walsh rvs with same
parameter p (in (0, 1)) all defined on the same probability triple (Ω,F ,P), i.e., for
each k = 1, . . . , n, we have

P [Wk = w] =


p if w = 1

1− p if w = −1.

For each k = 1, . . . , n, write W ?
k for the product of the k rvs W1, . . . ,Wk, i.e.,

W ?
k ≡

∏n
`=1W`.

a. For each k = 1, 2, . . . , n, explain why the rv W ?
k is a Walsh rv.

b. For each k = 1, 2, . . . , n, let p?k denote the parameter of the rv Walsh
W ?
k . Find a recursive relationship between p?k+1 and p?k. Can you find an explicit

expression for p?1, . . . , p
?
n, say by iterating this recursion?

c. An elegant way to find p?1, . . . , p
?
n is as follows: For each k = 1, . . . , n,

compute E [W ?
k ] and use Part a.
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Ex. 12.5 Compute the first two moments E [X] and E
[
X2
]

(and the variance
Var[X]) when the discrete rv X : Ω→ R is

a. a Binomial rv Bin(n; p) with n = 1, 2, . . . and 0 < p < 1.
b. a Poisson rv Poi(λ) with λ > 0.
c. a Geometric rv Geo(p) with 0 < p < 1.

In each case explain why the expectations always exist.

Ex. 12.6 Using the change of variable formula, compute the expectation

E
[

1

1 + Y +

]
when the discrete rv Y : Ω→ R is

a. a Binomial rv Bin(n; p) with n = 1, 2, . . . and 0 < p < 1.
b. a Poisson rv Poi(λ) with λ > 0.
c. a Geometric rv Geo(p) with 0 < p < 1.

In each case explain why the expectation E
[

1
1+Y +

]
always exists.

Ex. 12.7 A non-empty subset of {1, . . . , n} (for some finite n) is selected uni-
formly at random.

a. Propose a probability model (Ω,F ,P) for this random experiment.
Consider the discrete rvs X,Y : Ω→ N0 given by

X(ω) = max{k : k ∈ ω} and Y (ω) = min{` : ` ∈ ω}, ω ∈ Ω.

b. Find the joint pmf pX,Y of the discrete rv (X,Y ) : Ω→ N0×N0 – Specifiy
its support SX,Y .

c. Find the pmf pX of the rv X – Specifiy its support SX . Evaluate E [X] and
Var [X].

d. Find the pmf pY of the rv Y – Specifiy its support SY . Evaluate E [Y ] and
Var [Y ].

e. Show that the rvs X and n + 1 − Y are equidistributed. f. Find the pmf
pX−Y of the discrete rv X −Y – Specifiy its support SX−Y . Evaluate E [X − Y ],
Cov [X,Y ] and Var [X − Y ].
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Chapter 13

Moments and inequalities

All rvs are defined as Borel measurable mappings Ω→ R on the same probability
triple (Ω,F ,P), and all probability distributions are computed under P.

13.1 Moments

Consider the rv X : Ω → R. With p = 1, 2, . . ., we define the pth moment mp of
X by

mp ≡ E [Xp](13.1)

provided the expectation exists.
For any p ≥ 0 the absolute pth moment of X is given by

µp ≡ E [|X|p] .(13.2)

This quantity is always well defined, and may possibly be infinite. Note that (13.2)
in general cannot be defined for non-integer p > 0 (unless X ≥ 0 a.s.)

Definition 13.1.1
When p = 1 we refer to m1 as the first moment of X . When p = 2, m2 always

exists but may be infinite. We say that the rv X is a second-order rv if the second
moment is finite, namely if E

[
|X|2

]
<∞.

When the first moment ofX exists and is finite, the definitions (13.1) and (13.2)
lead naturally to the centered expectations given by

m?
p ≡ E [(X − E [X])p] , p = 1, 2, . . .(13.3)

167
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and
µ?p ≡ E [|X − E [X] |p] , p ≥ 0(13.4)

provided these expectations exists.

Fact 13.1.1 With 1 ≤ p < q (not necessarily integers), we have

E [|X|p] ≤ 1 + E [|X|q] .

In particular, the finiteness of E [|X|q] implies that of E [|X|p].

Proof. With u ≥ 0 the inequality up ≤ 1 + uq holds whenever 1 ≤ p < q (not
necessarily integers), and the result follows by the monotonicity of integration.

13.2 Variance and covariance

If the rv X : Ω → R is a second-order rv, then E [|X|] < ∞ by virtue of Fact
13.1.1, and both E [X] and E [|X|] exist and are finite. The centered moment (13.3)
for p = 2 occupies an important place in Statistics and the Data Sciences where it
referred to as the variance.

Definition 13.2.1
The variance Var [X] of the second-order rv X is given by

Var [X] ≡ E
[
(X − E [X])2

]
(13.5)

and is well defined and finite. It is also customary to refer to the square-root of this
quantity as the standard deviation σ(X) of the second-order rvs X , namely

σ(X) ≡
√

Var [X].

Noting that (X − E [X])2 = X2 − 2E [X]X + E [X]2, we conclude that

Var [X] = E
[
X2 − 2E [X]X + E [X]2

]
= E

[
X2
]
− 2E [X]E [X] + E [X]2

= E
[
X2
]
− E [X]2 .(13.6)
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Since (X − E [X])2 ≥ 0 it follows that Var [X] ≥ 0, and the inequality (E [X])2 ≤
E
[
X2
]

therefore holds between first and second moments. It should also be noted
that Var [X] = 0 is equivalent toX−E [X] = 0 a.s. In other words, a second-order
rvX has zero variance if and only if it is degenerate with X = E [X] a.s.

Definition 13.2.2
Let X,Y : Ω → R be a pair of second-order rvs. The covariance Cov [X,Y ]

between the rvs X and Y is defined by

Cov [X,Y ] ≡ E [(X − E [X]) · (Y − E [Y ])] .(13.7)

The quantity (13.7) is well defined by virtue of the fact (|a|− |b|)2 = a2 +b2−
2|a| · |b| ≥ 0 for arbitrary scalars a and b in R, so that |a| · |b| ≤ 1

2(a2 + b2). As
was done for the variance, we can write

(X − E [X]) · (Y − E [Y ]) = XY − E [X]Y − E [Y ]X + E [X]E [Y ] .

Taking expectations we get

Cov [X,Y ] = E [XY ]− E [X]E [Y ](13.8)

as an alternate definition for the covariance between the rvs X and Y . Note that
Cov [X,X] = Var [X].

We close this section with a classical definition.

Definition 13.2.3
LetX,Y : Ω→ R be a pair of non-degenerate second-order rvs., i.e.. Var [X] >

0 and Var [Y ] > 0. The coefficient of correlation ρ(X;Y ) between the rvs X and
Y is defined by

ρ(X;Y ) ≡ Cov [X,Y ]√
Var [X] ·

√
Var [Y ]

=
Cov [X,Y ]

σ(X) · σ(Y )
.(13.9)

We stress that the probability distribution of the rv X (resp. Y ) determines
Var [X] and σ(X) (resp. Var [Y ] and σ(Y )), while Cov [X,Y ] and ρ(X;Y ) are
determined by the joint distribution of the pair of rvs X and Y .
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13.3 Sums of rvs

Consider a collection of rvs X1, . . . , Xn : Ω → R. We already know that if
E [|Xi|] <∞ for each i = 1, . . . , n, then the expectation of the sum rv X1 + . . .+
Xn exists and is finite with

E [X1 + . . .+Xn] = E [X1] + . . .+ E [Xn] .

It is certainly natural to wonder what would be the analog of this fact for the vari-
ance. This is discussed next.

Lemma 13.3.1 If the rvs X1, . . . , Xn are second-order rvs, then

Var [X1 + . . .+Xn] =

n∑
k=1

Var [Xk] +

n∑
k=1

n∑
`=1, 6=k

Cov [Xk, X`] .(13.10)

Proof. We start by noting that the rvX1 + . . .+Xn is also a second-order rv since

(X1 + . . .+Xn)2 ≤ n
(
|X1|2 + . . .+ |Xn|2

)
by the convexity of the mapping t→ t2 on R. Noting that

X1 + . . .+Xn − E [X1 + . . .+Xn] =

n∑
k=1

(Xk − E [Xk]) ,

elementary calculations give

(X1 + . . .+Xn − E [X1 + . . .+Xn])2

=
n∑
k=1

n∑
`=1

(Xk − E [Xk]) · (X` − E [X`])

=

n∑
k=1

(Xk − E [Xk])
2

+

n∑
k=1

n∑
`=1, ` 6=k

(Xk − E [Xk]) · (X` − E [X`]) .

Taking expectations on both sides of this last relation, we conclude that

Var [X1 + . . .+Xn] =
n∑
k=1

E
[
(Xk − E [Xk])

2
]

+
n∑
k=1

n∑
`=1, ` 6=k

E [(Xk − E [Xk]) · (X` − E [X`])]
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and the desired conclusion (13.10) follows.

13.4 Uncorrelated rvs

We begin with a definition.

Definition 13.4.1
The second-order rvsX and Y are said to be uncorrelated if Cov [X,Y ] = 0. It

is customary to say that the rvs X and Y are positively correlated (resp. negatively
correlated) if Cov [X,Y ] > 0 (resp. Cov [X,Y ] < 0).

Second-order rvs which are pairwise independent are necessarily uncorrelated.

Fact 13.4.1 If two second-order rvsX and Y are independent, they are necessarily
uncorrelated.

Proof. The rvs X and Y being independent, the centered rvs X − E [X] and
Y − E [Y ] are also independent, whence

E [(X − E [X]) · (Y − E [Y ])] = E [X − E [X]] · E [Y − E [Y ]] = 0

by virtue of Lemma ??

However, the converse is not true even when the rvs X and Y are second-order
rvs as the following counterexample shows.

Example 13.4.1 With the rvU uniformly distributed on [0, 1], consider the bounded
(hence second-order) rvs X and Y given by X = cos (2πU) and Y = sin (2πU),
so that X · Y = 1

2 sin (4πU). Note that

E [sin 2kπU ] =

∫ 1

0
sin(2kπu)du = −cos(2kπ)− cos(0)

2kπ
= 0, k = 1, 2

(since cos(2`π) = 1 for all ` = 0, 1, 2, . . .) whence E [Y ] = 0 and E [X · Y ] = 0,
leading to Cov [X,Y ] = 0. However, the rvs X and Y are not independent as can
be seen from the fact that X2 + Y 2 = 1: Knowledge of cos (2πU) determines
sin (2πU) (up to a sign) with Y = ±

√
1−X2. See Exercise 13.10 for another

take on this counterexample.
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The next result shows the usefulness of being uncorrelated in calculations deal-
ing with the variance of sums of rvs. As a direct consequence of (13.10) we get the
following often used fact.

Fact 13.4.2 If the rvs X1, . . . , Xn are pairwise uncorrelated, i.e.,

Cov [Xk, X`] = 0,
k 6= `

k, ` = 1, . . . , n

then

Var [X1 + . . .+Xn] =

n∑
k=1

Var [Xk] .(13.11)

In other words, the variance of a sum of uncorrelated rvs is indeed the sum of
their individual variances.

13.5 The Cauchy-Schwarz inequality

We now present in this and the next two sections several important inequalities
concerning expectations

Theorem 13.5.1 (Cauchy-Schwarz inequality) For any pair of second-order rvs
X,Y : Ω→ R we have

|E [X · Y ]| ≤
√
E [|X|2] ·

√
E [|Y |2](13.12)

with equality if and only if there exist constants a and b in R not simultaneously
zero (i.e., a2 + b2 > 0) such that aX + bY = 0 a.s.

The moment E [X · Y ] is well defined and finite as pointed out in a comment
following (13.7).

Proof. The inequality (13.12) trivially holds when either E
[
|X|2

]
= 0 or E

[
|Y |2

]
=

0 since then X = 0 a.s. or Y = 0 a.s., resulting in XY = 0 a.s. Therefore from
now on we assume that E

[
|X|2

]
> 0 and E

[
|Y |2

]
> 0. With this in mind, con-

sider the quadratic form Q : R→ R+ given by

Q(λ) ≡ E
[
(X + λY )2

]
, λ ∈ R.

Note that Q(λ) is well defined and finite (since (a + b)2 ≤ 2(a2 + b2) for all
a, b ≥ 0).
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Obviously,

Q(λ) = E
[
X2
]

+ 2λE [XY ] + λ2E
[
Y 2
]
, λ ∈ R.(13.13)

The roots of this quadratic form are determined by the sign of the discriminant

∆ = (2E [XY ])2 − 4E
[
X2
]
E
[
Y 2
]

= 4
(
E [XY ]2 − E

[
X2
]
E
[
Y 2
])
.

By its very definition, Q(λ) ≥ 0 for all λ in R, hence the quadratic equation
Q(λ) = 0 on R cannot have two real distinct roots, say λ1 < λ2, as this would
imply Q(λ) < 0 in the interval (λ1, λ2) under the condition E

[
Y 2
]
> 0. In other

words, it is not possible for ∆ > 0 to occur. Note that the alternative, namely
∆ ≤ 0, is equivalent to the Cauchy-Schwarz inequality.

If (13.12) holds as an equality, then we necessarily have ∆ = 0, in which
case there exists a unique λ? in R such that Q(λ?) = 0. As this is equivalent to
E
[
(X + λ?Y )2

]
= 0, we conclude that X + λ?Y = 0 a.s., hence aX + bY = 0

a.s. with a = 1 and b = λ? – Obviously, a2 + b2 = 1 + (λ?)2 > 0.
Conversely, assume that there exist constants a and b in R not simultaneously

zero such that aX + bY = 0 a.s. For instance, assuming a 6= 0 for the sake of
concreteness, we have X + a−1bY = 0 a.s. and Q(a−1b) = 0. Thus a−1b is a
real root of the quadratic form, in fact its only real root. As this requires ∆ = 0 we
get equality in the Cauchy-Schwarz inequality. The case where b 6= 0 is handled
similarly, and details are left to the interested reader.

The inequality (13.12) yields a little more: Indeed, as we apply the Cauchy-
Schwarz inequality to the second-order rvs |X| and |Y | we get

E [|X| · |Y |] ≤
√

E [|X|2] ·
√
E [|Y |2],

whence
|E [X · Y ]| ≤ E [|X| · |Y |] ≤

√
E [|X|2] ·

√
E [|Y |2].(13.14)

The Cauchy-Schwarz inequality yields the following interesting consequence
concerning the range of correlation coefficients.

Fact 13.5.1 Let X,Y : Ω→ R be a pair of non-degenerate second-order rvs., i.e..
Var [X] > 0 and Var [Y ] > 0. The coefficient of correlation ρ(X;Y ) between the
rvs X and Y satisfies

|ρ(X;Y )| ≤ 1(13.15)

with equality if and only if there exist constants a and b in R not simultaneously
zero (i.e., a2 + b2 > 0) such that a (X − E [X]) + b (Y − E [Y ]) = 0 a.s.
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Proof. This fact is a straightforward consequence of Theorem 13.5.1 applied to
the rvs X − E [X] and Y − E [Y ].

13.6 The Hölder inequality and its consequences

The Cauchy-Schwarz inequality admits the following generalization known as Hölder’s
inequality

Theorem 13.6.1 (Hölder’s inequality) Consider a pair of rvs X,Y : Ω → R such
that E [|X|p] <∞ and E [|Y |q] <∞ for p, q > 1. Whenever

1

p
+

1

q
= 1,(13.16)

it holds that
E [|X| · |Y |] ≤ (E [|X|p])

1
p · (E [|Y |q])

1
q .(13.17)

Definition 13.6.1
Pairs of integers p and q such that (13.16) holds are said to form a conjugate

pair. Hölder’s inequality reduces to the Cauchy-Schwarz inequality when p = q =
2.

Under the conditions E [|X|p] < ∞ and E [|Y |q] < ∞, the inequality (13.17)
necessarily implies E [|X| · |Y |] < ∞, hence E [XY ] exists as a finite quantity
satisfying

|E [X.Y ]| ≤ E [|X| · |Y |] ≤ (E [|X|p])
1
p · (E [|Y |q])

1
q

by the usual arguments. It should also be noted that (13.17) automatically holds if
either E [|X|p] =∞ or E [|Y |q] =∞.

Proof. The inequality (13.17) trivially holds when either E [|X|p] = 0 or E [|Y |q] =
0 since then X = 0 a.s. or Y = 0 a.s., resulting in XY = 0 a.s.

From now on assume that E [|X|p] > 0 and E [|Y |q] > 0, and consider the rvs
X?
p and Y ?

q defined by

X?
p ≡

|X|p

E [|X|p]
and Y ?

q ≡
|Y |q

E [|Y |q]
.



13.6. THE HÖLDER INEQUALITY AND ITS CONSEQUENCES 175

Obviously, we have E
[
X?
p

]
= 1 and E

[
Y ?
q

]
= 1.

For each x ≥ 0 and y ≥ 0, the inequalities

xλ · y1−λ ≤ λx+ (1− λ)y, 0 < λ < 1(13.18)

hold since equivalent to λ log x + (1 − λ) log y ≤ log (λx+ (1− λ)y) (which
holds by virtue of the concavity of the function t→ log t on (0,∞)).

Fix λ in (0, 1). Using (13.18) with x = X?
p and y = Y ?

q we conclude that

(
X?
p

)λ · (Y ?
q

)1−λ ≤ λX?
p + (1− λ)Y ?

q ,

whence

E
[(
X?
p

)λ · (Y ?
q

)1−λ] ≤ λE
[
X?
p

]
+ (1− λ)E

[
Y ?
q

]
= λ+ (1− λ) = 1.(13.19)

With λ = p−1 (so that 1 − λ = q−1) the integrand in (13.19) can be rewritten
as (

X?
p

)λ · (Y ?
q

)1−λ
=

|X|

(E [|X|p])
1
p

· |Y |

(E [|Y |q])
1
q

and (13.19) becomes

E

[
|X|

(E [|X|p])
1
p

· |Y |

(E [|Y |q])
1
q

]
≤ 1.

This completes the proof of (13.16)

Minkowski’s inequality The following result is a consequence of Hölder’s in-
equality and gives an important fact concerning the geometry of the set of rvs
whose pth moment is finite.

Theorem 13.6.2 (Minkowski’s inequality) For rvsX,Y : Ω→ R such that E [|X|p] <
∞ and E [|Y |p] <∞ for some p ≥ 1, we have the inequality

(E [|X + Y |p])
1
p ≤ (E [|X|p])

1
p + (E [|Y |p])

1
p .(13.20)
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Proof. The identity |x + y|p ≤ 2p−1 (|x|p + |y|p) is valid for all x, y ≥ 0 by the
convexity of the mapping t → |t|p on R. Therefore, E [|X + Y |p] < ∞ if both
E [|X|p] and E [|Y |p] are finite.

The case p = 1 being immediate by the last identity (which then reduces to
the triangular inequality), we assume from now on that p > 1. Moreover, as the
result automatically holds if X + Y = 0 a.s., we need only consider the case when
E [|X + Y |p] > 0. Under these conditions, we begin by writing

|X + Y |p = |X + Y | · |X + Y |p−1

≤ |X| · |X + Y |p−1 + |Y | · |X + Y |p−1,

whence

E [|X + Y |p]
≤ E

[
|X| · |X + Y |p−1

]
+ E

[
|Y | · |X + Y |p−1

]
.(13.21)

Choose q > 1 conjugate to p so that q = p
p−1 by (13.16), and note that

E
[(
|X + Y |p−1

)q]
= E [|X + Y |p] <∞.

Applying Hölder’s inequality to the rvs |X| (with E [|X|p] <∞) and |X + Y |p−1

(with E
[(
|X + Y |p−1

)q]
<∞) we conclude that

E
[
|X| · |X + Y |p−1

]
≤ (E [|X|p])

1
p ·
(
E
[(
|X + Y |p−1

)q]) 1
q

= (E [|X|p])
1
p · (E [|X + Y |p])

1
q .(13.22)

Similarly, we have

E
[
|Y | · |X + Y |p−1

]
≤ (E [|Y |p])

1
p · (E [|X + Y |p])

1
q .(13.23)

Combining (13.21), (13.22) and (13.23) we conclude that

E [|X + Y |p] ≤
(

(E [|X|p])
1
p + (E [|Y |p])

1
p

)
· (E [|X + Y |p])

1
q .

Upon dividing both sides by (E [|X + Y |p])
1
q , we obtain

(E [|X + Y |p])1− 1
q ≤ (E [|X|p])

1
p + (E [|Y |p])

1
p ,

and the proof of (13.20) is now complete since 1− 1
q = 1

p .
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13.7 Jensen’s inequality and its consequences

Several useful bounds involving moments of rvs are a byproduct of convexity; in its
general form this is expressed through Jensen’s inequality which is now discussed.

Recall the definition of convexity: A mapping g : R → (−∞,+∞] is convex
if the conditions

g((1− λ)x0 + λx1) ≤ (1− λ)g(x0) + λg(x1),
λ ∈ [0, 1]

x0, x1 ∈ (−∞,+∞]

hold. The effective domain Dom(g) of g is the subset of R given by

Dom(g) = {x ∈ R : g(x) ∈ R} .

Theorem 13.7.1 (Jensen’s inequality) Consider a rvX : Ω→ R such that E [|X|] <
∞. For any convex mapping g : R → (−∞,+∞], whenever E [X] belongs to
Dom(g), it holds that

g(E [X]) ≤ E [g(X)](13.24)

if E [g(X)−] <∞.

The assumption E [|X|] < ∞ ensures that E [X] is well defined and finite.
As will become apparent in the forthcoming proof, E [g(X)] is not well defined if
E [g(X)−] =∞ for then it is necessarily the case that E [g(X)+] =∞. However,
under the condition E [g(X)−] < ∞, the expectation E [g(X)] is well defined,
though possibly infinite; see an example below.

Proof. If E [X] belongs to Dom(g), then the sub-differential of g is well defined
at that point and non-empty. Therefore, for any v in ∂g(E [X]) it holds that

g(E [X]) + v (x− E [X]) ≤ g(x), x ∈ R.

Evaluating this last inequality at x = X and using the decomposition g(X) =
g(X)+ − g(X)− we conclude that

g(E [X]) + v (X − E [X]) + g(X)− ≤ g(X)+.(13.25)

Taking expectations we note the following: Under the assumption E [|X|] < ∞,
the expectation of the rv g(E [X]) + v (X − E [X]) + g(X)− is well defined and
given by

g(E [X]) + vE [X − E [X]] + E
[
g(X)−

]
= g(E [X]) + E

[
g(X)−

]
.
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Thus, (13.25) now gives

g(E [X]) + E
[
g(X)−

]
≤ E

[
g(X)+

]
;(13.26)

this holds even if E [g(X)+] =∞ and E [g(X)−] =∞. However, if E [g(X)−] is
finite, then E [g(X)] is well defined in the usual manner as E [g(X)] = E [g(X)+]−
E [g(X)−], and the desired conclusion (13.24) follows from (13.26).

Back to the variance We have shown earlier that if X is a second-order rv, then
(E [X])2 ≤ E

[
X2
]
. Note that this is also a simple consequence of Jensen’s in-

equality applied to the mapping g : R → R : t → t2 – Here E [g(X)−] = 0 and
obviously there is no guarantee that E

[
X2
]
< ∞ simply because E [|X|] is finite

as discussed above. In fact, it is trivially the case that (E [X])2 ≤ E
[
X2
]

when
E
[
X2
]

=∞ as soon as E [X] exists, finite or not.

Lyapounov’s inequality In Section 13.1, with 1 ≤ p < q we noted that E [|X|p] <
∞ holds whenever E [|X|q] < ∞, thereby suggesting a possible monotonicity for
E [|X|p] as a function of p. Lyapounov’s inequality given next is an easy conse-
quence of Jensen’s inequality, and provides a more precise version of this sugges-
tion.

Lemma 13.7.1 (Lyapounov’s inequality) For any rvX : Ω→ R, the monotonicity
property

(E [|X|p])
1
p ≤ (E [|X|q])

1
q 1 ≤ p < q(13.27)

holds.

Proof. Pick p and q such that 1 ≤ p < q, and introduce λ > 1 such that q = λp.
The mapping x→ |x|λ being convex on R, we conclude with the help of Jensen’s
inequality that

E [|X|q] = E
[
(|X|p)λ

]
≥ (E [|X|p])λ .

Exponentiating both sides of this last inequality to power q−1 yields (13.27) since
λq−1 = qp−1q−1 = p−1.
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13.8 On the way to normed spaces of rvs

For any rv X : Ω→ R we write

‖X‖p ≡ (|X|p)
1
p , p ≥ 1.(13.28)

With this notation, Lyapounov’s inequality (13.27) states that the mapping [1,∞)→
[0,∞] : p→ ‖X‖p is non-decreasing.

A semi-norm Fix p ≥ 1: Let Lp denote the set of all rvs X : Ω → R such that
E [|X|p] <∞. Equivalently, Lp can be defined as

Lp ≡ {Rv X : Ω→ R : ‖X‖p <∞} .

Obviously, for arbitrary rvs X and Y in Lp, it holds that

‖t ·X‖p = |t| · ‖X‖p, t ∈ R(13.29)

while Minkowsk’s inequality gives

‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.(13.30)

The properties (13.29) and (13.30) are known as (positive) homogeneity and the
triangle inequality, respectively; they turn the mapping X → ‖X‖p into a semi-
norm on Lp. While it is always the case that ‖X‖p ≥ 0, the condition ‖X‖p = 0
only implies X = 0 a.s. (and not X = 0 on Ω), and the mapping X → ‖X‖p is
therefore not a norm on Lp (as this would require X = 0 on Ω).

Constructing a norm There is a simple way to turn this semi-norm into a bona
fide norm. Note that a.s. equality (under P) defines an equivalence relation, de-
noted ∼P, on all rvs Ω → R defined on the probability triple (Ω,F ,P): For rvs
X,Y : Ω→ R defined on the probability triple (Ω,F ,P), we write

X ∼P Y if and only if P [X 6= Y ] = 0.

With rv X : Ω→ R, the equivalence class [X]P of X under ∼P is given by

[X]P ≡ {Rv Y : Ω→ R : Y ∼P X} .

Note that [X]P = [Y ]P whenever X ∼P Y , so that ‖Y ‖p = ‖X‖p for every rv
Y in [X]P. It follows that [X]P is a subset of Lp whenever X belongs to Lp. The
definition

Lp ≡ {[X]P : X ∈ Lp}
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is therefore well posed, and set

‖[X]P‖p ≡ ‖Y ‖p, [X]P ∈ Lp

where Y is any element in Lp belonging to [X]P. It is easy to check that this
definition is also well posed (and independent of the selection of Y in [X]P), and
that it defines a semi-norm onLp. Moreover, ‖[X]P‖p = 0 is equivalent to ‖[X]P =
[0]P, hence it is a norm on Lp (since [0]P is the zero element in Lp).

13.9 In the limit

Pick a rv X : Ω → R such that E [|X|q] < ∞ for all q ≥ 1. The monotonicity
property (13.27) ensures that the convergence limq→∞ ‖X‖q takes place monoton-
ically with the limit identified as

lim
q→∞

‖X‖q = sup
q≥1
‖X‖q.(13.31)

The question naturally arises as to whether this limiting value can be given a more
operational (and therefore more useful) form.

To that end we introduce the quantity

‖X‖∞ ≡ inf {a > 0 : P [|X| > a] = 0}(13.32)

with the understanding that ‖X‖∞ = ∞ if the set {a > 0 : P [|X| > a] = 0} is
empty. This definition is well posed as an element of [0,∞] upon noting that
P [|X| > a] decreases with increasing a.

The reader with some knowledge of Measure Theory will identify ‖X‖∞ as
the P-Essential Supremum of the rv |X|. The main result concerning this quantity
is given next.

Proposition 13.9.1 For any rv X : Ω→ R it holds that

sup
q≥1
‖X‖q = ‖X‖∞.(13.33)

Proof. Assume first that ‖X‖∞ = 0: Then, for all a > 0 we have P [|X| > a] = 0,
or equivalently P [|X| ≤ a] = 1. Obviously X = 0 a.s., and ‖X‖q = 0 for all
q ≥ 1, so that (13.33) automatically holds.
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For the remainder of the proof we assume ‖X‖∞ > 0. Fix q > 1 and pick
a > 0 arbitrary. The easy decomposition

E [|X|q] = E [|X|q1 [|X| ≤ a]] + E [|X|q1 [|X| > a]](13.34)

implies the bound
aq · E [1 [|X| > a]] ≤ E [|X|q] .

It then follows that

a · (P [|X| > a])
1
q ≤ (E [|X|q])

1
q , q > 1.(13.35)

If ‖X‖∞ = ∞, then the set {a > 0 : P [|X| > a] = 0} being empty, we have
P [|X| > a] > 0 for all a > 0, in which case limq→∞ (P [|X| > a])

1
q = 1. Letting

q go to infinity in (13.35) we conclude that a ≤ supq≥1 ‖X‖q for each a > 0.
Therefore, supq≥1 ‖X‖q =∞ and we obtain (13.33).

If 0 < ‖X‖∞ <∞, then on the range 0 < a < ‖X‖∞, we have P [|X| > a] >

0 and again it follows that limq→∞ (P [|X| > a])
1
q = 1. Letting q go to infinity in

(13.35) we conclude that a ≤ supq≥1 ‖X‖q whenever 0 < a < ‖X‖∞, whence
‖X‖∞ ≤ supq≥1 ‖X‖q. This shows that (13.33) holds.

Next, still under the condition ‖X‖∞ < ∞, for a > ‖X‖∞ it holds that
P [|X| > a] = 0, or equivalently E [1 [|X| > a]] = 0 so that 1 [|X| > a] = 0 a.s.,
whence |X|q1 [|X| > a] = 0 a.s. It then follows from (13.34) that

E [|X|q] = E [|X|q1 [|X| ≤ a]] ≤ aq · P [|X| ≤ a] = aq,
‖X‖∞ < a
q > 1

and we obtain the bounds (E [|X|q])
1
q ≤ a on the range ‖X‖∞ < a. It follows that

supq≥1 ‖X‖q ≤ a whenever ‖X‖∞ < a, whence supq≥1 ‖X‖q ≤ ‖X‖∞. Com-
bining with the earlier conclusion we get the equality (13.33) under the condition
0 < ‖X‖∞ <∞.

13.10 Hölder’s inequality when p = 1

The attentive reader may have noticed that Hölder’s inequality was given only for
conjugate pairs p and q such that p, q > 1, and it is therefore natural to wonder
what happens when p = 1: Formally the defining relation (13.16) suggests that the
conjugate q of p = 1 should be taken to be q =∞.
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Theorem 13.10.1 (Hölder’s inequality when p = 1) For rvs X,Y : Ω → R such
that E [|X|] <∞ and ‖Y ‖∞ <∞, it holds that

E [|X| · |Y |] ≤ E [|X|] · ‖Y ‖∞.(13.36)

Proof. First note that whenever ‖Y ‖∞ is finite, then ‖Y ‖q < ∞ for all q ≥ 1
by virtue of Proposition 13.9.1. Next we pick n = 1, 2, . . . and fix p > 1: It is
plain that ‖min (n, |X|) ‖p < ∞. Applying Hölder’s inequality for p > 1 and its
conjugate q = p

p−1 we get

E [|min (n, |X|) · Y |] ≤ E [|min (n, |X|) |p]
1
p · E [|Y |q]

1
q .

Now let p go down to 1, say p ↓ 1 (so that q ↑ ∞), in this last inequality: Bounded
convergence yields

lim
p↓1

E [|min (n, |X|) |p] = E [min (n, |X|)] ,

whence limp↓1 E [|min (n, |X|) |p]
1
p = E [min (n, |X|)]. On the other hand, we

get limq↑∞ E [|Y |q]
1
q = ‖Y ‖∞ by Proposition 13.9.1. Collecting these facts we

conclude that

E [|min (n, |X|) · Y |] ≤ E [min (n, |X|)] · ‖Y ‖∞, n = 1, 2, . . .

Let n go to infinity in this last inequality. By monotone convergence we get
both

lim
n→∞

E [|min (n, |X|) · Y |] = E
[

lim
n→∞

min (n, |X|) · |Y |
]

= E [|X| · |Y |]

and limn→∞ E [min (n, |X|)] = E [|X|]. The conclusion E [|X| · |Y |] ≤ E [|X|] ·
‖Y ‖∞ follows, and the proof of (13.36) is now complete.

13.11 Exercises

All rvs are defined on the same probability triple (Ω,F ,P).
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Ex. 13.1 (Optimality of the first moment) The following fact lies at the root of the
popular Minimum Mean Square Estimation (MMSE) procedures: For a second-
order rv X : Ω→ R, show that

E
[
|X − E [X]|2

]
≤ E

[
|X − a|2

]
, a ∈ R.

In other words, the first moment E [X] solves the minimization problem

Minimize
{
E
[
|X − a|2

]
, a ∈ R

}
.

Ex. 13.2 Consider two second-order rvs X,Y : Ω → R such that either E [X] =
E [Y ] or E [X] = −E [Y ] . Give conditions for the rvs X − Y and X + Y to be
uncorrelated.

Ex. 13.3 Let N be a discrete rv with support contained in N0 (i.e., P [N ∈ N0] =
1) with a finite second moment, i.e., E

[
N2
]
< ∞. Also let {Xn, n = 1, 2, . . .}

denote a collection of second-order rvs. Assume the rvs {N,Xn, n = 1, 2, . . .} to
be mutually independent.

a. Compute the first moment E
[∑N

n=1Xn

]
.

b. Compute the variance Var
[∑N

n=1Xn

]
.

c. Specialize the results of Parts a and b when the rvs {Xn, n = 1, 2, . . .}
have identical mean and variance, namely µ ≡ E [X1] = E [X2] = . . . and σ2 ≡
Var[X1] = Var[X2] = . . .

Ex. 13.4 Let N be a discrete rv with support contained in N0 (i.e., P [N ∈ N0] =
1) with a finite second moment, i.e., E

[
N2
]
< ∞. Also let {Xn, n = 1, 2, . . .}

denote a collection of second-order rvs. Assume the rvs {N,Xn, n = 1, 2, . . .} to
be mutually independent.

a. Compute the first moment

E

[
1

N

N∑
n=1

Xn

]
.

b. Compute the variance

Var

[
1

N

N∑
n=1

Xn

]
.

c. Specialize the results of Parts a and b when the rvs {Xn, n = 1, 2, . . .}
have identical mean and variance, namely µ ≡ E [X1] = E [X2] = . . . and σ2 ≡
Var[X1] = Var[X2] = . . .
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Ex. 13.5 We start with a collection U1, U2, . . . , Un of n rvs, each uniformly dis-
tributed over the interval (0, 1). Also available is a rv P with the property that
P [0 < P ≤ 1] = 1. Assume that the n + 1 rvs P,U1, . . . , Un are mutually in-
dependent rvs, and that the rv P is a discrete rv with P [P ∈ S] = 1 for some
countable subset S ⊆ (0, 1].1

a. For i, j = 1, 2, . . . , n, compute E [1 [Ui ≤ P ]] and Cov [1 [Ui ≤ P ] ,1 [Uj ≤ P ]]
(in terms of momnents of P )

b. For i, j = 1, 2, . . . , n, are the rvs 1 [Ui ≤ P ] and 1 [Uj ≤ P ] uncorrelated?
c. Under what conditions are the rvs 1 [U1 ≤ P ] , . . . ,1 [Un ≤ P ] uncorre-

lated? pairwise independent? mutually independent?

Ex. 13.6 The setting is that of Exercise 13.5. Under the assumptions there, we are
interested in the rv X defined by

X ≡
n∑
i=1

1 [Ui ≤ P ] .

a. Compute E [X] in terms of E [P ].
b. How many moments of P are needed to compute Var [X]?
c. When S contains at least two elements, are the rvs 1 [U1 ≤ P ] , . . . ,1 [Un ≤ P ]

(i) mutually independent (ii) pairwise uncorrelated ?
d. Compute the probabilities

P [X = k] , k = 0, 1, . . . , n.

How many moments of P are needed?

Ex. 13.7 Consider two second-order rvs X,Y : Ω→ R such that X + Y = a a.s.
for some constant a.

a. Show that it is always the case that Cov [X,Y ] ≤ 0.
b. Under what conditions are the rvs X and Y negatively correlated?

Ex. 13.8 With 0 < p < 1, let X(p), Y (p) : Ω → R be a pair of independent
Bernoulli rvs with P [X(p) = 1] = 1 − P [X(p) = 0] = p and P [Y (p) = 1] =
1− P [Y (p) = 0] = p.

a. Compute the covariance Cov [|X(p)− Y (p)|, X(p) + Y (p)] between the
rvs |X(p)− Y (p)| and X(p) + Y (p) as a function of p.

1The results of Exercises 13.5 and 13.6 also hold for any rv P , discrete or not, satisfying 0 <
P ≤ 1 a.s. However the general case is best handled through the use of conditional expectations
discussed in Chapter ??.
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b. Find all the values of p in (0, 1) such that rvs |X(p)−Y (p)| andX(p)+Y (p)
are uncorrelated rvs.

c. Find all the values of p in (0, 1) such that rvs |X(p) − Y (p)| and X(p) +
Y (p) are independent rvs. [HINT: For the values of p in Part b, compute the
joint probability P [|X(p)− Y (p)| = 0, X(p) + Y (p) = 0] and compare it to the
product P [|X(p)− Y (p)| = 0]P [X(p) + Y (p) = 0].]

Ex. 13.9 Consider four second-order rvs X1, X2, Y1, Y2 : Ω → R. If the two-
dimensonal rvs X : Ω → R2 and Y : Ω → R2 are independent where X =
(X1, X2) and (Y1, Y2), show that

Cov [X1 + Y1, X2 + Y2] = Cov [X1, X2] + Cov [Y1, Y2] .

Ex. 13.10 We start with the rvU : Ω→ R which has a symmetric distribution, i.e.,
U =st −U (where as usual =st refers to equality in distribution). Given are two
Borel mappings f, g : R→ R with the following properties: f(−x) = −f(x) and
g(−x) = g(x) for all x in R. Assume that E

[
|f(U)|2

]
< ∞ and E

[
|g(U)|2

]
<

∞,
a. Show that Cov [f(U), g(U)] = 0, i.e., the rvs X = f(U) and Y = g(U) are

always uncorrelated.
b. Consider now the case when f(x) = sin (x) and g(x) = cos (x) for all x in

R (in which case |f(x)|2 + |g(x)|2 = 1). In the spirit of Exercise 13.7, show that
Cov

[
|f(U)|2, |g(U)|2

]
< 0 with the implication that the rvs |X|2 and |Y |2 are not

independent, and a fortiori X and Y cannot be independent!

Ex. 13.11 Let A and B be events in F , and let XA = 1 [A] and XB = 1 [B]
denote their indicator functions.

a. Compute the covariance Cov [XA, XB]

b. Show that rvs XA and XB are uncorrelated if and only if the events A and
B are independent.

c. Show that the rvs XA and XB are independent if and only if the rvs XA and
XB are uncorrelated.

Ex. 13.12 Consider two second-order rvs X,Y : Ω → R which are independent
with E [X] = E [Y ] = 0. Define the rvs U, V : Ω → R by U ≡ min(X,Y ) and
V ≡ max(X,Y ).

a. Compute E [UV ].
b. Are the rvs U and V second-order rvs?.
c. Are the rvs U and V uncorrelated? Are they independent?
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Ex. 13.13 Consider two second-order rvs X,Y : Ω → R. We assume that (i) the
rvs X and Y are independent rvs and that (ii) each has a symmetric distribution,
i.e., X =st −X and Y =st −Y . Define the rvs U, V : Ω→ R by U ≡ min(X,Y )
and V ≡ max(X,Y ).

a. Show that V =st −U .
b. Compute Cov [U, V ]
c. Under what additional conditions are the rvs U and V uncorrelated?

Ex. 13.14 Consider three second-order rvs X,Y, Z : Ω → R such that (i) X +
Y + Z = 1 a.s. and (ii) Var [X] ≤ Var [Y ] ≤ Var [Z].

a. Show that the rvs X and Z (resp. Y and Z) are negatively correlated in the
sense that Cov [X,Z] ≤ 0 (resp. Cov [Y,Z] ≤ 0).

b. Show that Cov [X,Y ] ≥ 0 (i.e., the rvs X and Y are positively correlated)
if and only if

Var [X] + Var [Y ] ≤ Var [Z] .

c. Show that it is always the case that |Cov [X,Z]| ≤ |Cov [Y,Z]|.

Ex. 13.15 Consider a rv X : Ω→ R.
a. Show that there always exists a scalar M in R such that

P [X ≤M ] ≥ 1

2
and P [X ≥M ] ≥ 1

2
.

Such a scalar is called a median for the probability distribution function of the rv
X . Is such scalar unique?

b. Let FX : R → [0, 1] denotes the probability distribution function of the rv
X . If FX : R → [0, 1] is a strictly increasing and continuous function, show that
there is only one median and it is characterized by

FX(t) =
1

2
, t ∈ R

c. If E [|X|] <∞, then show that

E [|X −M |] ≤ E [|X − a|] , a ∈ R

for every median M of X .

Ex. 13.16 The following (important) inequality happens to be true: With f, g :
R→ R monotone non-decreasing mappings,2 it holds that

E [f(X)] · E [g(X)] ≤ E [f(X) · g(X)](13.37)
2This means f(x) ≤ f(y) and g(x) ≤ g(y) whenever x < y in R
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whenever the expectations are well defined, e.g., when f and g take non-negative
values.

a. Try to give a proof of this fact when X is a discrete rv with support on some
countable set S ⊆ R with pdf pX = (P [X = x] , x ∈ S). So you will need to
show that(∑

x∈S
f(x)pX(x)

)
·

(∑
x∈S

g(x)pX(x)

)
≤
∑
x∈S

f(x)g(x)pX(x).

It is feasible but not a pleasant exercise. Just think about it for a few minutes!
Here is now a probabilistic proof in a few lines, said proof illustrating the power
of probabilistic thinking!

b. Explain why it is always the case that

∆(y, z) ≡ (f(y)− f(z)) · (g(y)− g(z)) ≥ 0, y, z ∈ R.

c. Let Y and Z be two independent rvs Ω→ R, each with the same probability
distribution as X . What is the sign of E [∆(Y,Z)]?

d. Use Part c to conclude that (13.37) holds!

Ex. 13.17 Consider a rv X : Ω → R defined on the probability triple (Ω,F ,P).
The quantity ‖X‖∞ is completely determined by the probability distribution of the
rv |X| (through the probability triple (Ω,F ,P)). More precisely: For k = 1, 2, the
rv Xk : Ωk → R is a rv defined on the probability triple (Ωk,Fk,Pk). If the dis-
tribution of |X1| under P1 coincides with that of |X2| under P2, then the quantities
‖X1‖∞ (computed under P1) and ‖X2‖∞ (computed under P2) coincide.

a. Show that ‖X‖∞ ≤ sup {|X(ω)| : ω ∈ Ω}.
b. Give an example when this inequality is strict with both quantities ‖X‖∞

and sup {|X(ω)| : ω ∈ Ω} finite
c. Give an example when ‖X‖∞ is finite but sup {|X(ω)| : ω ∈ Ω} =∞.

Ex. 13.18 For any rv X : Ω → R, it was noted that E [|X|p] < ∞ for all p in
the interval [1, q] as soon as E [|X|q] < ∞ for some q ≥ 1, an observation which
translates into the nested inclusions Lq ⊆ Lp ⊆ L1 when 1 ≤ p < q. It is natural
to wonder as to what is the set ∩q≥1Lq. In view of Proposition 13.9.1 it might be
tempted to conclude that ∩q≥1Lq = L∞ where

L∞ ≡ {Rv X : Ω→ R : ‖X‖∞ <∞} .

Show by a conterexample that this guess is incorrect and that L∞ is a strict subset
of ∩q≥1Lq – In other words, it is possible for E [|X|q] < ∞ for every q ≥ 1 and
yet ‖X‖∞ =∞. [HINT: Consider a Gaussian rv or an exponetial rv.]
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Ex. 13.19 Show that (13.32) defines a semi-norm on the linear space of all rvs
defined on (Ω,F ,P), namely for arbitrary rvs X,Y : Ω → R, it holds that
‖tX‖∞ = |t|‖X‖∞ for each t in R and ‖X + Y ‖∞ ≤ ‖X‖∞ + ‖Y ‖∞.

a. Prove these facts by a limiting argument based on (13.31) and Proposition
13.9.1

b. Prove these facts by a direct argument based on the definition (13.32).



Chapter 14

Bounding probabilities

All rvs are defined as Borel measurable mappings Ω → R defined on the same
probability triple (Ω,F ,P), and all probability distributions are computed under
P.

14.1 Markov’s inequality and consequences

In this section we present a number of inequalities that prove useful in many con-
texts. They are all implied by the very simple observation embedded in Markov’s
inequality.

Theorem 14.1.1 (Markov’s inequality) For any rv X : Ω→ R with X ≥ 0 a.s., it
holds that

P [X ≥ t] ≤ 1

t
· E [X] , t > 0.(14.1)

Markov’s inequality can be quite poor for some values of t > 0: Indeed the
bound will be useless whenever E [X] > t (as will occur for small t) since yielding
a right hand side greater than unity! However, even for large values of t the bound
may not capture the tail behavior of P [X > t]. Here is an example: If X is an
exponential rv with unit parameter, then P [X > t] = e−t for all t > 0 while
E [X] = 1. Clearly e−t decays much faster than t−1.

Proof. As the bound trivially holds if E [X] = ∞, it suffices to consider the case
when E [X] is finite: Fix t > 0, and note that

X = X · 1 [X < t] +X · 1 [X ≥ t]
≥ X · 1 [X ≥ t] a.s.

≥ t · 1 [X ≥ t] a.s.

189
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Taking expectations in this last inequality, we find that t · E [1 [X ≥ t]] ≤ E [X],
and the conclusion (14.1) follows.

Markov’s inequality gives rise to several useful inequalities.

The Bienaymé-Tchebychev inequality Consider a second-order rv X . Apply-
ing Markov’s inequality to the rv (X − E [X])2 we get

P
[
(X − E [X])2 ≥ t2

]
≤ 1

t2
· E
[
(X − E [X])2

]
, t > 0.

This is often written in the equivalent form

P [|X − E [X] | ≥ t] ≤ 1

t2
·Var [X] , t > 0(14.2)

and is known as the Bienaymé-Tchebychev inequality.
A particularly useful form arises when using (14.2) with t = λσ(X) for some

λ > 0, in which case we get

P [|X − E [X] | ≥ λσ(X)] ≤ 1

λ2
, λ > 0.(14.3)

This easy fact is often used in statistical studies to assert that the probability that
an observed rv X deviates from its mean E [X] by at least 3 standard deviations is
less than 1/9.

Chernoff bounds As another application of Markov’s inequality consider the
following observation: Fix t in R. With θ > 0, we note that X ≥ t if and only if
eθX ≥ eθt, hence

P [X ≥ t] = P
[
eθX ≥ eθt

]
.

Applying Markov’s inequality to the rv eθX yields

P
[
eθX ≥ eθt

]
≤ e−θtE

[
eθX

]
.

Collecting these facts we conclude that

P [X > t] ≤ e−θtE
[
eθX

]
.(14.4)

Such a bound is known as a Chernoff bound. Note that E
[
eθX

]
always exists,

although possibly infinite. However, only when E
[
eθX

]
<∞ with θ > 0 will the

bound just derived be useful.
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Thus far, θ > 0 is a free parameter, hence we can seek to optimize the bound
(14.4) by selecting θ > 0 that achieves the best possible upper bound. This yields

P [X ≥ t] ≤ inf

(
e−θtE

[
eθX

]
:

θ > 0,
E
[
eθX

]
<∞

)
.(14.5)

A general Markov inequality The idea behind the Bienaymé-Tchebychev in-
equality and the Chernoff bound can be further generalized as follows: Consider
a non-decreasing function g : R → R+ such that E [g(X)] is finite. Fix t in
R. Under these conditions, we note that X ≥ t implies g(X) ≥ g(t), whence
P [X ≥ t] ≤ P [g(X) ≥ g(t)], and the basic Markov inequality (applied to g(X))
yields

P [X ≥ t] ≤ E [g(X)]

g(t)

whenever g(t) > 0.

14.2 Concentration inequalities

Hoeffding’s inequality

Bernstein’s inequality

Bennett’s inequality

Azuma’s inequality

14.3 Exercises

All rvs are defined on the same probability triple (Ω,F ,P).

Ex. 14.1 Is it possible for a non-negative rvX to satisfy Markov’s inequality (14.1)
as an equality for all t ≥ EX , namely

P [X ≥ t] =
t

E [X]
, t ≥ E [X] .

Explain!

Ex. 14.2 (14.1) still holds.
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Ex. 14.3 If the rv X satisfies E
[
2X
]

= 4, show that P [X ≥ 3] ≤ 1
2 .

Ex. 14.4 Consider a collection {Xn, n = 1, 2, . . .} of second-order R-valued rvs
such that E

[
|Xn|2

]
= c > 0 for all n = 1, 2, . . ..

a. Show that P [Xn > n i.o.] = 0.
b. Still assuming that E

[
|Xn|2

]
= an < ∞ for all n = 1, 2, . . ., find a

strictly weaker condition on the second moments, hence on the sequence {an, n =
1, 2, . . .}, that ensures P [Xn > n i.o.] = 0.

c. Assume now that there exists ν > 0 such that E
[
|Xn|1+ν

]
= an < ∞ for

all n = 1, 2, . . ., find a condition on the sequence {an, n = 1, 2, . . .} that ensures
P [Xn > n i.o.] = 0.

Ex. 14.5 For any rv X : Ω → R such that P [X ∈ N] = 1, i.e., X ∈ N a.s., show
that the inequality P [X > 0] ≤ E [X] always holds. This simple observation is the
basis for the method of first moment often used in the theory of random graphs and
in Combinatorics.

Ex. 14.6 For any second-order rv X : Ω → R such that P [X ≥ 0] = 1, i.e.,
X ≥ 0 a.s., show that

(E [X])2

E [X2]
≤ P [X > 0]

provided E
[
X2
]
> 0 [HINT: Note that X = X · 1 [X > 0] a.s. and apply the

Cauchy-Schwartz inequality]. This inequality is the starting point for the method
of second moment often used in the theory of random graphs and in Combinatorics
where it is applied to integer-valued count rvs in the form

P [X = 0] ≤ 1− (E [X])2

E [X2]
.

Ex. 14.7 With Hólder’s inequality generalizing the Cauchy-Schwartz inequality,
Exercise 14.6 suggests the following inequality:

a. Consider a rv X : Ω → R such that P [X ≥ 0] = 1, i.e., X ≥ 0 a.s. with
E [|X|p] <∞ for some p > 1. With q the conjugate of p, show that(

E [X]

(E [Xp])
1
p

)q
≤ P [X > 0]

provided E [|X|p] > 0 [HINT: Note that X = X · 1 [X > 0] a.s. and apply
Hólder’s inequality].

b. Apply the result of Part a when X is an exponential rv with unit parameter
and p is an integer, and explore how the bounds improve as p increases.



Chapter 15

Conditional expectations:
The case of partitions

We now turn to the important notion of conditioning in its various forms. In this
chapter the focus will be on the notion of conditional expectations with respect
to a partition. The general notion of conditional expectation is then developed in
Chapter 16.

Throughout we assume given a probability triple (Ω,F ,P), and all the rvs are
defined on it.

15.1 Conditional distributions and their expectations

We first return to the definitions given in Section 2.5: Let D be an event in F – We
shall often refer to D as the conditioning event. With P [D] > 0, the conditional
probability measure QD : F → [0, 1] is a well-defined probability measure given
by

QD(E) =
P [E ∩D]

P [D]
, E ∈ F .

When P [D] = 0, it is convenient to take QD : F → [0, 1] to be an arbitrary
probability measure on (Ω,F) – This issue will be revisited at some later time.

Assume P [D] > 0. It is now possible to define the conditional expectation
of the rv X given D, denoted E [X|D]: It is simply the expectation of the rv X
evaluated under the conditional probability measure QD defined on (Ω,F). The
requirement E [1 [E] |D] = QD [A] has to be satisfied for any event E in F when
constructing the mathematical expectation operator associated with QD. These

193
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conditions imply that

E [1 [E] |D] = QD [E]

=
P [E ∩D]

P [D]

=
E [1 [D]1 [E]]

P [D]
, E ∈ F .(15.1)

This observation leads readily to the following characterization.

Lemma 15.1.1 Let D be an event in F such that P [D] > 0. For any rv X : Ω→
R, the conditional expectation of X given D exists (resp. exists and is finite) if the
expectation E [X] exists (resp. exists and is finite), in which case the relation

E [X|D] =
E [1 [D]X]

P [D]
(15.2)

holds.

Proof. The proof is carried out through the usual three step process: It holds for
indicator rvs by virtue of (15.1), thus for simple rvs by linearity of expectation.
Non-negative rvs are handled via a staircase approximation argument with simple
rvs, and the case of arbitrary rvs uses the standard decomposition into the positive
and negative parts. Details are left to the interested reader.

When P [D] = 0, it is convenient to take QD : F → [0, 1] to be an arbitrary
probability measure on (Ω,F), say even P, for the sake of concreteness; such a
choice will allow us to make sense of E [X|D] as an expectation of the rv X under
the selected probability measure. However, regardless of the choice made for QD

it is always the case that

E [1 [D]X] = E [X|D] · P [D](15.3)

as this is true for indicator rvs. More generally it can also be seen as follows:
By Property F of expectation we have E [1 [D]X] = 0 if P [D] = 0 since then
1 [D]X = 0 a.s. – See Section 11.2.

15.2 Conditioning with respect to a partition

The next step on our way towards a general notion of conditional expectation
passes through the notion of conditional expectation given a countable partition.
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Given is a countableF-partition {Di, i ∈ I} of Ω; see Definition 10.2.1 where
I is now a countable index set (instead of a finite index set as was required in the
definition of simple rvs). The condition ∪i∈IDi = Ω implies∑

i∈I
1 [Di] = 1.(15.4)

The events in the partition are assumed to be non-empty although it is possible to
have P [Di] = 0 for some i in I (but not for all indices since P [Ω] = 1). If the
event D in F is of the form

D = ∪j∈JDj

for some J ⊆ I , then the decomposition∑
j∈J

1 [Dj ] = 1 [D](15.5)

generalizes (15.4) and will be used on several occasions.

Definition 15.2.1
Consider a rv X : Ω → R such that E [X] exists. The conditional expecta-

tion of X given the countable F-partition {Di, i ∈ I} is the extended rv Ω →
[−∞,∞] defined by

E [X|Di, i ∈ I] ≡
∑
i∈I

E [X|Di]1 [Di](15.6)

where for each i in I , E [X|Di] is the expectation of X under the conditional
probability distribution of X given Di.

Definition 15.2.1 is well posed as a result of Lemma 15.1.1. In particular,
the rv E [X|Di, i ∈ I] is an R-valued rv as soon as E [X] is finite. We stress that
E [X|Di, i ∈ I] is a random variable and not merely a constant – See (15.7) below.
This rv compactly encodes all the conditional expectations {E [X|Di] , i ∈ I},
hence the notation E [X|Di, i ∈ I]. The advantage of collecting all these con-
ditional expectations into a single mathematical construct will become apparent
when carrying out computations.

15.3 Elementary properties

We now present some elementary properties of the conditional expectation of X
given the countable F-partition {Di, i ∈ I}. The key observation, derived from
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(15.6), is that for every i in I , the equality

E [X|Di, i ∈ I] = E [X|Di] on Di(15.7)

holds. It is therefore not surprising that the elementary properties given below do
hold; in fact Properties A–D are immediate consequences of similar properties for
expectations which were discussed in Section 11.1 and Section 11.2. The proofs
are elementary and therefore omitted.

A. Mutiplying by a constant
For any X : Ω→ R with E [|X|] <∞, and any scalar c in R, we have

E [c ·X|Di, i ∈ I] = c · E [X|Di, i ∈ I] .

B. Addition
For any rvs X,Y : Ω→ R with E [|X|] <∞ and E [|Y |] <∞, we have

E [X + Y |Di, i ∈ I] = E [X|Di, i ∈ I] + E [Y |Di, i ∈ I] .

C. Monotonicity
Consider rvs X,Y : Ω → R with E [|X|] < ∞ and E [|Y |] < ∞. Whenever

X ≤ Y a.s., we have

E [X|Di, i ∈ I] ≤ E [Y |Di, i ∈ I] .

D. Taking absolute values
For any rv X : Ω→ R with E [|X|] <∞, we have

|E [X|Di, i ∈ I]| ≤ E [|X| |Di, i ∈ I] .

The forthcoming sections develop additional properties of conditioning with
respect to a partition. Although proofs are provided for the sake of completeness,
they are somewhat tedious and can be safely omitted in a first reading. Moreover,
the notion of conditioning with respect to a partition is generalized in Chapter 16
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where the corresponding properties are shown with typically shorter proofs which
better highlight the structure of conditioning.

In the discussion we shall often make use of the following facts inherited from
the definition: It holds that

E [X|Di, i ∈ I] =
∑
i∈I

E [X|Di] · 1 [Di]

where

E [X|Di] =
E [1 [Di] ·X]

P [Di]
,

i ∈ I
P [Di] > 0.

(15.8)

However, it is always the case that

E [1 [Di] ·X] = E [X|Di] · P [Di] , i ∈ I.(15.9)

15.4 The localization lemma

Lemma 15.4.1 Consider a rv X : Ω→ R with E [|X|] <∞. Let the rv Z : Ω→
R be of the form

Z =
∑
j∈J

cj1 [Dj ](15.10)

for some countable subset J ⊆ I and scalars {cj , j ∈ J}. Whenever E [|ZX|] <
∞, we have

E [ZX|Di, i ∈ I] = Z · E [X|Di, i ∈ I] a.s.(15.11)

In other words, when Z is a rv of the form (15.10) it acts as a constant in the
conditioning process and can therefore be taken out of the conditional expectation.

Proof. The proof proceeds by considering three separate cases, namely when the
index J is a singleton, has a finite size and is countably infinite, respectively.

J is a singleton We start with Z = 1 [Dj ] for some j in I . Note that

E [ZX|Di, i ∈ I] = E [1 [Dj ] ·X|Di, i ∈ I]

=
∑
i∈I

E [1 [Dj ] ·X|Di] · 1 [Di]

=
∑

i∈I: P[Di]>0

E [1 [Dj ] ·X|Di] · 1 [Di] a.s.(15.12)
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with

E [1 [Dj ]X|Di] =
E [1 [Di]1 [Dj ] ·X]

P [Di]

=
E [1 [Di ∩Dj ] ·X]

P [Di]

= δ(i, j) · E [1 [Di] ·X]

P [Di]

= δ(i, j) · E [X|Di] ,
i ∈ I

P [Di] > 0.

Combining this information in (15.12) with the fact that δ(i, j)1 [Di] = 1 [Di]1 [Dj ]
for all i in I , we conclude that

E [ZX|Di, i ∈ I] =
∑

i∈I: P[Di]>0

δ(i, j) · E [X|Di] · 1 [Di]

=
∑
i∈I

δ(i, j) · E [X|Di] · 1 [Di] a.s.

=
∑
I∈I

E [X|Di]1 [Di] · 1 [Dj ]

= 1 [Dj ] · E [X|Di, i ∈ I](15.13)

This establishes (15.11) when Z = 1 [Dj ] for some j in I .

Finite J Next we consider the case when Z is of the form (15.10) for some finite
index set J ⊆ I . By linearity we get

E [ZX|Di, i ∈ I] = E

∑
j∈J

cj1 [Dj ]

 ·X∣∣∣Di, i ∈ I


=

∑
j∈J

cjE
[
1 [Dj ] ·X

∣∣∣Di, i ∈ I
]

=
∑
j∈J

cj1 [Dj ] · E [X|Di, i ∈ I] a.s.

by the first part of the proof. Noting that

∑
j∈J

cj1 [Dj ] · E [X|Di, i ∈ I] =

∑
j∈J

cj1 [Dj ]

 · E [X|Di, i ∈ I]

= Z · E [X|Di, i ∈ I] ,
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we obtain (15.11) when Z is a rv of the form (15.10) with J finite.

Countably infinite J Finally we turn to the case when Z is of the form (15.10)
for some countably infinite index set J ⊆ I . There is no loss of generality in as-
suming that J = N0. For each n = 1, 2, . . ., write Jn = {1, . . . , n} and introduce
the rv Zn given by

Zn ≡
∑
j∈Jn

cj1 [Dj ] =
n∑
j=1

cj1 [Dj ] .

This rv Zn is of the form (15.10) with finite index set Jn. Direct inspection re-
veals that |ZnX| ≤ |ZX| with |ZnX| =

∑n
j=1 |cj · X| · 1 [Dj ] and |ZX| =∑∞

j=1 |cj ·X| · 1 [Dj ]. Under the assumed integrability condition E [|ZX|] < ∞,
the convergence limn→∞ Zn = Z yields

lim
n→∞

E [|ZnX|] = E [|ZX|]

by the Dominated Convergence Theorem.
Fix n = 1, 2, . . .. By an earlier part of the proof we have

E [Zn ·X|Di, i ∈ I] = Zn · E [X|Di, i ∈ I] a.s.

Let n go to infinity in this last relation. It is plain that

lim
n→∞

E [Zn ·X|Di, i ∈ I] = lim
n→∞

(Zn · E [X|Di, i ∈ I]) a.s.

= Z · E [X|Di, i ∈ I] .(15.14)

We next show that

lim
n→∞

E [Zn ·X|Di, i ∈ I] = E [Z ·X|Di, i ∈ I] ,(15.15)

in which case combining (15.14) and (15.15) we obtain (15.11) when Z is a rv of
the form (15.10) with J countably infinite.

To establish (15.15), for each n = 1, 2, . . . we note that

E [Zn ·X|Di, i ∈ I] =
∑
i∈I

E [Zn ·X|Di] · 1 [Di]

=
∑

i∈I: P[Di]>0

E [Zn ·X|Di] · 1 [Di] a.s.(15.16)



200CHAPTER 15. CONDITIONAL EXPECTATIONS:THE CASE OF PARTITIONS

with

E [Zn ·X|Di] =
E [Zn ·X · 1 [Di]]

P [Di]
,

i ∈ I
P [Di] > 0.

Letting n go to infinity and invoking again the Dominated Convergence Theorem
we get limn→∞ E [Zn ·X · 1 [Di]] = E [Z ·X · 1 [Di]], and the conclusion

lim
n→∞

E [Zn ·X|Di] = E [Z ·X|Di] ,
i ∈ I

P [Di] > 0

follows.
Finally let n go to infinity in (15.16): Using the fact that the collection {Di, i ∈

I} is a partition, we obtain

lim
n→∞

E [Zn ·X|Di, i ∈ I] =
∑

i∈I: P[Di]>0

(
lim
n→∞

E [Zn ·X|Di]
)
· 1 [Di] a.s.

=
∑

i∈I: P[Di]>0

E [Z ·X|Di] · 1 [Di]

= E [Z ·X|Di, i ∈ I] a.s.

and this immediately yields the desired result (15.15).

15.5 Taking the expectation of conditional expectations

The evaluation of the expectation of a conditional expectation with respect to a
partition is discussed next. Below we give a direct proof of this result but it can
also be viewed as a special case of iterated conditioning discussed in Section 15.6.

Lemma 15.5.1 For any rvX : Ω→ R such that E [|X|] <∞, the rv E [X|Di, i ∈ I]
has a finite expectation with

E [E [X|Di, i ∈ I]] = E [X] .(15.17)

Proof. The proof proceeds along the usual steps.
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Non-negative rvs If X ≥ 0, then E [X|Di] ≥ 0 for all i in I . Apply the Mono-
tone Convergence Theorem to the series

∑
i∈I E [X|Di] · 1 [Di] with non-negative

terms and observe that

E [E [X|Di, i ∈ I]] = E

[∑
i∈I

E [X|Di] · 1 [Di]

]
=

∑
i∈I

E [X|Di] · E [1 [Di]]

=
∑
i∈I

E [X|Di] · P [Di]

=
∑
i∈I

E [1 [Di] ·X](15.18)

as we make use of (15.8).
Using the Monotone Convergence Theorem once again we obtain∑

i∈I
E [1 [Di] ·X] = E

[∑
i∈I

1 [Di] ·X

]

= E

[(∑
i∈I

1 [Di]

)
·X

]
= E [X](15.19)

by virtue of (15.4). Combining (15.18) and (15.19) yields (15.17) for non-negative
rvs. It also follows that when X ≥ 0, then the non-negative rv E [X|Di, i ∈ I] has
a finite expectation.

Arbitrary rvs For the general case, write X = X+ − X−. The finiteness as-
sumption E [|X|] <∞ is equivalent to E [X±] <∞, and the rv E [X±|Di, i ∈ I]
therefore has a finite expectation with

E
[
E
[
X±|Di, i ∈ I

]]
= E

[
X±
]

(15.20)

by the first part of the proof. Direct inspection gives

E [X|Di, i ∈ I] =
∑
i∈I

(
E
[
X+|Di

]
− E

[
X−|Di

])
· 1 [Di]

= E
[
X+|Di, i ∈ I

]
− E

[
X−|Di, i ∈ I

]
by linearity. The desired conclusion follows upon noting that

E [E [X|Di, i ∈ I]] = E
[(
E
[
X+|Di, i ∈ I

]
− E

[
X−|Di, i ∈ I

])]
= E

[
E
[
X+|Di, i ∈ I

]]
− E

[
E
[
X−|Di, i ∈ I

]]
= E [X]
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with the help of (15.20).

15.6 Iterated conditioning

The properties discussed in this section are the ones that make conditioning such
a powerful tool when carrying out calculations: Consider the situation where two
countable F-partitions {Di, i ∈ I} and {D′j , j ∈ I ′} are available where I and I ′

are countable index sets.

Definition 15.6.1
The countable F-partition {D′j , j ∈ J ′} is said to be finer than the countable

F-partition {Di, i ∈ I} if for every i in I there exists a subset J ′(i) ⊆ I ′ such that

Di = ∪j∈J ′(i)D′j .(15.21)

Equivalently, the partition {Di, i ∈ I} is said to be coarser than the partition
{D′j , j ∈ I ′}.

It is plain that the index sets {J ′(i), i ∈ I} must be disjoint since both collections
{Di, j ∈ I} and {D′j , j ∈ J ′} are F-partitions of Ω. The following properties of
iterated conditioning can be shown by direct arguments.

Lemma 15.6.1 Assume the countable F-partition {D′j , j ∈ I ′} to be finer than
the countable F-partition {Di, i ∈ I}. For any rv X : Ω→ R such that E [|X|] <
∞, it holds that

E
[
E [X|Di, i ∈ I] |D′j , j ∈ I ′

]
= E [X|Di, i ∈ I] a.s.(15.22)

and

E
[
E
[
X|D′j , j ∈ I ′

]
|Di, i ∈ I

]
= E [X|Di, i ∈ I] a.s.(15.23)

Proof.
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A proof of (15.22) In the notation of Definition 15.6.1 we note that

1 [Di] =
∑

j∈J ′(i)

1
[
D′j
]
, i ∈ I

so that

E [X|Di, i ∈ I] =
∑
i∈I

E [X|Di] · 1 [Di]

=
∑
i∈I

E [X|Di] ·

 ∑
j∈J ′(i)

1
[
D′j
]

=
∑
j∈I′

c′j · 1
[
D′j
]

(15.24)

with
c′j ≡

∑
i∈I: j∈J ′(i)

E [X|Di] , j ∈ I ′.

Thus, the rv E [X|Di, i ∈ I] is of the form (15.10) with respect to the finer par-
tition {D′, j ∈ I ′}, and Lemma 15.4.1 (applied with Z = E [X|Di, i ∈ I] and
X = 1) yields the desired result (15.22) provided

E

∣∣∣∣∣∣
∑
j∈I′

c′j · 1
[
D′j
]∣∣∣∣∣∣
 <∞.(15.25)

This inetgrability condition is automatically satisfied by virtue of (15.24) and the
integrability condition E [|X|] <∞ (which automatically implies E [|E [X|Di, i ∈ I] |] <
∞.

A proof of (15.23) We start with the case of non-negative rvs. So assume first
that X ≥ 0. Applying the definition we start with

E
[
E
[
X|D′j , j ∈ I ′

]
|Di, i ∈ I

]
=

∑
i∈I

E
[
E
[
X|D′j , j ∈ I ′

]
|Di

]
· 1 [Di](15.26)

where the rv E
[
X|D′j , j ∈ I ′

]
is given by

E
[
X|D′j , j ∈ I ′

]
=
∑
j∈I′

E
[
X|D′j

]
· 1
[
D′j
]
.(15.27)
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Fix i in I with P [Di] > 0, and consider the corresponding term in (15.26):
Again applying the definition we find

E
[
E
[
X|D′j , j ∈ I ′

]
|Di

]
= E

∑
j∈I′

E
[
X|D′j

]
· 1
[
D′j
]
|Di


=

∑
j∈I′

E
[
E
[
X|D′j

]
· 1
[
D′j
]
|Di

]
(15.28)

=
∑
j∈I′

E
[
X|D′j

]
· E
[
1
[
D′j
]
|Di

]
(15.29)

with

E
[
1
[
D′j
]
|Di

]
=

E
[
1
[
D′j

]
· 1 [Di]

]
P [Di]

=
P
[
D′j ∩Di

]
P [Di]

, j ∈ I ′.

The equality (15.28) is a consequence of the Monotone Convergence Theorem
applied to a series with non-negative terms. But Di being of the form Di =
∪j∈J ′(i)D′j for some subset J ′(i) ⊆ I ′, it follows that

P
[
D′j ∩Di

]
=

{
P
[
D′j

]
if j ∈ J ′(i)

0 if j /∈ J ′(i).
(15.30)

As a result, we conclude from (15.29) and (15.30) that

E
[
E
[
X|D′j , j ∈ I ′

]
|Di

]
=

∑
j∈I′

E
[
X|D′j

]
·
P
[
D′j

]
P [Di]

· 1
[
j ∈ J ′(i)

]

=
1

P [Di]

 ∑
j∈J ′(i)

E
[
X|D′j

]
· P
[
D′j
]

=
1

P [Di]

 ∑
j∈J ′(i)

E
[
X · 1

[
D′j
]]

=
1

P [Di]

E

X ·
 ∑
j∈J ′(i)

1
[
D′j
](15.31)

=
E [X · 1 [Di]]

P [Di]

= E [X|Di]
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where the equality (15.31) follows by an application of the Monotone Convergence
Theorem applied to a series with non-negative terms. This completes the proof of
(15.23) when X is a non-negative rv.

The case of an arbitrary rv X is treated in the usual manner: With X = X+ −
X−, the first part of the proof for non-negative rvs yields

E
[
E
[
X±|D′j , j ∈ I ′

]
|Di, i ∈ I

]
= E

[
X±|Di, i ∈ I

]
(15.32)

while we have

E
[
X|D′j , j ∈ I ′

]
= E

[
X+|D′j , j ∈ I ′

]
− E

[
X−|D′j , j ∈ I ′

]
.

Therefore,

E
[
E
[
X|D′j , j ∈ I ′

]
|Di, i ∈ I

]
= E

[
E
[
X+|D′j , j ∈ I ′

]
− E

[
X−|D′j , j ∈ I ′

]
|Di, i ∈ I

]
= E

[
E
[
X+|D′j , j ∈ I ′

]
|Di, i ∈ I

]
− E

[
E
[
X−|D′j , j ∈ I ′

]
|Di, i ∈ I

]
= E

[
X+|Di, i ∈ I

]
− E

[
X−|Di, i ∈ I

]
= E [X|Di, i ∈ I]

by the usual arguments. This completes the proof of (15.23) whenX is an arbitrary
rv.

15.7 Conditioning and independence

The next result explores the interplay between conditioning and independence.

Lemma 15.7.1 Consider a rv X : Ω → R which is independent of the the F-
partition {Di, i ∈ I}. If E [|X|] <∞, then

E [X|Di, i ∈ I] = E [X] a.s.(15.33)

Here, the independence of the rv X from the F-partition {Di, i ∈ I} means that
for each i in I , the rvs 1 [Di] and X are independent rvs. Under the assumption
E [|X|] <∞ this independence condition implies

E [X · 1 [Di]] = P [Di] · E [X] , i ∈ I.(15.34)
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Proof. Using (15.8) with (15.34) yields

E [X|Di] = E [X] ,
i ∈ I

P [Di] > 0.

It then follows that

E [X|Di, i ∈ I] =
∑
i∈I

E [X|Di] · 1 [Di]

=
∑

i∈I: P[Di]>0

E [X|Di] · 1 [Di] a.s.

=

 ∑
i∈I: P[Di]

·1 [Di]

 · E [X]

= E [X] a.s.

since
∑

i∈I: P[Di]>0 1 [Di] =
∑

i∈I 1 [Di] = 1 a.s.

15.8 Characterizing the conditional expectation with re-
spect to a partition

The following characterization foreshadows forthcoming developments in the gen-
eral case discussed in Section 16.2.

Lemma 15.8.1 For any rv X : Ω→ R with E [|X|] <∞, it holds that

E [1 [D]E [X|Di, i ∈ I]] = E [1 [D]X](15.35)

for any event D in F of the form

D = ∪j∈JDj(15.36)

for some index set J ⊆ I .

The conditions (15.35)-(15.36) collectively characterize the rv E [X|Di, i ∈ I]
given in Definition 15.2.1 as essentially the only rv Z of the form

Z =
∑
i∈I

ci1 [Di](15.37)

with scalars {ci, i ∈ I}. This is a consequence of the next result.
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Lemma 15.8.2 Consider a rv X : Ω→ R such that E [|X|] <∞, and let Z1, Z2 :
Ω → R be rvs of the form (15.37) such that both E [Z1] and E [Z2] exist. If both
rvs satisfy the conditions

E [1 [D]Zk] = E [1 [D]X] ,
D ∈ D
k = 1, 2,

(15.38)

then they have finite expectations with E [|Z1|] <∞ and E [|Z2|] <∞, and Z1 =
Z2 a.s.

As this result is subsumed by Claim (ii) of Theorem 16.2.1, its proof will not
be provided; see also Section 16.7 to map conditioning with respect to a partition
into the general notion of conditioning.

15.9 A proof of Lemma 15.8.1

Throughout fix D in F of the form D = ∪j∈JDj for some J ⊆ I .

Non-negative rvs We first assume that the rv X is non-negative, say X : Ω →
R+, in which case we have E [X|Di] ≥ 0 for each i in I . Fix D in F of the form
D = ∪j∈JDj for some J ⊆ I . Thus,

E [1 [D]X] = E

∑
j∈J

1 [Dj ]

X


=

∑
j∈J

E [1 [Dj ]X](15.39)

=
∑

j∈J : P[Dj ]>0

E [X|Dj ] · P [Dj ]

=
∑

j∈J : P[Dj ]>0

E [1 [Dj ] · E [X|Dj ]]

=
∑

j∈J : P[Dj ]>0

E [1 [Dj ] · E [X|Di, i ∈ I]]

= E

 ∑
j∈J : P[Dj ]>0

1 [Dj ] · E [X|Di, i ∈ I]

(15.40)

= E

 ∑
j∈J : P[Dj ]>0

1 [Dj ]

 · E [X|Di, i ∈ I]


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= E

∑
j∈J

1 [Dj ]

 · E [X|Di, i ∈ I]


= E [1 [D] · E [X|Di, i ∈ I]]

as desired – Both (15.39) and (15.40) are validated by monotone convergence if J
is countably infinite. In the equality before last we have used the fact that∑

j∈J : P[Dj ]>0

1 [Dj ] =
∑
j∈J

1 [Dj ] = 1 [D] a.s.

Arbitrary rvs To obtain the result in the arbitrary case, use the usual decompo-
sition X = X+ −X− with E [X±] finite since E [|X|] < ∞. Therefore, starting
with the definition we find that E [X±|Di, i ∈ I] is finite with

E
[
X±|Di, i ∈ I

]
=
∑
i∈I

E
[
X±|Di

]
· 1 [Di]

It is now plain that

E
[
X+|Di, i ∈ I

]
− E

[
X−|Di, i ∈ I

]
=

∑
i∈I

E
[
X+|Di

]
· 1 [Di]−

∑
i∈I

E
[
X−|Di

]
· 1 [Di]

=
∑
i∈I

(
E
[
X+|Di

]
− E

[
X−|Di

])
· 1 [Di]

=
∑
i∈I

E [X|Di] · 1 [Di]

= E [X|Di, i ∈ I](15.41)

as we make use of the fact E [X|Di] = E [X+|Di]− E [X−|Di] for each i in I .
The first part of the proof yields

E
[
1 [D] · E

[
X±|Di, i ∈ I

]]
= E

[
1 [D] ·X±

]
.(15.42)

Noting that E [X±|Di, i ∈ I] ≥ 0 a.s., we conclude from (15.42) (with D = Ω)
that the rv E [X±|Di, i ∈ I] has finite expectation and so does E [X|Di, i ∈ I] by
virtue of (15.41). Using (15.41) again we conclude that

E [1 [D] · E [X|Di, i ∈ I]]

= E
[
1 [D] ·

(
E
[
X+|Di, i ∈ I

]
− E

[
X−|Di, i ∈ I

])]
= E

[
1 [D] · E

[
X+|Di, i ∈ I

]]
− E

[
1 [D] · E

[
X−|Di, i ∈ I

]]
= E

[
1 [D] ·X+

]
− E

[
1 [D] ·X−

]
(15.43)

= E [1 [D]X]
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where (15.43) follows from the validity of the result for non-negative rvs. This
completes the proof of Lemma 15.8.1.

15.10 Exercises

Ex. 15.1 Consider a rv X : Ω→ R with E [|X|] <∞.
a. Compute E [X|D] when D = Ω.
b. Compute the conditional expectation of X given the F-partition {Ω}.

Ex. 15.2 Let X denote a geometric rv with parameter 0 < a < 1, namely

P [X = k] = (1− a)ak, k = 0, 1, . . .

a. Compute the conditional probabilities

P [X = k + `|X ≥ k] , k, ` = 0, 1, . . .

b. (Converse) Consider now a discrete rv Y with support {0, 1, . . .} and pmf
(pr, r = 0, 1, . . .). Define

q`|k := P [Y = k + `|Y ≥ k] , k, ` = 0, 1, . . .

For each k = 0, 1, . . ., (q`|k, ` = 0, 1, . . .) can be viewed as the pmf for a discrete
rv with support {0, 1, . . .}. Determine all the pmfs (pr, r = 0, 1, . . .) with the
property that

q`|k = p`, k, ` = 0, 1, . . .

simultaneously!

Ex. 15.3 With a in (0, 1), consider a collection of mutually independent Bernoulli
rvs {Bk, k = 1, 2, . . .} with

P [Xk = 1] = 1− P [Xk = 0] = a, k = 1, 2, . . .

For each n = 1, 2, . . ., define the partial sums Sn ≡ B1 + . . .+Bn.
a. For each n = 1, 2, . . . compute the conditional probabilities

P [Bk = b|Sn = s] ,
b = 0, 1

s = 0, 1, . . . , n
k = 1, . . . , n
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Is the result surprising?
b. For each n = 1, 2, . . . compute the conditional probabilities

P [Bk = bk, B` = b`|Sn = s] ,
bk, b` ∈ {0, 1}
s = 0, 1, . . . , n

k 6= `, k, ` = 1, . . . , n

Are the rvs Bk and B` conditionally independent given that Sn = s?

Ex. 15.4 Consider a rv X : Ω → R of the discrete type with P [X ∈ S] = 1
where S ≡ {ai, i ∈ I} for some countable index set I . Let B an event such that
P [B] > 0 – Obviously bothX andB are defined on the same sample space Ω with
B in F . Define the function F (·|B) : R→ [0, 1] by

F (x|B) ≡ P [X ≤ x|B] , x ∈ R.

If this probability distribution function were to be of the discrete type, show that
its atoms are also atoms for the discrete rv X , i.e., if P [X = a|B] > 0 for some a
in R, then P [X = a] > 0.

Ex. 15.5 If the discrete rv X : Ω→ R has pmf given by

P [X = 1] = P [X = 0] =
1

2
,

define the rv Y ≡ 1 + (−1)X Show that the atoms of the conditional distribution
of Y given X = 1 form a strict subset of the set of atoms of Y .

Ex. 15.6 Let the second-order rv N be a discrete rv whose support is contained
in N0 (i.e., P [N ∈ N0] = 1), and let {Xn, n = 1, 2, . . .} denote a collection of
second-order rvs. Assume the rvs {N,Xn, n = 1, 2, . . .} to be mutually indepen-
dent.

a. Using pre-conditioning arguments compute the expectation

E

[
1

N

N∑
n=1

Xn

]
.

b. Using pre-conditioning arguments compute the variance

Var

[
1

N

N∑
n=1

Xn

]
.



Chapter 16

Conditional expectations:
The general case

We are now ready to define the general notion of conditional expectation. Rather
than conditioning with respect to a single event (as in Section 15.1) or even with
respect to a family of events forming a partition (as in Section 15.2), it turns out
that the appropriate setting is that of conditioning with respect to a σ-field.

The rvs introduced next are all defined on the probability triple (Ω,F ,P).

16.1 Sub-σ-fields generated by rvs

The following terminology will be useful throughout.

Definition 16.1.1
A collection D of subsets of Ω is called a sub-σ-field of F if D is a σ-field on

Ω such that D ⊆ F .

We begin with a simple definition.

Definition 16.1.2
Let D be a sub-σ-field of F . An rv Rp-valued rv X : Ω → Rp is said to be

D-measurable if
[X ∈ B] ∈ D, B ∈ B(Rp)

(and not merely in F as required in the definition of X as a rv).

211
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These definitions are often used when the σ-field D is itself generated by some
rv Y : Ω→ Rq in the following sense: This σ-field, denoted σ(Y ), is defined by

σ(Y ) ≡
{
Y −1(C) : C ∈ B(Rq)

}
as expected. We have the following important operational characterization of σ(Y )-
measurability.

Lemma 16.1.1 Assume the σ-field D is generated by the rv Y : Ω → Rq, so that
D = σ(Y ):

(i) For any Borel mapping g : Rq → R, the rv Z = g(Y ) is D-measurable.
(ii) Conversely, any D-measurable rv Z : Ω → R can be written in the form

Z = g(Y ) for some Borel mapping g : Rq → R.

A proof is available in Section 16.10.

16.2 The general definition of conditional expectations

We now present a general definition for the conditional expectation given an arbi-
trary σ-field.

Theorem 16.2.1 Let D be a sub-σ-field of F , and consider a rv X : Ω→ R such
that E [|X|] <∞.

(i) (Existence) There exists a D-measurable rv Z : Ω → R with E [|Z|] < ∞
such that

E [1 [D]Z] = E [1 [D]X] , D ∈ D.(16.1)

(ii) (Uniqueness) Let Z1, Z2 : Ω → R be D-measurable rvs such that E [Z1]
and E [Z2] exist. If they both satisfy (16.1), namely

E [1 [D]Zk] = E [1 [D]X] ,
k = 1, 2
D ∈ D(16.2)

then E [|Z1|] <∞ and E [|Z2|] <∞, and Z1 = Z2 a.s.

Proof. Claim (i): We consider first the case when X ≥ 0: Introduce the set
function Q : D → [0,+∞) given by

Q [D] ≡ E [1 [D]X] , D ∈ D.(16.3)

The following three facts hold for the set function Q : D → [0,+∞):
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Q is a measure Obviously, we have Q [∅] = 0. Next, consider a countable col-
lection {Ei, i ∈ I} of disjoint events in F , so that 1 [∪i∈IEi] =

∑
i∈I 1 [Ei]. We

have

Q [∪i∈IEi] = E [1 [∪i∈IEi] ·X]

= E

[(∑
i∈I

1 [Ei]

)
·X

]

= E

[∑
i∈I

(1 [Ei] ·X)

]
=

∑
i∈I

E [1 [Ei] ·X]

=
∑
i∈I

Q [Ei]

where the equality before last is validated by the Monotone Convergence Theorem
applied to a series with non-negative random summands.

Absolute continuity For any event event D in D we have the bounds

E [1 [D] min (X,n)] ≤ nP [D] , n = 1, 2, . . . .

If P [D] = 0, then E [1 [D] min (X,n)] = 0 for all n = 1, 2, . . ., and it follows
that limn→∞ E [1 [D] min (X,n)] = 0. Using the Monotone Convergence The-
orem and the fact that limn→∞ 1 [D] min (X,n) = 1 [D]X we conclude that
E [1 [D]X] = 0. Thus, whenever P [D] = 0 for an event D in D, we have
Q [D] = 0, and Q is absolutely continuous with respect to Q on D.

Finiteness Both the measure Q : D → [0,∞) and the underlying probability
measure P are finite measures with Q [Ω] = E [X] and P [Ω] = 1.

The celebrated Radon-Nikodym Theorem can now be applied to the pair of
measures Q and P (restricted to D): It implies the existence of a D-measurable rv
L : Ω→ [0,+∞) such that

Q [D] = E [1 [D]L] , D ∈ D.(16.4)
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Combining (16.3) and (16.5) we conclude that

E [1 [D]L] = E [1 [D]X] , D ∈ D.(16.5)

Using D = Ω in (16.5) we see that E [L] is finite since E [X] is finite. Obviously,
the D-measurable rv L is a candidate for the D-measurable rv Z which satisfies
(16.1).

To handle the case of an arbitrary rv X : |Ω → R, we proceed in the usual
manner: Write X = X+ − X− and use the earlier part of the proof. There exist
D-measurable rvs L± : Ω→ [0,+∞) such that

E
[
1 [D]L±

]
= E

[
1 [D]X±

]
, D ∈ D.(16.6)

with E [L±] < ∞ by the first part of the proof. It is now immediate from (16.6)
that

E
[
1 [D]

(
L+ − L−

)]
= E

[
1 [D]X+

]
− E

[
1 [D]X−

]
= E [1 [D]X] , D ∈ D.(16.7)

This time theD-measurable rvL+−L− is a candidate for the desiredD-measurable
rv Z which satisfies (16.1).

Claim (ii): The condition E [|X|] < ∞ guarantees that E [1 [D]X] is finite
for any event D in D. Therefore, for each k = 1, 2, introducing the D-measurable
eventsD+

k = [Zk ≥ 0] andD−k = [Zk ≤ 0] in (16.2), we conclude that E
[
1
[
D±k
]
Zk
]

is finite. Since Z+
k = 1

[
D+
k

]
Zk while Z−k = −1

[
D−k
]
Zk, it immediately fol-

lows that the rv Z±k has a finite expectation, and so does the rv Zk.
By linearity the condition (16.2) now implies

E [1 [D]Z] = 0, D ∈ D(16.8)

with D-measurable rv Z = Z1 − Z2. Using (16.8) with D-measurable events
D+ = [Z ≥ 0] and D− = [Z < 0], we readily conclude that 1 [D+]Z = Z+ = 0
a.s., and 1 [D−]Z = −Z− = 0 a.s., whence Z = Z+ − Z− = 0 a.s.

The D-measurable rvs with finite expectation satisfying (16.1) form an equiv-
alence class; any one of its representatives will be denoted by E [X|D].

16.3 Elementary properties

We now list several basic properties of conditional expectations. They can all be
derived through the characterization and uniqueness of Theorem 16.2.1.
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A. Mutiplying by a constant
For any X : Ω→ R with E [|X|] <∞, and any c in R, we have

E [c ·X|D] = c · E [X|D] a.s.

Indeed, for any event D in D,

E [1 [D]E [c ·X|D]] = E [1 [D] c ·X]

= cË [1 [D]X]

= c · E [1 [D]E [X|D]]

= E [1 [D] c · E [X|D]]

and the conclusion follows by uniqueness as we note that the rv c · E [X|D] is D-
measurable.

B. Addition
For any rvs X,Y : Ω→ R with E [|X|] <∞ and E [|Y |] <∞, we have

E [X + Y |D] = E [X|D] + E [Y |D] a.s.

For any event D in D, both rvs E [X|D] and E [Y |D] are integrable. Next note
that

E [1 [D]E [X + Y |D]] = E [1 [D] (X + Y )]

= E [1 [D]X] + E [1 [D]Y ]

= E [1 [D]E [X|D]] + E [1 [D]E [Y |D]]

= E [1 [D] (E [X|D] + E [Y |D])](16.9)

and the conclusion follows by uniqueness since the rv E [X|D] + E [Y |D] is D-
measurable.

C. Monotonicity
Consider rvs X,Y : Ω → R with E [|X|] < ∞ and E [|Y |] < ∞. Whenever

X ≤ Y a.s., we have
E [X|D] ≤ E [Y |D] a.s.
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For any D in D, the inequality X ≤ Y a.s. implies E [1 [D]X] ≤ E [1 [D]Y ]
and using (16.1) we get

E [1 [D] · E [X|D]] ≤ E [1 [D] · E [Y |D]] .

and using linearity we obtain

0 ≤ E [1 [D] · E [Y |D]]− E [1 [D] · E [X|D]]

= E [1 [D] · (E [Y |D]− E [X|D])]

= E [1 [D] · E [Y −X|D]] .

Using the D-measurable event D− ≡ [E [Y −X|D] ≤ 0] in this last expression
we get

0 ≤ E
[
1
[
D−
]
· E [Y −X|D]

]
≤ 0

since 1 [D−] ·E [Y −X|D] ≤ 0. Therefore, we have E [1 [D−] · E [Y −X|D]] =
0 and the conclusion 1 [D−] · E [Y −X|D] = 0 a.s. follows.

D. Taking absolute values
If E [|X|] <∞, then |E [X|D] | ≤ E [|X||D] a.s.

The result is a simple consequence of Property C as we note that−|X| ≤ X ≤
|X|.

16.4 The localization lemma

Lemma 16.4.1 For any rvs X,Z : Ω→ R with E [|X|] <∞ and E [|ZX|] <∞,
we have

E [ZX|D] = ZE [X|D] a.s.(16.10)

whenever the rv Z is D-measurable.

In other words, when Z is a D-measurable rv it acts as a constant in the condi-
tioning process with respect to the partition, and can therefore be taken out of the
conditional expectation.

Proof.
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Simple rvs Let D denote an event in D. If the D-measurable rv Z is of the
form Z = 1 [D′] for some event D′ in D, then by repeated application of Theorem
16.2.1 we get

E
[
1 [D] · E

[
1
[
D′
]
·X|D

]]
= E

[
1 [D] ·

(
1
[
D′
]
·X
)]

= E
[
1
[
D ∩D′

]
·X
]

= E
[
1
[
D ∩D′

]
· E [X|D]

]
= E

[
1 [D] ·

(
1
[
D′
]
· E [X|D]

)]
(16.11)

since the event D ∩D′ is in the σ-field D given that both are in it. It follows that
(16.10) holds for a D-measurable rv Z of the form Z = 1 [D′] with D′ in D.

If is now straightforward by linearity that (16.10) also holds for any simple D-
measurable rv Z, i.e., a rv Z of the form Z =

∑
i∈I ci1 [Di] for a finiteD-partition

{Di, i ∈ I} and scalars {ci, i ∈ I}.

Non-negative rvs Now assume that the rv Z is non-negative. Lemma 10.3.1
guarantees the existence of a staircase approximation {Zn, n = 1, 2, . . .} of Z
made of simple non-negative D-measurable rvs Ω → R+. For each n = 1, 2, . . .,
we have |ZnX| ≤ |ZX|, hence the integrability condition E [|ZX|] < ∞ insures
E [|ZnX|] <∞ and we conclude to

E [Zn ·X|D] = Zn · E [X|D] a.s.

by the first part of the proof.

Arbitrary rvs

16.5 Taking expectations and iterated conditioning

The first result is a simple consequence of the characterization (16.1) with D = Ω.

Lemma 16.5.1 For any rv X : Ω→ R such that E [|X|] <∞, the rv E [X|D] has
a finite expectation with

E [E [X|D]] = E [X] .(16.12)

The next result forms the basis of the operational usefulness of conditioning
through pre-conditioning.
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Lemma 16.5.2 Let D and D′ be two sub-σ-fields of F with D ⊆ D′. For any rv
X : Ω→ R with E [|X|] <∞, we have

E
[
E [X|D] |D′

]
= E [X|D] a.s.(16.13)

and
E
[
E
[
X|D′

]
|D
]

= E [X|D] a.s.(16.14)

Proof. Obviously, the rv E [X|D] is D-measurable, hence D′-measurable. Using
the localization property of conditional expectation given in Lemma 16.4.1 we get
(16.13).

Pick D in D, and note that

E
[
1 [D]E

[
E
[
X|D′

]
|D
]]

= E
[
1 [D]E

[
X|D′

]]
= E [1 [D]X]

= E [1 [D]E [X|D]] .(16.15)

The first equality used (16.1) when taking the conditional expectation of the rv
E [X|D′] with respect to the sub-σ-field D, while the second equality uses (16.1)
when taking the conditional expectation of the rv X with respect to the sub-σ-field
D′ – Recall that theD-measurable event D is alsoD′-measurable. The final equal-
ity uses (16.1) when taking the conditional expectation of the rv X with respect to
the sub-σ-field D. The desired conclusion then follows by uniqueness.

16.6 Conditional expectations and independence

Lemma 16.6.1 Consider a rv X : Ω → R with E [|X|] < ∞. If the rv X is
independent of the σ-field D, then

E [X|D] = E [X] a.s.(16.16)

Here, the independence of the rv X from the σ-field D means that for each D in
D, the rvs X and 1 [D] are independent.
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Proof. By independence we note that

E [1 [D]X] = P [D]E [X] = E [1 [D]E [X]] , D ∈ D

and the conclusion follows by uniqueness since the defining condition (16.1) holds
for the constant rv E [X] (which is of course D-measurable).

Lemma 16.6.1 is often used when the conditioning σ-field D is generated by
some rv Y : Ω → Rq , thus D = σ(Y ), and the rvs X and Y are independent (in
which case the σ-field D and the rv X are independent in the sense used earlier).

Consider a Borel mapping h : Rp × Rq → R, and rvs X : Ω → Rp and
Y : Ω→ Rq such that E [|h(X,Y )|] <∞. Define the mapping ĥ : Rq → R given
by

ĥ(y) = E [h(X, y)] , y ∈ Rq.

This definition is always well posed, and produces a Borel mapping Rq → R.

Lemma 16.6.2 If the rv X is independent of the σ-field D and the rv Y is D-
measurable, then

E [h(X,Y )|D] = ĥ(Y ) a.s.

Proof. The proof proceeds according to the usual pattern.

Case I Consider first the case where the Borel mapping h : Rp × Rq → R is of
the form

h(x, y) = 1 [y ∈ C] g(x),
x ∈ Rp
y ∈ Rq

with Borel mapping g : Rp → R such that E [|g(X)|] < ∞ and Borel subset C in
B (Rq). For everyD inD, the eventD∩ [Y ∈ C] belongs toD under the foregoing
assumptions. It follows that

E [1 [D]E [h(X,Y )|D]] = E [1 [D]h(X,Y )]

= E [1 [D]1 [Y ∈ C] g(X)]

= E [1 [D ∩ [Y ∈ C]] g(X)]

= E [1 [D ∩ [Y ∈ C]]E [g(X)|D]]

= E [1 [D ∩ [Y ∈ C]]E [g(X)]]

= E [1 [D]1 [Y ∈ C]E [g(X)]](16.17)
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as we made use of the fact that the rv X is independent of the σ-field D. By the
usual uniqueness argument, we conclude that

E [h(X,Y )|D] = 1 [Y ∈ C]E [g(X)] = ĥ(Y ) a.s.

upon noting that here

ĥ(y) = E [h(X, y)] = E [1 [y ∈ C] g(X)] = 1 [y ∈ C]E [g(X)] , y ∈ Rq.

Case II The result immediately follows for any Borel mapping h : Rp×Rq → R
of the form

h(x, y) =
∑
i∈I

1 [y ∈ Ci] gi(x),
x ∈ Rp
y ∈ Rq

with I a finite index set, and for each i in I , Borel mapping gi : Rp → R such that
E [|gi(X)|] <∞ and Borel subset Ci in B (Rq). By additivity, we get

E [h(X,Y )|D] = E

[∑
i∈I

1 [Y ∈ Ci] gi(X)|D

]
a.s.

=
∑
i∈I

E [1 [Y ∈ Ci] gi(X)|D] a.s.

=
∑
i∈I

1 [Y ∈ Ci]E [gi(X)] a.s.

= ĥ(Y ) a.s.(16.18)

as we note that

ĥ(y) = E [h(X, y)]

= E

[∑
i∈I

1 [y ∈ Ci] gi(X)

]
=

∑
i∈I

1 [y ∈ Ci]E [gi(X)] , y ∈ Rq.(16.19)

Case III
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16.7 The σ-field generated by a countable partition

At this point the reader may wonder as to what is the connection between the
conditioning with respect to a partition discussed in Chapter 15 and the notion of
conditioning with respect to a σ-field defined in Section 16.2. The easiest way to
understand how the latter indeed subsumes the former is to associate a sub-σ-field
with the countable partition.

To that end, let {Di, i ∈ I} be a countable F-partition of Ω, and consider the
sub-σ-field D = σ (Di, i ∈ I) generated by the partition {Di, i ∈ I}. It is easy
to check that every element D of D is of the form

D = ∪j∈JDj(16.20)

for some countable subset J ⊆ I (possibly empty if D = ∅ or J = I if D = Ω).

Fact 16.7.1 Consider anD-measurable rvX : Ω→ Rp whereD = σ (Di, i ∈ I).
For each i in I , the rvX is constant on the eventDi, and the values {X(ω), ω ∈ Ω}
achieved by X form a countable set of points in Rp.

Proof. For each x in Rp, the D-measurability of X implies that the event [X = x]
is an element in D. The result follows since any element D of D is necessarily of
the form (16.20) for some countable subset J ⊆ I .

In particular, the rv E [X|Di, i ∈ I] is an R-valued rv as soon as E [X] is finite;
as an extended rv, it is D-measurable rv in the sense that

[E [X|Di, i ∈ I] ∈ C] ∈ D, C ∈ B (R) .

This is a consequence of the observation that for each j in I , we have E [X|Di, i ∈ I] =
E [X|Dj ] on the event Dj .

In view of Lemma 15.8.2, the rv E [X|Di, i ∈ I] belongs to an a.s. equiva-
lence class ofD-measurable rvs which all satisfy (15.38). It is just a representative
of this equivalence class. Following usage we shall refer to this equivalence class
as the conditional expectation of the rv X given the σ-field D, here σ (Di, i ∈ I),
and we denote any of its representative by E [X|D].

16.8 Countable partitions and discrete rvs

We briefly discuss how F-partitions are induced by discrete rvs, and how this ul-
timately relates to conditional expectations with respect to such rvs: Consider a
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discrete rv Y : Ω → Rq. By definition there exists a countable subset S ⊆ Rp
such that P [Y ∈ S] = 1. For ease of notation, with I countable we shall use the
representation S = {yi, i ∈ I} where the elements are distinct and each of the
events {[Y = yi], i ∈ I} is non-empty. So far we can only assert that the event

ΩY ≡ ∪i∈I [Y = yi]

has probability one, or equivalently, that the complement Ωc
Y has zero probability.

Nothing precludes the set of values

{Y (ω), ω /∈ ΩY }

to form an uncountable set. Only when that set is empty, will the collection {[Y =
yi], i ∈ I} be an F-partition of Ω.

To remedy this difficulty, pick an element b not in S and define the discrete rv
Yb : Ω→ Rq by

Yb(ω) ≡


Y (ω) if ω ∈ ΩY

b if ω /∈ ΩY .

The collection {[Y = b], [Y = yi], i ∈ I} is now an F-partition of Ω. The
following facts are easy consequences from the following observation

P [Y 6= Yb] ≤ P [Ωc
Y ] = 0.

(i) The rvs Y and Yb have the same probability distribution under P. If X :
Ω → Rp is another rv, the pairs (X,Y ) and (X,Yb) have the same probability
distribution under P.

(ii) Consider a Borel mapping h : Rp×Rq → R such that E [|h(X,Y )|] <∞.
With

Sb = {yi,∈ I; b} = S ∪ {b},

and Db = σ([Y = b], [Y = yi], i ∈ I), we note that

E [h(X,Y )|Db]
= E [h(X,Yb)|Db]
=

∑
y∈Sb

E [h(X,Yb)|Yb = y]1 [Yb = y]

=
∑
y∈S

E [h(X,Yb)|Yb = y]1 [Yb = y] + E [h(X,Yb)|Yb = b]1 [Yb = b]

=
∑
y∈S

E [1 [Yb = y]h(X,Yb)]

P [Yb = y]
1 [Yb = y] + E [h(X,Yb)|Yb = b]1 [Yb = b]
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=
∑
y∈S

E [1 [Yb = y]h(X, y)]

P [Yb = y]
1 [Yb = y] + E [h(X,Yb)|Yb = b]1 [Yb = b]

=
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y] + E [h(X,Yb)|Yb = b]1 [Yb = b]

It follows that

E [h(X,Yb)|Db] =
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y] P-a.s.

(iii) In light of this last calculation, with Borel mapping h : Rp×Rq → R such
that E [|h(X,Y )|] <∞, for distinct values b 6= c in Rq, we have

E [h(X,Yb)|Db] = E [h(X,Yc)|Dc] P-a.s.

where we use the notation Db = σ([Y = b], [Y = yi], i ∈ I) and Dc = σ([Y =
c], [Y = yi], i ∈ I).

In other words, although the two conditional expectation rvs are not necessarily
identical (as mappings Ω → R), they are equal to each other except on a set of
zero probability measure (under P). As this notion defines an equivalence relation
on rvs, we write E [h(X,Y )|Y ] (or sometimes E [h(X,Y )|σ(Y )]) to denote any
representative in the equivalence class.

(iv) One standard representative in that class of P-equivalent rvs is given by∑
y∈S

E [h(X,Y )|Y = y]1 [Y = y](16.21)

Note that all the terms in (16.21) are well defined in terms of Y ! It is convenient
to use this expression when representing the conditional expectation of h(X,Y )
given Y .

(v) Next, observe that∑
y∈S

E [h(X,Y )|Y = y]1 [Y = y]

=
∑
y∈S

E [1 [Y = y]h(X,Y )]

P [Y = y]
1 [Y = y]

=
∑
y∈S

E [1 [Y = y]h(X, y)]

P [Y = y]
1 [Y = y]

=
∑
y∈S

E [h(X, y)|Y = y]1 [Y = y](16.22)
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This last expression suggests introducing the mapping ĥ : Rq → R given by

ĥ(y) =


E [h(X, y)|Y = y] if y ∈ S

h?(y) if y /∈ S

where h? : Rq → R is an arbitrary Borel mapping such that E [|h?(Y )|] < ∞.
This definition is always well posed, and produces a Borel mapping Rq → R.

With this notation we conclude that∑
y∈S

E [h(X,Y )|Y = y]1 [Y = y]

=
∑
y∈S

E [h(X, y)|Y = y]1 [Y = y]

=
∑
y∈S

ĥ(y)1 [Y = y]

=
∑
y∈S

ĥ(Y )1 [Y = y]

= ĥ(Y )

∑
y∈S

1 [Y = y]


= ĥ(Y ) P-a.s.(16.23)

since ∑
y∈S

1 [Y = y] = 1 [Y ∈ S] = 1 P-a.s.

(vi) Symbolically, this last discussion can be summarized as follows:

E [h(X,Y )|Y ] = (E [h(X,Y )|Y = y])y=Y

= (E [h(X, y)|Y = y])y=Y P-a.s.(16.24)

16.9 The absolutely continuous case

Consider rvs X : Ω → Rp and Y : Ω → Rq. If the rv Y is absolutely continuous,
then

P [Y = y] = 0, y ∈ Rq

since ∫
{y}

fY (η)dη = 0.
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As a result, for each y in Rq we cannot define the conditional probabilities

P [X ∈ B|Y = y] =
P [X ∈ B, Y = y]

P [Y = y]
, B ∈ B(Rp).

With y in Rq, the ball centered at y with radius ε > 0 is denoted by Bε(y), i.e.,

Bε(y) ≡ {η ∈ Rq : ‖η − y‖ ≤ ε} .

Pick y in Rq such that fY (y) > 0 and assume there exists ε0 > 0 such that

P [Y ∈ Bε(y)] > 0, 0 < ε ≤ ε0.

The basic idea is as follows: Pick B in B(Rp). Whatever definition is given
to the conditional probability P [X ∈ B|Y = y], it is reasonable to expect that it
should be compatible with the limiting value limε↓0 P [X ∈ B|Y ∈ Bε(y)] if it
exists.

With this in mind we note that

P [X ∈ B|Y ∈ Bε(y)] =
P [[X ∈ B] ∩Bε(y)]

P [Bε(y)]

=

∫
B×Bε(y) fXY (ξ, η)dξdη∫

Bε(y) fY (η)dη

=

∫
B

(∫
Bε(y) fXY (ξ, η)dη

)
dξ∫

Bε(y) fY (η)dη

=

∫
B

(∫
Bε(y) fXY (ξ, η)dη∫
Bε(y) fY (η)dη

)
dξ(16.25)

Note that
lim
ε↓0

∫
Bε(y)

fXY (ξ, η)dη = 0, ξ ∈ Rp

and
lim
ε↓0

∫
Bε(y)

fY (η)dη = 0.

However, in many cases of interest in applications, we find that these limits have
the same rate of convergence so that the limit

lim
ε↓0

∫
Bε(y) fXY (ξ, η)dη∫
Bε(y) fY (η)dη
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in fact exists. This is analogous to the situation handled by L’Hospital’s rule when
the indeterminate form 0

0 arises. Indeed note that under broad conditions it holds

lim
ε↓0

∫
Bε(y) fXY (ξ, η)dη

λ(Bε(y))
= fXY (ξ, y), ξ ∈ Rp

and

lim
ε↓0

∫
Bε(y) fY (η)dη

λ(Bε(y))
= fY (y).

where λ(Bε(y)) denotes the Lebesgue measure of the ball Bε(y). It now follows
that

lim
ε↓0

∫
Bε(y) fXY (ξ, η)dη∫
Bε(y) fY (η)dη

= lim
ε↓0

∫
Bε(y)

fXY (ξ,η)dη

λ(Bε(y))∫
Bε(y)

fY (η)dη

λ(Bε(y))

=
fXY (ξ, y)

fY (y)
, ξ ∈ Rp.(16.26)

This suggests

lim
ε↓0

P [X ∈ B|Y ∈ Bε(y)] = lim
ε↓0

∫
B

(∫
Bε(y) fXY (ξ, η)dη∫
Bε(y) fY (η)dη

)
dξ

=

∫
B

lim
ε↓0

(∫
Bε(y) fXY (ξ, η)dη∫
Bε(y) fY (η)dη

)
dξ

=

∫
B

fXY (ξ, y)

fY (y)
dξ(16.27)

under the assumption that the interchange of limit and integration is permissible.
With y in Rq, define the mapping fX|Y (·|y) : Rp → R+ by

fX|Y (x|y) ≡


fXY (x,y)
fY (y) if fY (y) > 0

g(x) if fY (y) = 0

where the Borel mapping g : Rp → R+ is a probability density function, hence
satisfies ∫

Rp
g(x)dx = 1.
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Computing conditional expectations (I) Consider a Borel mapping u : Rp →
R such that that E [|u(X)|] <∞, and pick a Borel set C in B(Rq). Note that

P [[Y ∈ C] ∩ [fY (Y ) = 0]] = 0

since
P [fY (Y ) = 0] =

∫
{η∈Rq : fY (η)=0}

fY (η)dη = 0.

With
C+
Y ≡ {η ∈ Rq : fY (η) > 0} ,

this becomes
P
[
Y /∈ C+

Y

]
= P [fY (Y ) = 0] = 0.

We find

E [1 [Y ∈ C]u(X)] = E [1 [Y ∈ C, fY (Y ) > 0]u(X)]

=

∫
Rp×(C∩C+

Y )
u(ξ)fXY (ξ, η)dξdη

=

∫
C∩C+

Y

(∫
Rp
u(ξ)fXY (ξ, η)dξ

)
dη

by Fubini’s Theorem.
If fY (η) > 0, then∫

Rp
u(ξ)fXY (ξ, η)dξ =

∫
Rp
u(ξ)fX|Y (ξ|η)fY (η)dξ

=

(∫
Rp
u(ξ)fX|Y (ξ|η)dξ

)
fY (η)

= û(η)fY (η)(16.28)

as we define û : Rq → R given by

û(y) =

∫
Rp
u(ξ)fX|Y (ξ|y)dξ, y ∈ Rq.

It can be shown that the mapping û : Rq → R is well defined and Borel.
It follows that

E [1 [Y ∈ C]u(X)] =

∫
C∩C+

Y

û(η)fY (η)dη

=

∫
C
û(η)fY (η)dη

= E [1 [Y ∈ C] û(Y )] .(16.29)
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Recalling that σ(Y ) = {Y ∈ C, C ∈ B(Rq)}, we conclude that

E [u(X)|σ(Y )] = û(Y ) P-a.s.

Computing conditional expectations (II) In a similar way, consider a Borel
mapping v : Rp × Rq → R such that E [|v(X,Y )|] <∞, Then,

E [1 [Y ∈ C] v(X,Y )] = E [1 [Y ∈ C] v̂(Y )] .(16.30)

where we define v̂ : Rq → R given by

v̂(y) =

∫
Rp
v(ξ, y)fX|Y (ξ|y)dξ, y ∈ Rq.

It can be shown that the mapping v̂ → R is well defined and Borel. Here as well
we have

E [v(X,Y )|σ(Y )] = v̂(Y ) P-a.s.

16.10 A proof of Lemma 16.1.1

Claim (i): The conclusion is immediate from the fact that

[Z ∈ B] = [g(Y ) ∈ B]

= [Y ∈ g−1(B)] ∈ D, B ∈ B(R).

since Y isD-measurable and g−1(B) belongs to B(Rp) by the Borel measurability
of g.

Claim (ii): Conversely, assume that the rv Z : Ω → R is D-measurable. The
proof proceeds in three standard steps:

Simple rvs First assume that Z = 1 [D] for some D in σ(Y ), in which case
D = [Y ∈ C] for some C in B(Rq). It is now plain that Z = gC(Y ) with Borel
mapping gC : Rq → R given by

gC(y) =


0 if y /∈ C

0 if y ∈ C.
(16.31)

The desired conclusion is readily seen to hold for simple D-measurable rvs of
the form

Z =
∑
i∈I

ai1 [Di]
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where I is a finite index, {Di, i ∈ I} form a D-partition of Ω and {ai, i ∈ I} are
the associated scalars. Indeed, for each i in I , we have Di = [Y ∈ Ci] for some Ci
in B(Rp), so that Z = g(Y ) with Borel mapping g : Rq → R is given by

g(y) =
∑
i∈I

aigCi(y), y ∈ Rq

where the mapping gCi : Rq → R is associated with Ci through (16.31).

Non-negative rvs For any non-negative D-measurable rv Z : Ω → R+, we in-
troduce the usual monotone increasing sequence of simple rvs {Zn, n = 1, 2, . . .}
given by

Zn =
n−1∑
m=0

2n−1∑
k=0

k

2n
1

[
k

2n
< Z ≤ k + 1

2n

]
, n = 1, 2, . . .

with limn→∞ Zn = Z. Obviously, the simple rvs {Zn, n = 1, 2, . . .} are all D-
measurable, hence by the last part of the proof, for each n = 1, 2, . . ., there exists
a Borel mapping gn : Rq → R such that

Zn = gn(Y ), n = 1, 2, . . .

with the point wise convergence implying

Z(ω) = lim
n→∞

Zn(ω) = lim
n→∞

gn(Y (ω)), ω ∈ Ω.

Now define the subsetL ⊆ Rq byL ≡ {y ∈ Rq : limn→∞ gn(y) exists in R} .
The set L being a Borel subset of Rq, it readily follows that the mapping g : Rq →
R given by

g(y) ≡


limn→∞ gn(y) if y ∈ L

0 if y /∈ L
is a Borel mapping. By construction it is plain that Z = g(Y ) since Y (ω) lies in L
for each ω in Ω.

The general case The case of an arbitrary D-measurable rv Z : Ω → R is
handled in the usual manner: Just write Z = Z+ − Z−, and apply the last con-
clusion to each of the rvs Z+ and Z−. In particular, there exist Borel mappings
g+ : Rq → R+ and g− : Rq → R+ such that Z+ = g+(Y ) and Z− = g−(Y ). The
desired Borel mapping g : Rq → R is then simply given by

g(y) = g+(y)− g−(y), y ∈ Rq.
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Note that it is not necessarily the case that g±(y) = max (0,±g(y)).

16.11 Exercises

Ex. 16.1 Consider a rv X : Ω→ R such that E [|X|] <∞.
a. Compute E [X|T ] where T denotes the trivial σ-field on Ω.
b. Compute E [X|F ].

Ex. 16.2 With D a sub-σ-field of F , let X : Ω → Rp denote a D-measurable
rv. List all the rvs Ω → Rp which are D-measurable when D is the trivial σ-field
D = {∅,Ω}.

Ex. 16.3 Let D1 and D2 be two sub-σ-fields of F such that D1 ⊆ D2 (so D1 is a
sub-σ-field of D2).

a. Show that a rvX : Ω→ Rp which isD1-measurable is alsoD2-measurable.
b. Consider now a rvX : Ω→ Rp which isD2-measurable. Is it automatically

D1-measurable? Either prove or give a counterxample.

Ex. 16.4 With Ω = N, consider the σ-fields F and D on Ω defined by F ≡
σ ({n}, n = 0, 1, . . .) and D ≡ σ ({2n, 2n+ 1}, n = 0, 1, . . .).

a. Show that D is a strict sub-σ-field of F by giving an event E in F which is
not in D.

b. Give a rv X : Ω→ R on (Ω,F) which is not D-measurable.
c. Give a rv X : Ω→ R on (Ω,F) which is D-measurable.

Ex. 16.5 We start with a collection {U1, U2, . . . , Un} of n rvs, each uniformly
distributed over the interval (0, 1), and let P denote a rv with the property that
P [0 < P ≤ 1] = 1. Moreover assume that the n+1 rvs P,U1, . . . , Un are mutually
independent rvs. Under these assumptions we are interested in the rv X defined by

X ≡
n∑
i=1

1 [Ui ≤ P ] .

Using pre-conditioning arguments to answer the following questions:
a. Compute E [X] in terms of E [P ].
b. How many moments of P do you need to know in order to compute Var [X]?
c. Are the rvs 1 [U1 ≤ P ] , . . . ,1 [Un ≤ P ] (i) mutually independent (ii) pair-

wise uncorrelated when S contains at least two elements?



16.11. EXERCISES 231

d. Compute the probabilities

P [X = k] , k = 0, 1, . . . , n.

How many moments of P are needed?

Ex. 16.6 The rvsX,X1, . . . , Xn, all defined on the same probability triple (Ω,F ,P),
are i.i.d. rvs with E [|X|] <∞.

a. Compute
E [Xi|X1 + . . .+Xn]

for each i = 1, . . . , n. The answer does not depend on the (common) probability
distrubition function of X1, . . . , Xn! [HINT: Does the probability distribution of
the pair (Xi, X1 + . . .+Xn) depend on i?]

b. When 1 ≤ k < n, compute

E [X1 + . . .+Xk|X1 + . . .+Xn]

c. When 1 ≤ k < n, compute

E [X1 + . . .+Xn|X1 + . . .+Xk]

Ex. 16.7 The rvs X,X1, . . . , Xn, Y, Y1, . . . , Yn, all defined on the same probabil-
ity triple (Ω,F ,P). We assume the following: (i) The rvsX,X1, . . . , Xn, Y, Y1, . . . , Yn
are mutually independent; (ii) The rvs X,X1, . . . , Xn are i.i.d. rvs with E [|X|] <
∞; and (iii) The rvs Y, Y1, . . . , Yn are i.i.d. rvs with E [|Y |] <∞ – The rvs X and
Y do not necessarily have the same probability distribution.

By using basic properties of conditional expectations, compute

E
[
X1Y1 + . . .+XnYn

∣∣∣ X1 + . . .+Xn

Y1 + . . .+ Yn

]
[HINT: Use iterated conditioning and compute

E
[
X1Y1 + . . .+XnYn

∣∣∣ X1, . . . , Xn

Y1 + . . .+ Yn

]
.

Ex. 16.8 Consider the R-valued rvs U,U1, . . . , Un which are all defined on the
same probability triple (Ω,F ,P). The rvs U,U1, . . . , Un are assumed to be i.i.d.
rvs, each of which is uniformly distributed on the interval (0, 1). Now define the
R-valued rv X by

X =
n∑
k=1

1 [Uk ≤ U ]
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a. With this definition as starting point, use direct probabilistic arguments to
show that

P [X = k] =
1

n+ 1
, k = 0, . . . , n.

b. Using conditioning arguments compute the conditional probability

P [X = k|U ] , k = 0, . . . , n.

c. Use Parts a and b to evaluate the integrals

In(k) ≡
∫ 1

0
tk(1− t)n−kdt, k = 0, . . . , n



Chapter 17

Probability distributions and
their transforms

A number of developments concerning rvs and their probability distribution func-
tions are sometimes best handled through transforms associated with them. There
are a number of such transforms with varying ranges of applications. Here we
focus mainly on the notion of characteristic function.

17.1 Definitions

All rvs are defined on some probability triple (Ω,F ,P). For any element v in Rp
(viewed as a column vector), we write vt for its transpose, so that vtu is simply
the scalar product

∑p
i=1 uivi between the two (column) vectors u and v. We begin

with a basic definition.

Definition 17.1.1
With any rv X : Ω → Rp, we associate its characteristic function ΦX : Rp →

C given by

ΦX(θ) ≡ E
[
eiθ

tX
]
, θ ∈ Rp.(17.1)

Characteristic functions are always well defined regardless of the type of prob-
ability distribution function for the rv X: Indeed the definition (17.1) is well posed
since for each θ in Rp, the rvs Ω → R : ω → cos

(
θtX(ω)

)
and Ω → R : ω →

233
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sin
(
θtX(ω)

)
are both bounded. As a result, their expected values E

[
cos
(
θtX

)]
and E

[
sin
(
θtX

)]
are well defined and finite with∣∣E [cos

(
θtX

)]∣∣ ≤ 1 and
∣∣E [sin (θtX)]∣∣ ≤ 1.

This fact allows us to make sense of (17.1) by linearity through the relations

E
[
eiθ

tX
]

= E
[
cos
(
θtX

)
+ i sin

(
θtX

)]
= E

[
cos
(
θtX

)]
+ iE

[
sin
(
θtX

)]
, θ ∈ Rp.(17.2)

Characteristic functions are akin to Fourier transforms. For instance, if the rv X
admits a probability density function fX : Rp → R+, then

ΦX(θ) =

∫
Rp
eiθ

txfX(x)dx, θ ∈ Rp.

If the rv X is a discrete rv with support S ⊆ Rp, then

ΦX(θ) =
∑
x∈S

eiθ
txP [X = x] , θ ∈ Rp.

Obviously, the characteristic function ΦX of the rv X is determined by its
probability distribution function FX : Rp → [0, 1]. In fact we could rewrite (17.1)
as

ΦX(θ) =

∫
Rp
eiθ

txdFX(x), θ ∈ Rp.(17.3)

This suggests writing ΦX as ΦFX , and leads to the following definition.

Definition 17.1.2
With any probability distribution function F : Rp → [0, 1], we associate its

characteristic function ΦF : Rp → C defined by

ΦF (θ) ≡
∫
Rp
eiθ

txdF (x), θ ∈ Rp.(17.4)

17.2 An inversion formula and uniqueness

The next result provides an inversion formula when p = 1 [?, Thm. 6.2.1, p. 153].
This result is of theoretical importance, and establish a one-to-one correspondence
between a probability distribution function and its characteristic function. We give
it here without proof. A more general version is also available; see [, Thm. , p. ].
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Theorem 17.2.1 Consider a probability distribution function F : R → [0, 1], and
let ΦF : R→ C be its characteristic function. For a < b in R, it holds that

F (b−)− F (a) +
F (a)− F (a−)

2
+
F (b)− F (b−)

2

= lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
· ΦF (t)dt(17.5)

with the integrand being defined by continuity at t = 0.

Thus, when the probability distribution function F : R→ [0, 1] is a continuous
function, then (17.5) yields

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
· ΦF (t)dt(17.6)

In the language of rvs, Theorem 17.2.1 can be reformulated as follows: For any
rv X : Ω→ R with characteristic function ΦX : R→ C, it holds that

P [a < X < b] +
P [X = a]

2
+

P [X = b]

2

= lim
T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
· ΦX(t)dt(17.7)

with arbitrary a < b in R.
The usefulness of the notion of characteristic function comes in part from the

following uniqueness result which an easy byproduct of the inversion formula.

Theorem 17.2.2 Let F,G : Rp → [0, 1] be two probability distribution functions
on Rp. If their characteristic functions coincide, namely

ΦF (θ) = ΦG(θ), θ ∈ Rp,

then the two probability distribution functions coincide, namely

F (x) = G(x), x ∈ Rp.

Thus, ΦF = ΦG implies F = G. In other words, if a function Rp → C is
known to be the characteristic function of some probability distribution function,
there is no other probability distribution function that can generate this character-
istic function. In the language of rvs, Theorem 17.2.2 states that if two rvs X and
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Y (possibly defined on different probability triples) taking values in Rp have the
same characteristic function, say ΦX = ΦY , then their probability distributions
must coincide, namely FX = FY .

Sometimes a function Φ : R→ C arises in the discussion, and it is imperative
to know whether it is the characteristic function of some rv. The terminology given
next should facilitate the discussion of this issue presented in Sections 17.3 and
17.4.

Definition 17.2.1
A function Φ : R → C is said to be a characteristic function if there exists a

probability distribution F : Rp → [0, 1] such that

Φ(θ) =

∫
Rp
eiθ

txdF (x), θ ∈ Rp(17.8)

in which case Φ = ΦF by Theorem 17.2.2.

Alternatively, a function Φ : R → C is said to be a characteristic function if
there exists a rv X : Ω :→ Rp such that

Φ(θ) = E
[
eiθ

tX
]

= ΦX(θ), θ ∈ Rp.(17.9)

17.3 Basic properties

Not every function Rp → C is a characteristic function. That much is clear from
the basic properties derived in Theorem 17.3.1 given next.

Theorem 17.3.1 Consider a rv X : Ω → Rp with characteristic function ΦX :
Rp → C given by (17.1). It satisfies the following properties:

(i) Boundedness: We have

|ΦX(θ)| ≤ ΦX(0) = 1 θ ∈ Rp.(17.10)

(ii) Uniform continuity on Rp: We have

lim
δ→0

sup (|ΦX(θ + δ)− ΦX(θ)| , θ ∈ Rp) = 0.(17.11)

(iii) Positive semi-definiteness: For every n = 1, 2, . . ., we have
n∑
k=1

n∑
`=1

ΦX(θk − θ`)zkz?` ≥ 0(17.12)

with arbitrary z1, . . . , zn in C and arbitrary θ1, . . . , θn in Rp.
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(iv) Hermitian symmetry: We have

ΦX(−θ) = ΦX(θ)?, θ ∈ Rp.(17.13)

Much of the discussion makes use of the elementary relation

eiθx − 1 =

∫ x

0
iθeiθsds, x, θ ∈ R(17.14)

so that the bounds ∣∣∣eiθx − 1
∣∣∣ ≤ ∫ x

0

∣∣∣iθeiθs∣∣∣ ds ≤ |θ|x(17.15)

hold.1

Proof. (i) It is plain that ΦX(0) = 1. Next,

|ΦX(θ)| ≤ E
[∣∣∣eiθtX ∣∣∣] = 1, θ ∈ Rp.

(ii) Fix θ and δ in Rp. Since

ei(θ+δ)
tX − eiθtX = eiθ

tX
(
eiδ

tX − 1
)
,

it follows that

|ΦX(θ + δ)− ΦX(θ)| =
∣∣∣E [ei(θ+δ)tX]− E

[
eiθ

tX
]∣∣∣

=
∣∣∣E [(eiδtX − 1

)
eiθ

tX
]∣∣∣

≤ E
[∣∣∣(eiδtX − 1

)
eiθ

tX
∣∣∣]

= E
[∣∣∣eiδtX − 1

∣∣∣] ,
so that

sup (|ΦX(θ + δ)− ΦX(θ)| , θ ∈ Rp) ≤ E
[∣∣∣eiδtX − 1

∣∣∣] .(17.16)

Uniform continuity follows if we can show that

lim
δ→0

E
[∣∣∣eiδtX − 1

∣∣∣] = 1.

1With ab in R, we have
|a+ ib| =

√
a2 + b2 ≤ |a|+ |b|.
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This last statement is a simple consequence of the Bounded Convergence Theorem.
as we note that limδ→0 cos

(
δtX

)
= 1 and limδ→0 sin

(
δtX

)
= 0.

(iii) Fix n = 1, 2, . . . and pick arbitrary z1, . . . , zn in C: It is plain that

n∑
k=1

n∑
`=1

ΦX(θk − θ`)zkz?`

=
n∑
k=1

n∑
`=1

E
[
ej(θk−θ`)

tX
]
zkz

?
`

= E

[
n∑
k=1

n∑
`=1

ej(θk−θ`)
tXzkz

?
`

]

= E

[
n∑
k=1

n∑
`=1

ejθ
t
kXe−θ

t
`Xzkz

?
`

]

= E

[(
n∑
k=1

ejθ
t
kXzk

)(
n∑
`=1

ejθ
t
`Xz`

)?]

= E

∣∣∣∣∣
n∑
k=1

ejθkXzk

∣∣∣∣∣
2
 ≥ 0.(17.17)

(iv) Fix θ in Rp. We note that

ΦX(−θ) = E
[
e−θ

tX
]

= E
[
cos
(
−θtX

)]
+ iE

[
sin
(
−θtX

)]
= E

[
cos
(
θtX

)]
− iE

[
sin
(
θtX

)]
=

(
E
[
cos
(
θtX

)]
+ iE

[
sin
(
θtX

)])?
= ΦX(θ)?(17.18)

as desired.

17.4 Bochner’s Theorem

Interestingly enough the first three properties given in Theorem 17.3.1 turn out to
be sufficient. This is a consequence of a deep result of Harmonic Analysis, known
as the Bochner-Herglotz Theorem [?, Thm. 6.5.2, p. 179].
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Theorem 17.4.1 A function Φ : Rp → C is a characteristic function if it is (i)
bounded with |Φ(θ)| ≤ Φ(0) = 1 for all θ in Rp; (ii) uniformly continuous on Rp;
and (iii) positive semi-definite.

The property of positive semi-definiteness already implies the boundedness
property (i). It also implies uniform continuity if Φ : R→ C is continuous at θ = 0
[?, Thm. 6.5.1, p. 178]. This gives rise to the following sharp characterization.

Theorem 17.4.2 A function Φ : Rp → C is a characteristic function if and only if
it is positive semi-definite and continuous at θ = 0 with Φ(0) = 1.

17.5 Examples

Bernoulli rvs

ΦX(θ) = peiθ + (1− p), θ ∈ R(17.19)

Binomial rvs

ΦX(θ) =

n∑
k=0

(
n

k

)
pk(1− p)n−keikθ

=

n∑
k=0

(
n

k

)(
eiθp

)k
(1− p)n−k

=
(

1− p+ peiθ
)
, θ ∈ R(17.20)

Poisson rvs

ΦX(θ) =
∞∑
k=0

λk

k!
e−λeikθ

=

( ∞∑
k=0

(λeiθ)k

k!

)
e−λ

= e−λeλe
iθ

= e−λ(1−eiθ), θ ∈ R(17.21)
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Geometric rvs

ΦX(θ) =
∞∑
k=0

p(1− p)keikθ

=
∞∑
k=0

p
(

(1− p)keiθ
)k

=
p

1− (1− p)eiθ
, θ ∈ R(17.22)

Exponential rvs

ΦX(θ) =

∫ ∞
0

λe−λxeiθxdx

= λ

∫ ∞
0

e(iθ−λ)xdx

=
λ

iθ − λ

∫ ∞
0

(iθ − λ)e(iθ−λ)xdx

=
λ

iθ − λ
·
[
e(iθ−λ)x

]∞
0

=
λ

λ− iθ
, θ ∈ R(17.23)

as we note that
lim
x→∞

e(iθ−λ)x = 0.

17.6 Independence via characteristic functions

The setting is as follows: Consider a collection of rvs X1, . . . , Xk defined on some
probability triple (Ω,F ,P). For each ` = 1, . . . , k, the rv X` : Ω → Rp` has
characteristic function ΦX` : Rp` → C. We concatenate the rvs X1, . . . , Xk into
the rv X : Ω→ Rp given by

X ≡

 X1
...
Xk


where p = p1 + . . . + pk. We denote the characteristic function of the rv X by
ΦX : Rp → C. We have the following useful characterization of independence in
terms of characteristic functions.
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Theorem 17.6.1 If the rvs X1, . . . , Xk are mutually independent, then

ΦX(θ) =
k∏
`=1

ΦX`(θ`),
θ` ∈ Rp`

` = 1, . . . , k
(17.24)

with

θ ≡

 θ1
...
θk


Conversely, if (17.24) holds on Rp, then the rvs X1, . . . , Xk are mutually indepen-
dent.

Proof. Fix θ in Rp. Noting that

θtX =
k∑
`=1

θt`X`,

we get

E
[
eiθ

tX
]

= E
[
ei

∑k
`=1 θ

t
`X`
]

= E

[
k∏
`=1

eiθ
t
`X`

]

=
k∏
`=1

E
[
eiθ

t
`X`
]

(17.25)

by independence. The relation (17.24) follows.
Conversely, if (17.24) holds on Rp, then

When p1 = . . . = pk = p, consider the rv S : Ω→ Rp given by

S = X1 + . . .+Xk.

Theorem 17.6.2 If the rvs X1, . . . , Xk are mutually independent, then

ΦS(θ) =
k∏
`=1

ΦX`(θ), θ ∈ Rp.(17.26)
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Proof. Fix θ in Rp. This time noting that θtS =
∑k

`=1 θ
tX`, we get

E
[
eiθ

tS
]

= E
[
ei

∑k
`=1 θ

tX`
]

= E

[
k∏
`=1

eiθ
tX`

]

=
k∏
`=1

E
[
eiθ

tX`
]

(17.27)

by independence.

A case of particular interest arises when the rvs X,X1, . . . , Xk are i.i..d. rvs.
In that case, Theorem 17.6.2 yields

ΦS(θ) = ΦX(θ)k, θ ∈ Rp.(17.28)

17.7 Easy analytical facts

We consider the case p = 1. We begin with a simple fact that will prove useful in
a number of places.

Theorem 17.7.1 Fix x and θ in R. For each k = 1, 2, . . ., the expansion

eiθx =
k∑
`=0

1

`!
(iθx)` +Rk(x; θ)(17.29)

holds with the remainder term given by

Rk(x; θ) = (iθ)k
∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt.(17.30)

Proof. The proof proceed by induction: Throughout θ and x in R are scalars held
fixed.
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Basis step For k = 1, we use (17.14) to get

eiθx − 1 =

∫ x

0
iθeiθtdt

=

∫ x

0
iθ
(
eiθt − 1

)
dt+

∫ x

0
iθdt

= iθx+ iθ

∫ x

0

(
eiθt − 1

)
dt

= iθx+R1(x; θ)(17.31)

by direct inspection.

Induction step Now assume that (17.30)-(17.30) holds for some k = 1, 2, . . .. It
is plain that ∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt

=

∫ x

0

(x− t)k−1

(k − 1)!

(∫ t

0
iθeiθsds

)
dt

=

∫ x

0

(∫ t

0

(x− t)k−1

(k − 1)!
iθeiθsds

)
dt

=

∫ x

0

(∫ x

s

(x− t)k−1

(k − 1)!
iθeiθsdt

)
ds

=

∫ x

0

(∫ x

s

(x− t)k−1

(k − 1)!
dt

)
iθeiθsds

=

∫ x

0
iθ

(x− s)k

k!
eiθsds(17.32)

since ∫ x

s

(x− t)k−1

(k − 1)!
dt =

[
−(x− t)k

k!

]x
s

=
(x− s)k

k!
, 0 ≤ s ≤ x.

Therefore, we have

Rk(x; θ) = (iθ)k
∫ x

0

(x− t)k−1

(k − 1)!

(
eiθt − 1

)
dt

= (iθ)k+1

∫ x

0

(x− s)k

k!
eiθsds
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= (iθ)k+1

∫ x

0

(x− s)k

k!

(
eiθs − 1

)
ds+ (iθ)k+1

∫ x

0

(x− s)k

k!
ds

= Rk+1(x; θ) + (iθ)k+1 xk+1

(k + 1)!
(17.33)

and the proof of the induction step is now completed.

17.8 Characteristic functions and moments

Since the probability distribution function of the rv X can be recovered from its
characteristic function, it is not unreasonable to expect that there might be simple
ways to recover moments whenever they exist and are finite. This is explored
below.

Consider a rv X : Ω → R with characteristic function ΦX : R → C given by
(17.1). Fix θ in R. It follows from Theorem 17.7.1 that

eiθX −
k∑
`=0

1

`!
(iθX)` = Rk(X; θ)(17.34)

Therefore, if the rv X has a finite moment of order k for some k = 1, 2, . . ., the
expectation

E [Rk(X; θ)]

exists and is well defined since all the moments of X of order ` = 1, 2, . . . , k exist
and are finite. Thus, the relationship

E
[
eiθX

]
=

k∑
`=0

1

`!
(iθ)` E

[
X`
]

+ E [Rk(X; θ)](17.35)

does hold. This suggests the following result.

Theorem 17.8.1 Consider a rv X : Ω → R with characteristic function ΦX :
R → C given by (17.1). If E [|X|n] < ∞ for some n = 1, 2, . . ., then for each
k = 1, 2, . . . , n, the characteristic function ΦX : R→ C is everywhere kth differ-
entiable with

dk

dθk
ΦX(θ) = E

[
(iX)k eiθX

]
, θ ∈ R.(17.36)

In particular,
dk

dθk
ΦX(θ)

∣∣∣
θ=0

= ikE
[
Xk
]
.(17.37)
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Proof. If k = 1. Fix θ in R and for each h 6= 0 note that

ΦX(θ + h)− ΦX(θ) = E
[
eiθX

(
eihX − 1

)]
= E

[
eiθX

∫ X

0
iheihtdt

]
(17.38)

so that
1

h
(ΦX(θ + h)− ΦX(θ)) = E

[
eiθX

∫ X

0
ieihtdt

]
.

The bound ∣∣∣∣eiθX ∫ X

0
ieihtdt

∣∣∣∣ =
∣∣∣eiθX ∣∣∣ ∣∣∣∣∫ X

0
ieihtdt

∣∣∣∣ ≤ |X|(17.39)

holds uniformly in h 6= 0, whence

lim
h→0

(
eiθX

∫ X

0
ieihtdt

)
= (iX) eiθX

by the Bounded Convergence Theorem. We now conclude that

lim
h→0

1

h
(ΦX(θ + h)− ΦX(θ)) = lim

h→0
E
[
eiθX

∫ X

0
ieihtdt

]
.

= E
[

lim
h→0

(
eiθX

∫ X

0
ieihtdt

)]
= E

[
(iX) eiθX

]
(17.40)

by the Dominated Convergence Theorem and the conclusion (??) holds for k = 1.
If k ≥ 2, we proceed by induction: The basis step was just established. To

establish the induction step, assume that for each ` = 1, . . . , k−1, the characteristic
function ΦX : R→ C is everywhere `th differentiable with

d`

dθ`
ΦX(θ) = E

[
(iX)` eiθX

]
, θ ∈ R.(17.41)

Under the assumption E
[
|X|k

]
< ∞, we shall now show that the characteristic

function ΦX : R→ C is everywhere (`+ 1)rst differentiable with

d`+1

dθ`+1
ΦX(θ) = E

[
(iX)`+1 eiθX

]
, θ ∈ R.(17.42)
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Indeed, for every h 6= 0, we have

d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ) = E

[
(iX)`

(
ei(θ+h)X − eiθX

)]
= E

[
(iX)` eiθX

(
eihX − 1

)]
= E

[
(iX)` eiθX

∫ X

0
iheihtdt

]
so that

1

h

(
d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ)

)
= E

[
(iX)` eiθX

∫ X

0
ieihtdt

]
Again we see that ∣∣∣∣(iX)` eiθX

∫ X

0
ieihtdt

∣∣∣∣ ≤ |X|`+1

uniformly in h 6= 0 with E
[
|X|`+1

]
<∞ by assumption. Invoking the Dominated

Convergence Theorem we conclude that

lim
h→0

1

h

(
d`

dθ`
ΦX(θ + h)− d`

dθ`
ΦX(θ)

)
= lim

h→0
E
[
(iX)` eiθX

∫ X

0
ieihtdt

]
= E

[
(iX)` eiθX lim

h→0

∫ X

0
ieihtdt

]
= E

[
(iX)`+1 eiθX

]
,(17.43)

and this establishes (17.42) holds. This concludes the induction step as we have
now shown that (17.41) holds for ` = 1, . . . , k.

17.9 Moment generating functions

Definition 17.9.1
With any rv X : Ω→ Rp, we associate its moment generating function (MGF)

MX : Rp → R given by

MX(θ) ≡ E
[
eθ
tX
]
, θ ∈ Rp.(17.44)
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While the moment generating function of any rv X is always well defined – After
all eθ

tX ≥ 0 for all θ ∈ Rp, it may not be finite. In fact it is not too difficult to
find examples for which MX(θ) =∞ for all θ in Rp except θ = 0p (in which case
MX(θ) = 1. This limits the use of moment generating functions

17.10 Laplace transforms

Definition 17.10.1
With any rvX : Ω→ Rp+, we associate its moment generating function (MGF)

MX : Rp → R given by

LX(s) ≡ E
[
e−θ

tX
]
, s ∈ Rp.(17.45)

17.11 Probability generating functions

Definition 17.11.1
With any rv X : Ω → N, we associate its probability generating function

(PGF) GX : R→ R given by

GX(z) ≡ E
[
zX
]
, z ∈ R.(17.46)

17.12 Exercises

Ex. 17.1 If the rv X : Ω → Rp is symmetric, then its characteristic function ΦX

is real-valued, i.e., ΦX(θ) is an element of R for every θ in Rp.

Ex. 17.2 With a > 0 and ν ≥ 0, consider the function Φa,ν : R→ R given by

Φa(θ) ≡ e−a|θ|
1+ν

, θ ∈ R.

Determine whether the function Φa,ν : R → R is the characteristic function
associated with a probability distribution Fa,ν : R→ [0, 1]?

Ex. 17.3

Ex. 17.4
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Chapter 18

Gaussian random variables

This chapter is devoted to a brief discussion of the class of Gaussian rvs. In par-
ticular, for easy reference we have collected various facts and properties to be used
repeatedly, here and in many applications.

18.1 Scalar Gaussian rvs

Definition 18.1.1
With scalars µ (in R) and σ ≥ 0, a rv X : Ω→ R (defined on some probability

triple (Ω,F ,P)) is a Gaussian (or normally distributed) rv with parameters µ and
σ2 if either σ = 0 and X is a degenerate rv with X = µ a.s., or σ > 0 and the
probability distribution of X is of the form

P [X ≤ x] =

∫ x

−∞
fµ,σ2(t)dt, x ∈ R

where

fµ,σ2(t) =
1√

2πσ2
e−

(t−µ)2

2σ2 , t ∈ R.

We leave it as a simple exercise to check that∫
R
tfµ,σ2(t)dt = µ and

∫
R
tfµ,σ2(t)dt = µ2 + σ2(18.1)

so that E [X] = µ and E
[
X2
]

= µ2 + σ2, hence Var[X] = σ2. This shows that
the parameters µ and σ2 are the mean and variance, respectively, of the rv X . In

249
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fact, a Gaussian rv is completely characterized by its first and second moments –
As a result it is customary to refer to the rv X in Definition 18.1.1 as a Gaussian rv
with mean µ and variance σ2, written X ∼ N(µ, σ2).

The characteristic function of Gaussian rvs takes a very simple form.

Fact 18.1.1 If the rv X : Ω→ R (defined on some probability triple (Ω,F ,P)) is
a Gaussian rv with mean µ (in R) and variance σ2 ≥ 0. its characteristic function
ΦX : R→ C is given by

ΦX(θ) = E
[
eiθX

]
= eiθµ−

σ2

2
·θ2 , θ ∈ R.(18.2)

This fact is established in Section 18.13. and allows us to give a definition which
is equivalent to Definition 18.1.1 and which covers both cases.

Definition 18.1.2
A rvX : Ω→ R (defined on some probability triple (Ω,F ,P)) is a Gaussian rv

with mean µ (in R) and variance σ2 ≥ 0 if its characteristic function ΦX : R→ C
is given by

ΦX(θ) = eiθµ−
σ2

2
·θ2 , θ ∈ R.(18.3)

The relations (18.1) can also be established by differentiating the expression
(18.3) and using Theorem 17.8.1. It is a simple matter to check that ifX is normally
distributed with mean µ and variance σ2, then for scalars a and b, the rv aX + b
is normally distributed with mean aµ + b and variance a2σ2. In particular, with
σ > 0, the rv σ−1(X − µ) is a Gaussian rv with mean zero and unit variance.

18.2 The standard Gaussian rv

The Gaussian rv with mean zero (µ = 0) and unit variance (σ2 = 1) is known
as the standard Gaussian rv, and occupies a very special place among Gaussian
rvs. Throughout, we denote by U a Gaussian rv with zero mean and unit variance
(defined on some probability triple (Ω,F ,P)). Its probability distribution function
is given by

P [U ≤ x] = Φ(x) ≡
∫ x

−∞
φ(t)dt, x ∈ R(18.4)

with probability density function φ : R→ R+ given by

φ(t) ≡ 1√
2π
e−

t2

2 , t ∈ R.(18.5)
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As should be clear from earlier comments, for any Gaussian rv X with mean µ
and variance σ2, it holds that X =st µ+ σU , so that

P [X ≤ x] = P
[
σ−1(X − µ) ≤ σ−1(x− µ)

]
= P

[
U ≤ σ−1(x− µ)

]
= Φ(σ−1(x− µ)), x ∈ R.

The evaluation of probabilities involving Gaussian rvs thus reduces to the evalua-
tion of related probabilities for the standard Gaussian rv. It also follows readily by
differentiation of (18.6) that

fµ,σ2(x) = σ−1φ(σ−1(x− µ)), x ∈ R

as expected.
The standard Gaussian rv U is a symmetric rv: Indeed, for each x in R,

the symmetry of the probability density function φ : R → R+ readily implies
P [U ≤ −x] = P [U > x], so that Φ(−x) = 1− Φ(x), and Φ is therefore fully de-
termined by the complementary probability distribution function of U on [0,∞),
namely

Q(x) ≡ 1− Φ(x) = P [U > x] , x ≥ 0.(18.6)

The evaluation of the so-called Q-function is given in Section 18.10 together with
some of its properties (which are often used in Communication Theory).

In Section 18.12 we evaluate the moments of the standard zero-mean unit Gaus-
sian rv U .

Fact 18.2.1 If U is a standard zero-mean unit variance Gaussian rv, then its mo-
ments are all finite and given by

mk ≡ E
[
Uk
]

=


0 if k = 2`+ 1 with ` = 0, 1, . . .

(2`)!
2``!

if k = 2` with ` = 1, 2 . . .

(18.7)

18.3 A little Linear Algebra

Before introducing the notion of a multi-dimensional Gaussian rv, we present some
standard facts from Linear Algebra that are needed in developing the appropriate
definition. Throughout p is a positive integer, and unless specified otherwise, ele-
ments of Rp are understood as column vectors. If u is an element in Rp, then its
kth component is denoted by uk for k = 1, . . . , p, and u = (u1, . . . , up)

t with the
superscript t denoting transposition.
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Definition 18.3.1
A square p× p matrix R is said to be

(i) symmetric if Rt = R, namely

Rk` = R`k, k, ` = 1, . . . , p.

(ii) positive semi-definite if

utRu ≥ 0, u ∈ Rp

(iii) positive definite if it is positive semi-definite and the condition utRu = 0
implies u = (0, . . . , 0)t.

The facts given next concern the eigenvalues and eigenvectors of symmetric
matrices, and are well known:

Theorem 18.3.1 Let R denote a symmetric p× p matrix. It has p eigenvalues, not
necessarily distinct, all of which are real, say λ1, . . . , λp. Moreover, there exists
vectors u1, . . . , up in Rp with the following properties:

(i) The vectors u1, . . . , up form an orthonormal family in the sense that

utku` = δ(k, `), k, ` = 1, . . . , p.

(ii) For each k = 1, . . . , p, the vector uk is an eigenvector for the eigenvalue
λk in that

Ruk = λkuk.

(iii) If in addition, the matrix R is positive semi-definite, then λk ≥ 0 for each
k = 1, . . . , p.

The following calculations are standard: It is customary to introduce the p× p
matrix T formed by taking its columns to be the eigenvectors u1, . . . , up, namely

T ≡
(
u1 u2 . . . up

)
.

The transpose T t of T is given by

T t =


ut1
ut2
...
utp

 .
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From Theorem 18.3.1 we conclude that

RT =
(
λ1u1 λ2u2 . . . λpup

)
and

T tRT =


ut1
ut2
...
utp

( λ1u1 λ2u2 . . . λpup
)

=


λ1u

t
1u1 λ2u

t
1u2 . . . λpu

t
1up

λ1u
t
2u1 λ2u

t
2u2 . . . λpu

t
2up

...
λ1u

t
pu1 λ2u

t
pu2 . . . λpu

p
1up


= Diag(λ1, λ2, . . . , λp)(18.8)

where Diag(λ1, λ2, . . . , λp) is the diagonal matrix whose diagonal elements are
λ1, λ2, . . . , λp. A similar line of reasoning also shows that

T tT =


ut1
ut2
...
utp

( u1 u2 . . . up
)

= Ip

where Ip denotes the p-dimensional unite matrix. By the uniqueness of the inverse
of a matrix, we conclude that T is invertible with T−1 = T t. Since TT−1 =
T−1T = Ip it follows that

TT t = T tT = Ip.

The relation T tRT = Diag(λ1, λ2, . . . , λp) yields

R = T
(
T tRT

)
T t = T (Diag(λ1, λ2, . . . , λp))T

t.

If in addition to being a symmetric matrix, R was also positive semi-definite,
then its eigenvalues are now non-negative and we can write

R =
(
TDiag(

√
λ1,
√
λ2, . . . ,

√
λp)
)
·
(

Diag(
√
λ1,
√
λ2, . . . ,

√
λp)
)
T t

=
(
TDiag(

√
λ1,
√
λ2, . . . ,

√
λp)
)
·
(
TDiag(

√
λ1,
√
λ2, . . . ,

√
λp)
)t
.

The p× p matrix
B ≡ TDiag(

√
λ1,
√
λ2 . . . ,

√
λp)

has the property that R = BBt, and is known as the square root of the positive
semi-definite symmetric matrix R.
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18.4 Gaussian random vectors

There are several equivalent ways to define multi-dimensional Gausssian rvs. Through-
out, let µ denote a vector in Rp and let Σ be a p× p symmetric and positive semi-
definite matrix, thus Σt = Σ and θtΣθ ≥ 0 for all θ in Rp.

A definition via characteristic functions The most convenient definition is given
in terms of characteristic functions.

Definition 18.4.1
An Rp-valued rv X (defined on some probability triple (Ω,F ,P)) is said to be

a Gaussian rv (or a p-dimensional Gaussian random vector) with mean vector µ
and covariance matrix Σ if its characteristic function is given by

E
[
eiθ

tX
]

= eiθ
tµ− 1

2
θtΣθ, θ ∈ Rp.(18.9)

We shall write X ∼ N(µ,Σ).

For the right-handside of (18.9) to be a characteristic function we must have∣∣∣E [eiθtX]∣∣∣ = e−
1
2
θtΣθ ≤ 1, θ ∈ Rp.

This implies θtΣθ ≥ 0 for each θ in Rp, making it necessary for the p × p matrix
Σ to be a positive semi-definite matrix.

Next, fix θ in Rp and use (18.9) with aθ where a ranges in R. It follows that

E
[
eiaθ

tX
]

= eiaθ
tµ−a

2

2
θtΣθ, a ∈ R(18.10)

and by virtue of Definition 18.1.2 we conclude that the scalar rv θtX is a Gaussian
rv with mean θtµ and variance θtΣθ. But θtµ = E

[
θtX

]
= θtE [X] and θtΣθ =

Var
[
θtX

]
= θtCov [X] θ. As these equalities hold for all θ in Rp we conclude

that µ = E [X] and Σ = Cov [X]. In other words, the parameters µ and Σ indeed
have the interpretation of mean and covariance for the rv X . The latter conclusion
also shows that the matrix Σ appearing in (18.9) is necessarily symmetric.

A constructive definition We now present another definition of multi-dimensional
Gaussian rvs. This definition is not give in terms of characteristic functions, but
instead uses only the existence of standard (one-dimensional) Gaussian rvs.
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Definition 18.4.2
An Rp-valued rv X (defined on some probability triple (Ω,F ,P)) is said to be

a Gaussian rv (or a p-dimensional Gaussian random vector) if for some positive
integer d, there exists an element b in Rp, a p × d matrix B and i.i.d. standard
Gaussian rvs U1, . . . , Ud (defined on (Ω,F ,P)) such that

X =st b+B

 U1
...
Ud

 .(18.11)

By linearity of expectations it is plain from (18.11) that

E [X] = E

b+B

 U1
...
Ud


 = b+B

 E [U1]
...

E [Ud]

 = b

and

E
[
(X − b) (X − b)t

]
= E

B
 U1

...
Ud


 U1

...
Ud


t

Bt



= BE


 U1

...
Ud


 U1

...
Ud


tBt

= BIdB
t

= BBt.(18.12)

In short we have shown that if the rv X : Ω → Rp is Gaussian according to
Definition 18.4.2, then

E [X] = b and Cov[X] = BBt.

18.5 Equivalence of the two definitions

We now discuss the equivalence of these two definitions.
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Definition 18.4.2 implies Definition 18.4.1 Next, pick θ in Rp. We note that

θt (X − b) =st θ
tB

 U1
...
Ud

 = (Btθ)t

 U1
...
Ud

 =
d∑

k=1

(
Btθ

)
k
Uk

where for each k = 1, . . . , d,
(
Btθ

)
k

denotes the kth component of the vector Btθ

in Rd. It follows that

E
[
eiθ

t(X−b)
]

= E
[
ei

∑d
k=1(Btθ)kUk

]
= E

[
d∏

k=1

ei(B
tθ)

k
Uk

]

=

d∏
k=1

E
[
ei(B

tθ)
k
Uk
]

by the mutual independence of the rvs U1, . . . , Ud with

E
[
ei(B

tθ)
k
Uk
]

= e−
1
2
|(Btθ)

k
|2

upon using the fact that Uk ∼ N(0, 1) for each k = 1, . . . , d. Collecting terms we
conclude that

E
[
eiθ

t(X−b)
]

=
d∏

k=1

e−
1
2
|(Btθ)

k
|2

= e−
1
2

∑d
k=1 |(Btθ)k|

2

= e−
1
2
θtBBtθ(18.13)

as we note that
d∑

k=1

|
(
Btθ

)
k
|2 = θtBBtθ.

We conclude that

E
[
eiθ

tX
]

= eiθ
tbE
[
eiθ

t(X−b)
]

= eiθ
tbe−

1
2
θtBBtθ, θ ∈ Rp(18.14)

and X ∼ N(b, BBt) according to Definition 18.4.1,



18.6. EXISTENCE OF A DENSITY 257

On the basis of this discussion the reader might wonder whether any p × p
matrix Σ which is both positive semi-definite and symmetric can be realized in this
manner, namely as Σ = BBt for some d× p matrix B. The answer is obviously in
view of the discussion of Section 18.3: There we showed that for any p× p matrix
Σ which is symmetric and positive semi-definite, there always exists a p×pmatrix
B such that Σ = BBt – Its square root! This also shows that although the pair
(d,B) may not be unique, there is always one with smallest dimension, namely
d = p in which case B is taken to be the square-root of the target covariance Σ.

Definition 18.4.1 implies Definition 18.4.2 Consider a rv X : Ω → Rp defined
on some probability triple (Ω,F ,P) which is a Gaussian rv with mean vector µ
and covariance matrix Σ according to Definition Definition 18.4.1. The matrix Σ
being symmetric and positive semi-definite, there exists a p× p matrix B such that
Σ = BBt. Consider the rv X? : Ω→ Rp given by

X? ≡ µ+B

 U1
...
Up


where U1, . . . , Up are i.i.d. standard Gaussian rvs. As shown earlier in this section,
E [X?] = µ and Cov [X?] = BBt = Σ, while

E
[
eiθ

tX?
]

= eiθ
tµ− 1

2
θtΣθ, θ ∈ Rp

Therefore, X? and X have identical characteristic functions, hence they have the
same probability distribution functions and we can write X =st X

?, just another
way to say that X is Gaussian according to Definition 18.4.2.

18.6 Existence of a density

In general, an Rp-valued Gaussian rv as defined above may not admit a density
function: To see why, consider a Gaussian rv X : Ω→ Rp with mean vector µ and
covariance matrix Σ. The kernel Ker(Σ) of its covariance matrix Σ, also known as
its null space, is the linear subspace of Rp given by

Ker(Σ) ≡ {x ∈ Rp : Σx = 0p}.
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Observe that θtΣθ = 0 if and only if θ belongs to Ker(Σ), in which case (18.9)
yields

E
[
eiθ

t(X−µ)
]

= 1

and we conclude that
θt(X − µ) = 0 a.s.

In other words, with probability one, the rv X −µ is orthogonal to the linear space
Ker(Σ).

To proceed, assume that the covariance matrix Σ is not trivial (in that it has
some non-zero entries) for otherwise X = µ a.s. In the non-trivial case, there are
now two possibilities depending on whether the p× p matrix Σ is positive definite
or not. Note that the positive definiteness of Σ, i.e., θtΣθ = 0 necessarily implies
θ = 0d, is equivalent to the condition Ker(Σ) = 0p.

If the p×pmatrix Σ is not positive definite, namely only positive semi-definite,
then the mass of the rv X − µ is concentrated on the orthogonal space Ker(Σ)⊥

of Ker(Σ), and the distribution of X has its support on the linear manifold µ +
Ker(Σ)⊥ and must be singular with respect to Lebesgue measure – The probability
distribution function of the gausssian rv X does not admit a probability density
function.

On the other hand, if the p×pmatrix Σ is positive definite, then the matrix Σ is
invertible, det(Σ) 6= 0 and the Gaussian rv X with mean vector µ and covariance
matrix Σ admits a probability density function f : Rp → R+ given by

f(x) =
1√

(2π)ddet(Σ)
e−

1
2

(x−µ)tΣ−1(x−µ), x ∈ Rp.

18.7 Linear transformations

The following result is very useful in many contexts, and shows that linear trans-
formations preserve the Gaussian character:

Lemma 18.7.1 let ν be an element of Rq and let A be an q × p matrix. Then, for
any Gaussian rv Rp-valued rv X with mean vector µ and covariance matrix Σ, the
Rq-valued rv Y given by

Y = ν +AX

is also a Gaussian rv with mean vector ν +Aµ and covariance matrix AΣAt.

Proof. First, by linearity we note that

E [Y ] = E [ν +AX] = ν +Aµ
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so that

Cov[Y ] = E
[
A(X − µ) (A(X − µ))t

]
= AE

[
(X − µ)(X − µ)t

]
At

= AΣAt.(18.15)

Consequently, the Rq-valued rv Y has mean vector ν +Aµ and covariance matrix
AΣAt.

Pick α arbitrary in Rq. We have

E
[
eiα

tY
]

= E
[
eiα

t(ν+AX)
]

= eiα
tνE

[
eiα

tAX
]

= eiα
tνE

[
ei(A

tα)
t
X
]

= eiα
tνe−

1
2(Atα)

t
Σ(Atα)

= eiα
tνe−

1
2
αtAΣAtα(18.16)

as required.

This result can also be established through the evaluation of the characteristic
function of the rv Y . As an immediate consequence of Lemma 18.7.1 we get the
following fact whose proof is left as an easy exercise.

Corollary 18.7.1 Consider a Gaussian rv Rp-valued rv X with mean vector µ and
covariance matrix Σ. For any subset I of {1, . . . , d} with |I| = q ≤ d, the Rq-
valued rv XI given by XI = (Xi, i ∈ I)t is a Gaussian rv with mean vector
(µi, i ∈ I)t and covariance matrix (Σij , i, j ∈ I).

18.8 Independence of Gaussian rvs

Characterizing the mutual independence of Gaussian rvs turns out to be quite
straightforward: Consider the second-order rvs X1, . . . , Xk, all defined on the
same probability triple (Ω,F ,P), where for each ` = 1, . . . , k, the rv X` : Ω →
Rp` has mean vector µ` and covariance matrix Σ`. With p = p1 + . . . + pr, let X
denote the Rp-valued rv obtained by concatenating X1, . . . , Xk, namely

X =

 X1
...
Xk

 .(18.17)
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Its mean vector µ is simply

µ =

 µ1
...
µk

(18.18)

while its covariance matrix Σ can be written in block form as

Σ =


Σ1 Σ1,2 . . . Σ1,k

Σ2,1 Σ2 . . . Σ2,k
...

...
...

...
Σk,1 Σk,2 . . . Σk

(18.19)

with the notation
Σi,j ≡ Cov[Xi, Xj ] i, j = 1, . . . , k.

Lemma 18.8.1 With the notation above, assume the rv X : Ω → Rp to be a
Gaussian rv with mean vector µ and covariance matrix Σ. Then, for each ` =
1, . . . , k, the rv X` is a Gaussian rv with mean vector µ` and covariance matrix Σ`.
Moreover, the rvs X1, . . . , Xk are mutually independent Gaussian rvs if and only
they are uncorrelated, i.e.,

Σi,j = δ(i, j)Σj , i, j = 1, . . . , k.(18.20)

The first part of Lemma 18.8.1 is a simple rewrite of Corollary 18.7.1. Some-
times we refer to the fact that the rvX is Gaussian by saying that the rvsX1, . . . , Xr

are jointly Gaussian. A converse to Lemma 18.8.1 is available:

Lemma 18.8.2 Assume that for each ` = 1, . . . , k, the rv X` : Ω → Rp` is a
Gaussian rv with mean vector µ` and covariance matrix Σ`. If the rvs X1, . . . , Xk

are mutually independent, then the rv X : Ω → Rp is a Gaussian rv with mean
vector µ and covariance matrix Σ as given by (18.19) with (18.20).

It might be tempting to conclude that the Gaussian character of each of the rvs
X1, . . . , Xk alone suffices to imply the Gaussian character of the combined rv X .
However, it can be shown through simple counterexamples that this is not so. In
other words, the joint Gaussian character of X does not follow merely from that
of its components X1, . . . , Xk without further assumptions. A counterexample is
given in Exercise 18.13.
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18.9 Conditional distributions

Consider the following situation: The rv Z : Ω→ Rp+q is defined on some proba-
bility triple and is of the form

Z =

(
X
Y

)
with component rvs X : Ω→ Rp and Y : Ω→ Rq.

Lemma 18.9.1 There always exists a p× q matrix A? such that the rvs V = X −
E [X]− A?(Y − E [Y ]) and Y are uncorelated. This matrix is any solution of the
matrix equation

Cov [X,Y ] = ACov [Y ] , p× q matrix A.(18.21)

When Cov [Y ] is invertible, then the matrix A is unique and is given by A? =
Cov [X,Y ] Cov [Y ]−1.

Proof. For any p× q matrix A, define the rv VA : Ω→ Rp by

VA ≡ X − E [X]−A(Y − E [Y ]).

Note that

Cov [VA, Y ] = Cov [X − E [X]−A(Y − E [Y ]), Y ]

= Cov [X − E [X] , Y ]− Cov [A(Y − E [Y ]), Y ]

= Cov [X,Y ]−ACov [Y ] .(18.22)

The condition that the rvs VA and Y are uncorrelated reads Cov [VA, Y ] = Op×q, or
equivalently, (18.24). If Cov [Y ] is invertible, then clearly there is only one solution
to this matrix equation (in A), and it is given by A? = Cov [X,Y ] Cov [Y ]−1.

If Cov [Y ] is not invertible, then
Some important consequences can be derived from Lemma 18.9.1, and are

given next.

Lemma 18.9.2 Assume the rv Z : Ω → Rp+q to be a Gaussian rv. With the
notation of Lemma 18.9.1, the rvs V = X − E [X] − A?(Y − E [Y ]) and Y are
independent, each of which is Gaussian.
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Proof. Now consider the rv W : Ω→ Rp+q given by

W ≡
(
X − E [X]−A?(Y − E [Y ])

Y

)
.

We can rewrite W in a more compact form as

W = B

(
X
Y

)
− b = BZ − b

where the (p+ q)× (p+ q) matrix B and the element b of Rp+q are given by

B ≡
(

Ip −A?
Oq×p Iq

)
and b ≡

(
E [X]−A?E [Y ]

0q

)
The Gaussian character of the rv Z implies that the rv W : Ω → Rp+q is also

Gaussian by Lemma 18.7.1. Therefore, the rvs V = X − E [X]−A?(Y − E [Y ])
and Y being uncorrelated, we can use Lemma 18.8.1 to conclude that they are in-
dependent!

We shall use these facts and basic properties of conditional expectations to
evaluate the conditional expectation of the rv X given Y .

Lemma 18.9.3 Assume the rv Z : Ω→ Rp+q to be a Gaussian rv. It holds that

E [X|Y ] = E [X] +A? (Y − E [X|Y ]) a.s.(18.23)

where the p× q matrix A? is any solution of the matrix equation (18.24).

Proof. First, by the independence established in Lemma 18.9.2 we have

E [X − E [X]−A?(Y − E [Y ])|Y ]

= E [X − E [X]−A?(Y − E [Y ])] = (0, . . . , 0)t a.s.

On the other hand, by linearity of conditional expectations we get

E [X − E [X]−A?(Y − E [Y ])|Y ]

= E [X|Y ]− E [X]−A?(Y − E [Y ]) a.s.

Combining these two evaluations we conclude to (18.23).

Finally, we are in a position to identify the conditional distribution of the rv X
given Y .
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Proposition 18.9.1 Assume the rv Z : Ω → Rp+q to be a Gaussian rv. It holds
that

E
[
eiθ

tX
∣∣∣Y ]

= eiθ
tE[X|Y ] · e−

1
2
θt(Cov[X]−A?Cov[Y,X])θ, θ ∈ Rp(18.24)

The conditional distribution of the rv X given Y is therefore also Gaussian with
(conditional) mean E [X|Y ] and covariance matrix Cov [X]−A?Cov [Y,X].

Proof. Fix θ in Rp. Noting that

X = V + E [X] +A?(Y − E [Y ]) = V + E [X|Y ]

where A? is as before, we get

E
[
eiθ

tX |Y
]

= E
[
eiθ

tV · eiθtE[X|Y ]|Y
]

= E
[
eiθ

tV |Y
]
· eiθtE[X|Y ]

= E
[
eiθ

tV
]
· eiθtE[X|Y ] a.s.(18.25)

where in the last step we used the fact that the rv V is independent of the rv Y , a
fact established in Lemma 18.9.3.

But, the rv V is a Gaussian rv Ω→ Rp as shown in Lemma 18.9.3; its charac-
teristic function is therefore determined by its mean and its covariance: First, we
see that

E [V ] = E [X − E [X]−A?(Y − E [Y ])] =

 0
...
0


while

Cov [V ] = Cov [X − E [X]−A?(Y − E [Y ])]

= E
[
(X − E [X]−A?(Y − E [Y ])) (X − E [X]−A?(Y − E [Y ]))t

]
= Cov [X]− Cov [X,Y ] (A?)t −A?Cov [Y,X] +A?Cov [Y ] (A?)t

= Cov [X]−A?Cov [Y,X](18.26)

as we note that
A?Cov [Y ] (A?)t = Cov [X,Y ] (A?)t.

This is a simple consequence of the equation (18.24) satisfied by A?.
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Thus,
E
[
eiθ

tV
]

= e−
1
2
θt(Cov[X]−A?Cov[Y,X])θ,

and combining with (18.25) we get (18.24).

A case of particular interest arises when Cov [Y ] is invertible in which case
A? = Cov [X,Y ] Cov [Y ]−1, whence

Cov [V ] = Cov [X]− Cov [X,Y ] Cov [Y ]−1 Cov [Y,X]

18.10 Evaluating Q(x)

The complementary distribution function (18.6) repeatedly enters the computation
of various probabilities of error. Given its importance, we need to develop good
approximations to Q(x) over the entire range x ≥ 0.

The error function In the literature on digital communications, probabilities of
error are often expressed in terms of the so-called error function Erf : R+ → R
and of its complement Erfc : R+ → R defined by

Erf(x) =
2√
π

∫ x

0
e−t

2
dt, x ≥ 0(18.27)

and
Erfc(x) =

2√
π

∫ ∞
x

e−t
2
dt, x ≥ 0.(18.28)

A simple change of variables (t = u√
2
) in these integrals leads to the relationships

Erf(x) = 2

(
Φ(x
√

2)− 1

2

)
and Erfc(x) = 2Q(x

√
2),

so that
Erf(x) = 1− Erfc(x), x ≥ 0.

Conversely, we also have

Φ(x) =
1

2

(
1 + Erf

(
x√
2

))
and Q(x) =

1

2
Erfc

(
x√
2

)
.

Thus, knowledge of any one of the quantities Φ, Q, Erf or Erfc is equivalent to
that of the other three quantities. Although the last two quantities do not have a
probabilistic interpretation, evaluating Erf is computationally more efficient. In-
deed, Erf(x) is an integral of a positive function over the finite interval [0, x] (and
not over an infinite interval as in the other cases).
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Chernoff bounds To approximate Q(x) we begin with a crude bound which
takes advantage of (??): Fix x > 0. For each θ > 0, the usual Chernoff bound
argument gives

P [U > x] ≤ E
[
eθU
]
e−θx

= e−θx+ θ2

2

= e−
x2

2 e
(θ−x)2

2(18.29)

where in the last equality we made use of a completion-of-square argument. The
best lower bound

Q(x) ≤ e−
x2

2 , x ≥ 0(18.30)

is achieved upon selecting θ = x in (18.29). The bound (18.30) is referred to as a
Chernoff bound; it is not very accurate for small x > 0 since limx→0Q(x) = 1

2

while limx→0 e
−x

2

2 = 1.

Approximating Q(x) (x → ∞) The Chernoff bound shows that Q(x) decays

to zero for large x at least as fast as e−
x2

2 . However, sometimes more precise
information is needed regarding the rate of decay of Q(x). This issue is addressed
as follows:

For each x ≥ 0, a straigthforward change of variable yields

Q(x) =

∫ ∞
x

φ(t)dt

=

∫ ∞
0

φ(x+ t)dt

= φ(x)

∫ ∞
0

e−xte−
t2

2 dt.(18.31)

With the Taylor series expansion of e−
t2

2 in mind, approximations for Q(x) of
increased accuracy thus suggest themselves by simply approximating the second
exponential factor (namely e−xt) in the integral at (18.31) by terms of the form

n∑
k=0

(−1)k

2kk!
t2k, n = 0, 1, . . .(18.32)

To formulate the resulting approximation contained in Proposition 18.10.1 given
next, we set

Qn(x) = φ(x)

∫ ∞
0

(
n∑
k=0

(−1)k

2kk!
t2k

)
e−xtdt, x ≥ 0
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for each n = 0, 1, . . ..

Proposition 18.10.1 Fix n = 0, 1, . . .. For each x > 0 it holds that

Q2n+1(x) ≤ Q(x) ≤ Q2n(x),(18.33)

with

| Q(x)−Qn(x) |≤ (2n)!

2nn!
x−(2n+1)φ(x).(18.34)

where

Qn(x) = φ(x)

n∑
k=0

(−1)k(2k)!

2kk!
x−(2k+1).(18.35)

A proof of Proposition 18.10.1 can be found in Section ??. Upon specializing
(18.33) to n = 0 we get

e−
x2

2

x
√

2π

(
1− 1

x2

)
≤ Q(x) ≤ e−

x2

2

x
√

2π
, x > 0(18.36)

and the asymptotics

Q(x) ∼ e−
x2

2

x
√

2π
(x→∞)(18.37)

follow. Note that the lower bound in (18.36) is meaningful only when x ≥ 1.

18.11 Rvs derived from Gaussian rvs

Rayleigh rvs A rv X is said to be a Rayleigh rv with parameter σ (σ > 0) if

X =st

√
Y 2 + Z2(18.38)

with Y and Z independent zero mean Gaussian rvs with variance σ2. It is easy to
check that

P [X > x] = e−
x2

2σ2 , x ≥ 0(18.39)

with corresponding density function

d

dx
P [X ≤ x] =

x

σ2
e−

x2

2σ2 , x ≥ 0.(18.40)

It is also well known that the rv Θ given by

Θ := arctan

(
Z

Y

)
(18.41)
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is uniformly distributed over [0, 2π) and independent of the Rayleigh rv X , i.e.,

P [X ≤ x,Θ ≤ θ] =
θ

2π

(
1− e−

x2

2σ2

)
, θ ∈ [0, 2π), x ≥ 0.(18.42)

Rice rvs A rv X is said to be a Rice rv with parameters α (in R) and σ (σ > 0) if

X =st

√
(α+ Y )2 + Z2(18.43)

with Y and Z independent zero mean Gaussian rvs with variance σ2. It is easy to
check that X admits a probability density function given by

d

dx
P [X ≤ x] =

x

σ2
e−

x2+α2

2σ2 · I0

(αx
σ2

)
, x ≥ 0.(18.44)

Here,

I0(x) :=
1

2π

∫ 2π

0
ex cos tdt, x ∈ R(18.45)

is the modified Bessel function of the first kind of order zero.

Chi-square rvs For each n = 1, 2, . . ., the Chi-square rv with n degrees of free-
dom is the rv defined by

χ2
n =st U

2
1 + . . .+ U2

n

where U1, . . . , Un are n i.i.d. standard Gaussian rvs.

18.12 Evaluating the moments of the standard Gaussian
distribution

In this section we evaluate the moments of the standard zero-mean unite variance
Gaussian rv U . Recall that its probability density function φ : R→ R+ is given by

φ(x) =
1√
2π
· e−

x2

2 , x ∈ R.

As before we write

mk ≡ E
[
Uk
]

=
1√
2π

∫
R
xke−

x2

2 dx, k = 0, 1, . . .(18.46)

and note by symmetry that m2`+1 = 0 for every ` = 0, 1, . . .. Therefore we need
only focus on the moments of even order k = 2` with ` = 1, 2, . . ..
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To that end, fix ` = 0, 1, . . .. Standard arguments using integration by parts
yield∫

R
x2(`+1)e−

x2

2 dx = 2

∫ ∞
0

x2(`+1)e−
x2

2 dx

= 2

∫ ∞
0

x2`+1 ·
(
xe−

x2

2

)
dx

= 2

∫ ∞
0

x2`+1 · d
dx

(
−e−

x2

2

)
dx

= 2

([
−x2`+1e−

x2

2

]∞
0

+

∫ ∞
0

(2`+ 1)x2`e−
x2

2 dx

)
= 2(2`+ 1)

∫ ∞
0

x2`e−
x2

2 dx.(18.47)

by virtue of the fact that limx→∞ x
2`e−

x2

2 = 0. In other words, multiplying both
sides by

√
2π, we conclude that

m2(`+1) = (2`+ 1)m2`, ` = 0, 1, . . .

Iterating we easily get

m2` = (2`− 1)m2(`−1)

= (2`− 1)(2`− 3)m2(`−2)

...

= (2`− 1)(2`− 3)(2`− 5) · . . . · 5 · 3 · 1 ·m0.(18.48)

Obviously m0 = 1, and the conclusion

m2` =
(2`)!

(2`)(2(`− 1))(2(`− 2)) · · · (2 · 3)(2 · 2)(2 · 1)
=

(2`)!

2``!
, ` = 0, 1, . . .

follows. The expressions (18.7) are now established.

18.13 Evaluating the characteristic function of Gaussian
rvs

As we seek to establish the expression (18.2) for the characteristic function of
Gaussian rvs, we need only consider the case of zero-mean unit variance standard
Gaussian rvs, i.e., µ = 0 and σ2 = 1.
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We seek to evaluate

ΦU (θ) = E
[
eiθU

]
=

1√
2π

∫
R
eiθxe−

1
2
x2dx, θ ∈ R.

Fix θ in R. Our starting point is the Taylor series expansion

eiθx =
∞∑
k=0

(iθx)k

k!
, x ∈ R.

Assuming a valid interchange of integration and summation (to be justified
below), we get ∫

R
eiθxe−

1
2
x2dx =

∫
R

( ∞∑
k=0

(iθx)k

k!

)
e−

1
2
x2dx

=
∞∑
k=0

∫
R

(iθx)k

k!
e−

1
2
x2dx

=
∞∑
k=0

(iθ)k

k!

∫
R
xke−

1
2
x2dx

=
√

2π

( ∞∑
k=0

(iθ)k

k!
·mk

)
(18.49)

with the notation (18.46).
Using the expressions (18.7) we conclude that∫

R
eiθx

1√
2π
e−

1
2
x2dx =

∞∑
k=0

(iθ)k

k!
·mk

=
∞∑
`=0

(iθ)2`

(2`)!
· (2`)!

2``!

=

∞∑
`=0

1

`!

(−θ)2

`!
(18.50)

and the desired conclusion

E
[
eiθU

]
= e−

θ2

2 , θ ∈ R

follows. The general case is now immediate once we recall that if X ∼ N(µ, σ2),
then the rv X−µ

σ is a standard zero-mean unit variance Gaussian rv.
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18.14 Exercises

Ex. 18.1 Establish the relations (18.1) through direct integration.

Ex. 18.2 Let U denote a zero-mean unit variance Gaussian rv. With the help of
Theorem 17.8.1 use the moment information contained in the characteristic func-
tion (18.2) to evaluate all the moments E [Up] (p = 1, . . .). You may want to
compare your results with those obtained in Section

Ex. 18.3 Find all the moments E [Up] (p = 1, . . .) where X is a χ2
n-rv with n

degrees of freedom.

Ex. 18.4 Derive the relationships between the quantities Φ, Q, Erf or Erfc which
are given in Section 18.10.

Ex. 18.5 Given the covariance matrix Σ, explain why the representation (??)–(??)
may not be unique. Give a counterexample.

Ex. 18.6 Give a proof for Lemma 18.8.1 and of Lemma 18.8.2.

Ex. 18.7 Construct an R2-valued rv X = (X1, X2) such that the R-valued rvs X1

and X2 are each Gaussian but the R2-valued rv X is not (jointly) Gaussian.

Ex. 18.8 Derive the probability distribution function (18.39) of a Rayleigh rv with
parameter σ (σ > 0).

Ex. 18.9 Show by direct arguments that if X is a Rayleigh distribution with pa-
rameter σ, then X2 is exponentially distributed with parameter (2σ2)−1 [HINT:
Compute E

[
e−θX

2
]

for a Rayleigh rv X for θ ≥ 0.]

Ex. 18.10 Derive the probability distribution function (18.44) of a Rice rv with
parameters α (in R) and σ (σ > 0).

Ex. 18.11 Write a program to evaluate Qn(x).

Ex. 18.12 Let X1, . . . , Xn be i.i.d. Gaussian rvs with zero mean and unit variance
and write Sn = X1 + . . .+Xn. For each a > 0 show that

P [Sn > na] ∼ e−
na2

2

a
√

2πn
(n→∞).(18.51)

This asymptotic is known as the Bahadur-Rao correction to the large deviations
asymptotics of Sn.
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Ex. 18.13 Consider three rvs mutually independent rvs Y , Z and U defined on
some probability triple (Ω,F ,P). We assume that (i) The rv U : Ω → R is a
Bernoulli rv with

P [U = 1] = p = 1− P [U = 0]

for some p in (0, 1); (ii) The rvs Y,Z : Ω → R2 are two-dimensional zero-mean
Gaussian rvs with covariance matrices Ra and Rb, respectively, given by

R? =

(
1 ρ?
ρ? 1

)
, ? = a, b

with ρa 6= ρb. The conditions |ρa| ≤ 1 and |ρb| ≤ 1 are assumed in order to ensure
that the matrices Ra and Rb are legitimate covariance matrices.

a. Compute the characteristic function ΦX : R → C of the rv X : Ω → R2

given by
X = UY + (1− U)Z.

b. IfX = (X1, X2), show that the component rvsX1 andX2 are each standard
Gaussian rv.

c. Explain why the rv X is not a Gaussian rv. .

Ex. 18.14 The following arises in classical Statistics: Let X1, . . . , Xn denote n
i.i.d. Gaussian rvs, each with mean µ and variance σ2 > 0. Define the rvs X̄ and
Z1, . . . , Zn by

X̄ =
1

n

n∑
k=1

Xk and Zk = Xk − X̄, k = 1, 2, . . . , n.

a. Compute the joint characteristic function of the n + 1 rvs Z1, . . . , Zn and
X̄ .

b. Use Part a to establish the independence of the rvs X̄ and S2 where

S2 =
1

n− 1

n∑
k=1

(Xk − X̄)2.

Ex. 18.15 The rvsX1, . . . , Xn are jointly Gaussian, e.g., with X = (X1, . . . , Xn)′,
namely X ∼ N(µ,R) for some vector µ in Rn and n × n covariance matrix R.
With a and b elements in Rn, define the R-valued rvs A and B by

A ≡ atX =
n∑
k=1

akXk and B ≡ btX =
n∑
k=1

bkXk.
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a. Compute the characteristic function of the R2-valued rv (A,B)′, namely

ϕ(s, t) = E
[
ei(sA+tB)

]
, s, t ∈ R.

Carefully explain your calculations!
b. With the help of your answer in Part a derive a necessary and sufficient

condition on the parameters µ, a, b and R for the rvs A and B to be independent.
Carefully explain your calculations!

c. What form does this condition take when the rvsX1, . . . , Xn are i.i.d. Gaus-
sian rvs, say X ∼ N(µ, σ2In) with σ2 > 0?

Ex. 18.16 Consider the bivariate Gaussian rv (X,Y )′ with probability density
function fX,Y : R2 → R+ given by

fX,Y (x, y) =
1

2π
e−

1
2(2x2+y2+2xy−22x−14y+65), (x, y) ∈ R2.

Evaluate the quantities E [X], E [Y ], Var[X], Var[Y ] and Cov[X,Y ].

Ex. 18.17 Let ξ, η : Ω → R be independent rvs, each of which is distributed
according to a standard Gaussian distribution. Define the rv (ξ?, η?) : Ω → R2

given by

(
ξ?

η?

)
=



(
ξ
|η|

)
if ξ ≥ 0

(
ξ
−|η|

)
if ξ < 0.

Show that rvs ξ? and η? are standard Gaussian rvs but that the rv (ξ?, η?) : Ω→ R2

is not Gaussian. Contrast with the statement: The rv (ξ, η) : Ω → R2 is a jointly
Gaussian rv N(02, I2) with 02 = (0, 0)′ and I2 is the identity on R2. What explain
the difference?



Chapter 19

Convergence of random variables

We now turn to developing a convergence theory for sequences of rvs. We assume
that all the rvs are defined on the same probability triple (Ω,F ,P). Let {Xn, n =
1, 2, . . .} denote the sequence of rvs Ω → Rp whose limiting behavior is being
investigated, and let X : Ω → Rp be a possible limit. Most of the discussion will
be given for the case p = 1, as the case general case p ≥ 1 can easily be inferred
from the one-dimensional case; see Section 19.6 for comments and pointers.

We stress that the four modes of convergence to be introduced shortly are com-
patible with the usual convergence on R in the following sense: If the sequence
{Xn, n = 1, 2, . . .} comprises degenerate rvs, say for each n = 1, 2, . . . we
have Xn = an a.s. for some scalar an, then the convergence of the sequence
{Xn, n = 1, 2, . . .} in any one of the four sense is equivalent to the usual conver-
gence of the deterministic sequence {an, n = 1, 2, . . .}.

Basic notions of convergence in R are reviewed in Appendix 22.

19.1 Almost sure convergence

Almost sure convergence is the mode of convergence that is easiest to understand
as it mimics most closely usual convergence.

Definition 19.1.1
The sequence of rvs {Xn, n = 1, 2, . . .} converges almost surely (a.s.) to the

rv X : Ω→ R if P [C] = 1 where C is the event

C ≡ {ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω) in R}.(19.1)

We shall write limn→∞Xn = X a.s.

273
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Sometimes the qualifier “almost sure(ly)” is replaced by the qualifier “with
probability one” (often abbreviated as w.p. 1), in which case we write limn→∞Xn =
X w.p. 1. It is easy to see that the convergence set C is indeed an event in F since

C = ∩∞k=1 ∪∞n=1 ∩∞m=n

[
|Xm −X| ≤

1

k

]
.

The following notation will prove convenient in what follows: With ε > 0, for
each n = 1, 2, . . ., we define the events

An(ε) ≡ [|Xn −X| ≤ ε]

and

Bn(ε) ≡ ∩m≥nAm(ε)

= [|Xm −X| ≤ ε, m = n, n+ 1, . . .] .(19.2)

Theorem 19.1.1 The sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv
X if and only if

P [B∞(ε)] = 1, ε > 0(19.3)

with
B∞(ε) = ∪∞n=1Bn(ε).(19.4)

Proof. With this notation, the characterization of C given earlier can now be
expressed in the more compact form

C = ∩∞k=1B∞(k−1).

Note also that B∞(ε′) ⊆ B∞(ε) whenever 0 < ε′ < ε. Hence, by the continuity
from above of P under monotone decreasing sequences we get

P [C] = lim
k→∞

P
[
B∞(k−1)

]
.(19.5)

As this last convergence is monotonically decreasing as k increases, we conclude
that P [C] = 1 if and only if

P
[
B∞(k−1)

]
= 1, k = 1, 2, . . . .

The conclusion (19.3) follows since for every ε > 0 there exists a positive integer
k such that (k + 1)−1 ≤ ε < k−1 with B∞((k + 1)−1) ⊆ B∞(ε) ⊆ B∞(k−1).

This simple observation paves the way for the following simple criterion for
a.s. convergence.
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Theorem 19.1.2 The sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv
X if for every ε > 0, it holds that

∞∑
n=1

P [|Xn −X| > ε] <∞.(19.6)

Proof. Pick ε > 0. Note that B∞(ε) = lim infn→∞An(ε), or equivalently,
B∞(ε)c = lim supn→∞An(ε)c. The first Borel-Cantelli Lemma (Lemma 3.3.1)
now yields P [B∞(ε)c] = 0 provided

∞∑
n=1

P [An(ε)c] <∞.

This statement is equivalent to P [B∞(ε)] = 1 provided (19.6) holds, and the proof
is completed by invoking Theorem 19.1.1.

The condition (19.6) is sufficient, but not necessary, to ensure a.s. convergence.
However, it occurs sufficiently often that it has been given a name.

Definition 19.1.2
The sequence of rvs {Xn, n = 1, 2, . . .} is said to be completely convergent to

the rv X if for every ε > 0, we have

∞∑
n=1

P [|Xn −X| > ε] <∞.(19.7)

Theorem 19.1.2 states that complete convergence implies a.s. convergence.
That complete convergence is only a sufficient condition for a.s. convergence, and
not a necessary condition for it, is confirmed by the next example.

Counterexample 19.1.1 A.s. convergence does not imply complete conver-
gence Take Ω = [0, 1], F = B(R) and P is Lebesgue measure λ. Define the rvs
{Xn, n = 1, 2, . . .} to be

Xn =


0 if 0 ≤ ω ≤ 1− 1

n

1 if 1− 1
n < ω ≤ 1
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for every n = 1, 2, . . .. Fix ω in [0, 1). It is plain that limn→∞Xn(ω) = 0, and the
sequence {Xn, n = 1, 2, . . .} converges a.s. to the rv X ≡ 0. However, for every
ε in (0, 1), we get

P [|Xn| > ε] =
1

n
, n = 1, 2, . . .

whence (19.7) fails since
∑∞

n=1
1
n = ∞ by the divergence of the harmonic series.

19.2 Convergence in probability

The next mode of convergence is closely related to almost sure convergence, but
less demanding, hence more likely to hold.

Definition 19.2.1
The sequence of rvs {Xn, n = 1, 2, . . .} converges in probability to the rv X

if for every ε > 0, we have

lim
n→∞

P [|Xn −X| > ε] = 0.(19.8)

We shall write Xn
P−→n X .

As expected s.s. convergence is a stronger notion of convergence than conver-
gence in probability.

Theorem 19.2.1 Almost sure convergence implies convergence in probability: If
the sequence of rvs {Xn, n = 1, 2, . . .} converges a.s. to the rv X , then it also
converges in probability to the rv X .

Proof. Pick ε > 0 arbitrary. We have Bn(ε) ⊆ An(ε) for each n = 1, 2, . . .,
whence

P [Bn(ε)] ≤ P [An(ε)] , n = 1, 2, . . .

The sets {Bn(ε), n = 1, 2, . . .} being non-decreasing, we readily conclude
that limn→∞ P [Bn(ε)] = P [B∞(ε)] with B∞(ε) defined at (19.4). It is now plain
that

P [B∞(ε)] = lim
n→∞

P [Bn(ε)] ≤ lim inf
n→∞

P [An(ε)] .
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By Theorem 19.1.1 the a.s. convergence of the sequence {Xn, n = 1, 2, . . .} im-
plies P [B∞(ε)] = 1, and this immediately implies lim infn→∞ P [An(ε)] = 1.
Thus, limn→∞ P [An(ε)] = 1, and the sequence {Xn, n = 1, 2, . . .} converges in
probability.

Here is an example of a sequence which converges in probability but not almost
surely:

Counterexample 19.2.1 Convergence in probability does not imply a.s. con-
vergence Take Ω = [0, 1], F = B(R) and P is Lebesgue measure λ. Define the
rvs {Xn, n = 1, 2, . . .} as follows: For each n = 1, 2, . . ., there exists a unique
integer k = 0, 1, . . . such that 2k ≤ n < 2k+1 so that n = 2k +m for some unique
m = 0, . . . , 2k − 1. Define

Xn =


1 if ω ∈ In

0 if ω /∈ In

where In = (m2−k, (m+ 1)2−k).
The set Ωb of boundary points

Ωb =
{
m2−k, m = 0, . . . , 2k, k = 0, 1, . . .

}
is countable, hence P [Ωb] = 0. With ω not in Ωb we note that Xn(ω) = 0 and
Xn(ω) = 1 infinitely often, so that lim infn→∞Xn(ω) = 0 < lim supn→∞Xn(ω) =
1. The sequence {Xn, n = 1, 2, . . .} therefore does not converge a.s.. However,
with X = 0, we have limn→∞ P [|Xn −X| > ε] = 0 for every ε > 0 since

P [|Xn −X| > ε] =


P [In] if 0 < ε < 1

0 if 1 ≥ ε.

The sequence {Xn, n = 1, 2, . . .} indeed converges in probability.

Yet, despite this counterexample which shows that a.s. convergence is strictly
stronger than convergence in probability, there is a partial converse in the following
sense.

Theorem 19.2.2 Convergence in probability implies almost sure convergence but
only along a subsequence: If the sequence of rvs {Xn, n = 1, 2, . . .} converges in
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probability to the rv X , then there exists a (deterministic) subsequence N0 → N0

with
nk < nk+1, k = 1, 2, . . .

such that the subsequence of rvs {Xnk , k = 1, 2, . . .} converges almost surely to
X .

The constraint on the subsequence {nk, k = 1, 2, . . .} implies limk→∞ nk =
∞. We stress that this subsequence is independent of the sample ω (in the appro-
priate certain event) for which the a.s. convergence of {Xnk(ω), k = 1, 2, . . .} is
established.

Proof. The assumed convergence in probability of the sequence of rvs {Xn, n =
1, 2, . . .} to the rv X amounts to

lim
n→∞

P [|X −Xn| > ε] = 0, ε > 0.

Fix ε > 0: For every δ > 0 there exists a positive integer n?(ε, δ) such that

P [|X −Xn| > ε] ≤ δ, n ≥ n?(ε, δ).

We now use this observation (with ε = k−1 and δ = 2−k) as follows: For each
k = 1, 2, . . ., there exists a positive integer nk such that

P
[
|X −Xn| > k−1

]
≤ 2−k, n ≥ nk.

It is always possible to recursively select nk as any positive integer satisfying

max (n?(ε, δ), nk−1) < nk

with the convention n0 = 0. This construction guarantees nk < nk+1 for all
k = 1, 2, . . ..

Pick ε > 0 and introduce the integer k(ε) = bε−1c. With the quantities just
introduced we have
∞∑
k=1

P [|Xnk −X| > ε]

=
∑

k=1,2,...: k−1>ε

P [|Xnk −X| > ε] +
∑

k=1,2,...: k−1≤ε

P [|Xnk −X| > ε]

≤ k(ε) +
∞∑

k=k(ε)

P
[
|Xnk −X| > k−1

]
≤ k(ε) +

∞∑
k=k(ε)

2−k.
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As the conclusion
∑∞

k=1 P [|Xnk −X| > ε] <∞ follows, the a.s. convergence of
the sequence of rvs {Xnk , k = 1, 2, . . .} is now a consequence of Theorem 19.1.2.

19.3 Convergence in the rth mean

Definition 19.3.1
With r ≥ 1, the sequence of rvs {Xn, n = 1, 2, . . .} converges to the rv X in

the rth mean if the rvs {Xn, n = 1, 2, . . .} satisfy

E [|Xn|r] <∞, n = 1, 2, . . .(19.9)

and
lim
n→∞

E [|Xn −X|r] = 0.(19.10)

We shall write Xn
Lr−→n X .

The case r = 2 is often used in applications where it is referred as mean-square
convergence. The case r = 1 also occurs with some regularity, and is referred as
mean convergence. It follows from (19.10) that E [|Xn −X|r] < ∞ for all n
sufficiently large, whence the rv X necessarily has a finite moment of order r by
virtue of Minkowski’s inequality under (19.9).

Convergence in the rth mean becomes more stringent as r increases.

Theorem 19.3.1 With 1 ≤ s < r, convergence in the rth mean implies conver-
gence in the sthmean: If the sequence of rvs {Xn, n = 1, 2, . . .} converges in the
rth mean to the rv X , then the sequence of rvs {Xn, n = 1, 2, . . .} also converges
in the sth mean to the rv X .

Proof. This is a simple consequence of Lyapounov’s inequality

E [|Xn −X|s]
1
s ≤ E [|Xn −X|r]

1
r , n = 1, 2, . . .

Next, we relate rth mean convergence to convergence in probability.
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Theorem 19.3.2 Convergence in the rth mean implies convergence in probability:
If the sequence of rvs {Xn, n = 1, 2, . . .} converges in rth mean to the rv X for
some r ≥ 1, then it also converges in probability to the rv X .

Proof. Pick ε > 0 arbitrary. Markov’s inequality yields

P [|Xn −X| > ε] = P [|Xn −X|r > εr]

≤ E [|Xn −X|r]
εr

, n = 1, 2, . . .(19.11)

and limn→∞ P [|Xn −X| > ε] = 0 as soon as limn→∞ E [|Xn −X|r] = 0.

The converse is more delicate as the next example already illustrates; see also
Section 19.5.

Counterexample 19.3.1 Consider a collection of rvs {Xn, n = 1, 2, . . .} such
that

Xn =


0 with probability 1− n−α

nβ with probability n−α

for each n = 1, 2, . . . where α > 0 and β > 0. Thus,

P [|Xn| > ε] = n−α, n = 1, 2, . . .

as soon as 0 < ε ≤ 1 so that Xn
P−→n 0.

On the other hand, with r ≥ 1, elementary calculations show that

E [|Xn|r] = 0
(
1− n−α

)
+ nrβn−α = nrβ−α, n = 1, 2, . . .

so that

lim
n→∞

E [|Xn|r] =


0 if rβ < α
1 if rβ = α
∞ if rβ > α.

It is now plain thatXn
Lr−→n 0 when rβ < α but no such conclusion can be reached

when rβ ≥ α.

We close this section with a simple observation, based on Theorem 19.1.2,
which allows us to determine a.s. convergence in the presence of convergence in
the rth mean.
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Theorem 19.3.3 If the sequence of rvs {Xn, n = 1, 2, . . .} converges in rth mean
to the rv X for some r ≥ 1, then it also converges almost surely to the rv X
whenever the condition

∞∑
n=1

E [|Xn −X|r] <∞(19.12)

holds.

The convergence condition (19.10) is automatically satisfied under the summability
condition (19.12).

Proof. As already shown at (19.11), Markov’s inequality leads to

P [|Xn −X| > ε] ≤ E [|Xn −X|r]
εr

, n = 1, 2, . . .

for every ε > 0. The assumed condition (19.12) yields complete the convergence
condition

∞∑
n=1

P [|Xn −X| > ε] ≤ 1

εr

∞∑
n=1

E [|Xn −X|r] <∞

and the conclusion is immediate by Theorem 19.1.2.

19.4 Convergence in distribution

For any rv X : Ω → R, recall the properties satisfied by its probability distri-
bution function FX : R → [0, 1] – See Section 7.4 for details: (i) It is non-
decreasing; (ii) It has left-limit and is right-continuous at every point; and (iii)
The limits limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1 hold.

Let C(FX) denote the set of points in R where FX : R→ [0, 1] is continuous;
see Definition 7.4.1. Recall from Lemma 7.4.1 that C(FX)c is a countable subset
of R.

Definition 19.4.1
The sequence of rvs {Xn, n = 1, 2, . . .} converges in distribution to the rv X

if
lim
n→∞

FXn(x) = FX(x), x ∈ C(FX).(19.13)

We shall write Xn =⇒n X or Xn
L−→n X . Some authors refer to this mode of

convergence as convergence in law or as weak convergence.
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As this mode of convergence involves only the probability distribution func-
tions of the rvs involved, it is sometimes convenient to define this notion without
any reference to the rvs (viewed as mappings):

Definition 19.4.2
The sequence of probability distribution functions {Fn, n = 1, 2, . . .} con-

verges in distribution to the probability distribution function F if

lim
n→∞

Fn(x) = F (x), x ∈ C(F )(19.14)

where C(F ) denotes the set of continuity of the probability distribution function

F ; see Definition 7.4.1. This time we write Fn =⇒n F or Fn
L−→n F .

At this point the reader may wonder as to why the definition of distribution con-
vergence requires the convergence (19.13) only on the set of points of continuity
of the limit. This is best seen on the following example.

Example 19.4.1 The importance of discontinuity points Consider the two se-
quences of rvs {Xn, n = 1, 2, . . .} and {Yn, n = 1, 2, . . .} given by

Xn = − 1

n
and Yn =

1

n
, n = 1, 2, . . .

defined on some probability triple (Ω,F ,P). Both sequences converge as deter-
ministic sequences with limn→∞Xn(ω) = 0 and limn→∞ Yn(ω) = 0 for every ω
in Ω. Yet it is easy to check that

lim
n→∞

FXn(x) =


0 if x < 0

1 if x ≥ 0
and lim

n→∞
FYn(x) =


0 if x ≤ 0

1 if x > 0.

It should be noted that limn→∞ FXn is a probability distribution function while
limn→∞ FYn is not – This second limit is a left-continuous function with right
limits, and fails to be right-continuous at x = 0. It might be natural to state that
Xn =⇒n X but not that Yn =⇒n Y even though the sequence {Yn, n = 1, . . .}
converges pointwise. Compatibility.

The next result relates convergence in distribution to convergence in probability
– The latter always implies the former!
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Theorem 19.4.1 Convergence in probability implies convergence in distribution:
If the sequence of rvs {Xn, n = 1, 2, . . .} converges in probability to the rv X ,
then it also converges in distribution to the rv X .

Proof. Fix n = 1, 2, . . . and pick x in R. With ε > 0, we note that

FXn(x) = P [Xn ≤ x]

= P [Xn ≤ x,X ≤ x+ ε] + P [Xn ≤ x, x+ ε < X]

≤ P [X ≤ x+ ε] + P [|Xn −X| > ε]

= FX(x+ ε) + P [|Xn −X| > ε] .

In a similar way, we find

FX(x− ε) = P [X ≤ x− ε]
= P [X ≤ x− ε,Xn ≤ x] + P [X ≤ x− ε, x < Xn]

≤ P [Xn ≤ x] + P [|Xn −X| > ε]

= FXn(x) + P [|Xn −X| > ε] .

Let n go to infinity in these inequalities. Under the assumed convergence
in probability, we find lim supn→∞ FXn(x) ≤ FX(x + ε) and FX(x − ε) ≤
lim infn→∞ FXn(x). Picking x to be a point of continuity for FX , we obtain

lim sup
n→∞

FXn(x) = lim
ε↓0

(
lim sup
n→∞

FXn(x)

)
≤ lim

ε↓0
FX(x+ ε)

= FX(x)

and

FX(x) = lim
ε↓0

FX(x− ε)

≤ lim
ε↓0

(
lim inf
n→∞

FXn(x)
)

= lim inf
n→∞

FXn(x)

whence lim infn→∞ FXn(x) = lim supn→∞ FXn(x) = FX(x). It follows that

lim
n→∞

FXn(x) = FX(x), x ∈ C(FX)

and the desired convergence in distribution takes place.
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Although weak convergence is weaker than convergence in probability, there
is one situation where they are equivalent. With c a scalar in R, we refer to any rv
X such that X = c a.s. as the degenerate rv X = c.

Theorem 19.4.2 With c a scalar in R, the sequence of rvs {Xn, n = 1, 2, . . .}
converges in probability to the degenerate rv X = c if and only if the sequence of
rvs {Xn, n = 1, 2, . . .} converges in distribution to the degenerate rv X = c.

Proof. In view of Theorem 19.4.1 we need only show that if the sequence of rvs
{Xn, n = 1, 2, . . .} converges in distribution to the degenerate rv X = c, then the
sequence of rvs {Xn, n = 1, 2, . . .} converges in probability to the degenerate rv
X = c.

Fix ε > 0. For every n = 1, 2, . . ., we observe that

P [|Xn −X| ≤ ε] = P [c− ε ≤ Xn ≤ c+ ε]

= P [Xn ≤ c+ ε]− P [Xn < c− ε]
= FXn(c+ ε)− FXn((c− ε)−)(19.15)

so that

P [|Xn −X| > ε] = 1− FXn(c+ ε) + FXn((c− ε)−)

≤ 1− FXn(c+ ε) + FXn(c− ε).

Recall that FX(x) = 0 (resp. FX(x) = 1) if x < c (resp. c ≤ x) so that the
only point of discontinuity of FX is located at x = c. Thus, under the assumed
convergence in distribution of the sequence of rvs {Xn, n = 1, 2, . . .}, we have
limn→∞ FXn(c+ε) = 1 and limn→∞ FXn(c−ε) = 0, and the desired conclusion
limn→∞ P [|Xn −X| > ε] = 0 follows.

19.5 Uniform integrability

If a rv X has a finite first moment, we know that

lim
B→∞

E [1 [|X| > B] · |X|] = 0.(19.16)

This is a simple consequence of the Dominated Convergence Theorem since 1 [|X| > B]·
|X| ≤ |X| for all B > 0. Thus, for every ε > 0, there exists B?(ε) > 0 such that

E [1 [|X| > B] · |X|] ≤ ε, B ≥ B?(ε).(19.17)
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As we consider a collection of rvs {Xn, n = 1, 2, . . .} with finite first mo-
ments, we can certainly assert the following: For each n = 1, 2, . . . and every
ε > 0, there exists B?(ε;n) > 0 such that

E [1 [|Xn| > B] · |Xn|] ≤ ε, B ≥ B?(ε;n).(19.18)

This is a direct consequence of (19.17). However, sometimes it is required that
this condition holds uniformly with respect to n = 1, 2, . . . in that B?(ε;n) can
be selected independently of n. This leads to the following stronger notion of
integrability for a sequence of rvs, rather than for a single rv.

Definition 19.5.1
The collection of rvs {Xn, n = 1, 2, . . .} is uniformly integrable if

lim
B→∞

(
sup

n=1,2,...
E [1 [|Xn| > B] · |Xn|]

)
= 0.(19.19)

In other words, for every ε > 0, there exists B?(ε) > 0 such that

sup
n=1,2,...

E [1 [|Xn| > B] · |Xn|] ≤ ε, B ≥ B?(ε).(19.20)

The uniform integrability of the rvs {Xn, n = 1, 2, . . .} readily implies [Exercise
19.10] the boundedness condition

sup
n=1,2,...

E [|Xn|] <∞.(19.21)

While this condition is not sufficient to imply uniform integrability, a slight strength-
ening of it will.

Lemma 19.5.1 The collection of rvs {Xn, n = 1, 2, . . .} is uniformly integrable
if there exists r > 0 such that

sup
n=1,2,...

E
[
|Xn|1+r

]
<∞.(19.22)

Proof. Fix n = 1, 2, . . . and B > 0. Applying Hölder’s inequality to the rv |Xn|
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and 1 [|Xn| > B] (with conjugate exponents p = r+1
r and q = 1 + r), we get

E [1 [|Xn| > B] · |Xn|] = (E [1 [|Xn| > B]])
r
r+1 ·

(
E
[
|Xn|1+r

]) 1
1+r

= (P [|Xn| > B])
r
r+1 ·

(
E
[
|Xn|1+r

]) 1
1+r

≤
(

1

B
· E [|Xn|]

) r
r+1

·
(
E
[
|Xn|1+r

]) 1
1+r .

with the help of Markov’s inequality in the last step.
Using the standard inequality E [|Xn|] ≤ 1 + E

[
|Xn|1+r

]
, we obtain

E [1 [|Xn| > B] · |Xn|]

≤ B−
r
r+1 ·

(
1 + E

[
|Xn|1+r

]) r
r+1 ·

(
E
[
|Xn|1+r

]) 1
1+r

≤ C ·B−
r
r+1

with finite constant C given by

C ≡ sup
n=1,2,...

((
1 + E

[
|Xn|1+r

]) r
r+1 ·

(
E
[
|Xn|1+r

]) 1
1+r

)
.

In other words, the uniform bound

sup
n=1,2,...

E [1 [|Xn| > B] · |Xn|] ≤ CB−
r
r+1 , B > 0

holds, and the uniform integrability condition (19.19) follows.

Interest in this notion arises from the need to have an easy characterization of
situations where interchange between limits and expectation can take place. This
is captured by the next result.

Theorem 19.5.1 Consider a collection of rvs {X,Xn, n = 1, 2, . . .} such that

limn→∞Xn = X a.s. (resp. Xn
P−→n X , Xn =⇒n X). If the collection of rvs

{Xn, n = 1, 2, . . .} is uniformly integrable, then E [|X|] <∞ and

lim
n→∞

E [Xn] = E [X] .(19.23)
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19.6 Convergence in higher dimensions

The discussion so far has been in the context of R-valued rvs. We now outline
the corresponding theory for Rp-valued rvs with p ≥ 1. The first observation is
that the three first modes of convergence, namely a.s. convergence, convergence in
probability and convergence in the rth mean are “metric” notions in the following
sense: The rvs {Xn, n = 1, 2, . . .}

• converge a.s. to the rv X if

lim
n→∞

|Xn −X| = 0 a.s.

• converge in probability to the rv X if

lim
n→∞

P [|Xn −X| > ε] = 0, ε > 0

• converge in the rth mean (for some r ≥ 1) to the rv X if

lim
n→∞

E [|Xn −X|r] = 0.

They are all expressed in terms of the distance |Xn −X| of Xn to X .
In Rp there are a number of ways to define the distance between two vectors.

Here we limit ourselves to metrics that are induced by norms, so that distance is
measured by

d(x, y) = ‖x− y‖, x, y ∈ Rp

where ‖ · ‖ : Rp → R+ is a norm. Therefore, a natural to define the modes of
convergence for Rp-valued rvs as follows:

Consider any norm ‖ · ‖ : Rp → R+. The Rp-valued rvs {Xn, n = 1, 2, . . .}

• converge a.s. to the rv X if

lim
n→∞

‖Xn −X‖ = 0 a.s.

• converge in probability to the rv X if

lim
n→∞

P [‖Xn −X‖ > ε] = 0, ε > 0

• converge in the rth mean (for some r ≥ 1) to the rv X if

lim
n→∞

E [‖Xn −X‖r] = 0.
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Note that all norms on Rp are equivalent in the following sense: If ‖·‖a : Rp → R+

and ‖ · ‖b : Rp → R+ are two different norms, then there exists constants ca|b > 0
and Ca|b > such that

ca|b‖x‖a ≤ ‖x‖b ≤ Ca|b‖x‖a, x ∈ Rp.

Norms often used in applications include

• The Euclidean norm (or L1-norm):

‖x‖2 =

√√√√ p∑
k=1

|xk|2, x = (x1, . . . , xp) ∈ Rp.

• The L1-norm:

‖x‖1 =

p∑
k=1

|xk|, x = (x1, . . . , xp) ∈ Rp.

• The Manhattan norm

‖x‖∞ = max(|xk|, k = 1, . . . , p), x = (x1, . . . , xp) ∈ Rp.

However when it comes to convergence in distribution matters are quite dif-
ferent because this notion does not rely on a notion of proximity in the range of
the rvs under consideration. Furthermore, probability distribution functions on Rp
are more cumbersome to characterize. So instead of using the definition given in
Section 19.4 we instead rely on the equivalence given in Theorem 20.4

19.7 Exercises

Unless explicitly stated otherwise, all rvs are defined on some probability triple
(Ω,F ,P).

Ex. 19.1 (The impact of dependencies on almost sure convergence) Consider a
collection of i.i.d. rvs {U,Un, n = 1, 2, . . .}, all which are uniformly distributed
on the interval [0, 1].

a. Define the rvs {Vn, n = 1, 2, . . .} by

Vn ≡ max (U1, . . . , Un) , n = 1, 2, . . .

Show that the sequence {Vn, n = 1, 2, . . .} converges a.s. and identify its limit.
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b. The rvs {Wn, n = 1, 2, . . .} are defined by

Wn ≡ max (U?1 , . . . , U
?
n) , n = 1, 2, . . .

where

U?n ≡


U if n = 2p+ 1 with p = 0, 1, . . .

1− U if n = 2p with p = 1, . . .

Show that the sequence {Wn, n = 1, 2, . . .} converges a.s. and identify its limit.
Both sequences {Un, n = 1, 2, . . .} and {U?n, n = 1, 2, . . .} comprise identi-

cally distributed rvs but have very different dependency structures!

Ex. 19.2 Consider the i.i.d discrete rvs {Wk, k = 1, 2, . . .} with finite support
S = {−1, 1} and common pmf given by

P [Wk = 1] = α and P [Wk = −1] = 1− α, k = 1, 2, . . .

for some 0 < α < 1. Define the rvs {W ?
k , k = 1, 2, . . .} to be

W ?
k ≡

k∏
`=1

W`, k = 1, 2, . . .

a. Show that the rvs {W ?
k , k = 1, 2, . . .} converge in distribution to a rv W ?

∞.
Identify the probability distribution function of the limiting rv W ?

∞.
b. Is it the case that the rvs {W ?

k , k = 1, 2, . . .} converge in probability? Prove
or disprove!

Ex. 19.3 The i.i.d. R-valued rvs {X,Xn, n = 1, 2, . . .} have a common probabil-
ity distribution given by

P [X ≤ x] = 1− e−x+ , x ∈ R.

For all n = 1, 2, . . ., consider the rv Yn given by

Yn ≡
n∏
k=1

(Xk · 1 [Xk ≥ 0]) .

a. For each n = 1, 2, . . ., show that E [Yn] = 1 while E
[√
Yn
]

=
(√

π
2

)n
.

b. Use Part a to identify a range for θ > 0 where the convergence

lim
n→∞

P [Yn > θn] = 0
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takes place.
c. Use Part a to show that the sequence {Yn, n = 1, 2, . . .} converges in

probability (and identify the limiting rv) but that it does not converge in the rth

mean with r = 1.

Ex. 19.4 Consider a sequence of i.i.d. R-valued rvs {X,Xn, n = 1, 2, . . .} with
E [|X|] <∞.

a. Assume that the sequence {Xn, n = 1, 2, . . .} converges almost surely, i.e.,
there exists an R-valued rv X∞ defined on the same probability triple such that
limn→∞Xn = X∞ a.s.. Characterize the (probability distribution of the) limiting
rv X∞. What does it imply regarding the probability distribution of the rv X .

b. Assume next that the sequence {Xn, n = 1, 2, . . .} converges in probability
(and not necessarily almost surely), i.e., there exists an R-valued rvX ′∞ defined on
the same probability triple such that Xn

P−→n X
′
∞. Characterize the (probability

distribution of the) limiting rv X ′∞. What does it imply regarding the probability
distribution of the rv X .

Ex. 19.5 Consider a sequence of i.i.d. R-valued rvs {X,Xn, n = 1, 2, . . .} which
are all defined on the same probability triple (Ω,F ,P).

a. Does the sequence {Xn, n = 1, 2, . . .} converge in distribution, and in the
affirmative, identify the limit.

b. Determine whether the sequence {Xnn , n = 1, 2, . . .} converges in proba-
bility, and in the affirmative, identify the limit.

c. Give a condition to ensure that the sequence {Xnn , n = 1, 2, . . .} converges
almost surely and identify the limit.

Ex. 19.6 Consider a collection of i.i.d. R+-valued rvs {X,Xn, n = 1, 2, . . .}
such that P [X > 0] = 1 and E

[
|X|2

]
< ∞. The rvs {Tn, n = 0, 1, . . .} are

defined by

T0 ≡ 0, Tn ≡
n∑
k=1

Xk · 1 [Xk > 0] , n = 1, 2, . . .

and set
Dn+1 ≡

√
Tn+1 −

√
Tn, n = 0, 1, . . .

a. Show that the sequence {Dn, n = 1, 2, . . .} converges almost surely and
identify the limit.

b. Does the sequence {Dn, n = 1, 2, . . .} converge in mean-square? In the
affirmative identify the limit. [HINT: There are a number of ways to solve Part b.
In particular it might be useful to note the following facts: (i) For each n = 0, 1, . . .,
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we have Dn+1 =st

√
Tn +X −

√
Tn and Dn+2 =st

√
Tn+1 +X −

√
Tn+1 with

Tn ≤ Tn+1; and (ii) the mapping R+ → R+ : x→
√
x is a concave function.]

Ex. 19.7 (Generalizing Exercise 19.6) Consider a mapping g : R+ → R+ which
is concave and strictly increasing. In the framework of Exercise 19.6, set

Dg
n+1 ≡ g(Tn+1)− g(Tn), n = 0, 1, . . .

Ex. 19.8 Let p be a fixed parameter in (0, 1). Consider a family of Binomial rvs
{Xn, n = 1, 2, . . .} defined on the same probability triple (Ω,F ,P) with

P [Xn = k] =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n

n = 1, 2, . . .

Define the sequence of rvs {Zn, n = 1, 2, . . .} given by

Zn ≡ min (Xn, n−Xn) , n = 1, 2, . . .

a. Does the sequence {Znn , n = 1, 2, . . .} converge in probability? Carefully
explain your answer and identify the limiting rv (if appropriate).

b. Does the sequence {Znn , n = 1, 2, . . .} converge in distribution? Carefully
explain your answer and identify the limiting rv (if appropriate).

c. Show that the limit

lim
n→∞

E
[
Zn
n

]
exists and find its value [HINT: Uniform integrability]

d. Is it possible to construct a probability triple (Ω?,F?,P?) and rvs {Z?n, n =
1, 2, . . .} defined on the triple (Ω?,F?,P?) such that (i) for each n = 1, 2, . . .,
the probability distribution of the rv Z?n under P? coincides with that of the rv Zn
under P, and (ii) the sequence {Z

?
n
n , n = 1, 2, . . .} is a.s. convergent under P??

Ex. 19.9 Consider the triangular array of rvs {Xn,k, k = 1, . . . , n; n = 1, 2, . . .}
defined on some probability triple (Ω,F ,P). For each n = 1, 2, . . ., we assume
that the rvs Xn,1, . . . , Xn,n are i.i.d. rvs with

P
[
Xn,k = −

√
n
]

= P
[
Xn,k =

√
n
]

=
1

2n
, k = 1, . . . , n

and
P [Xn,k = 0] = 1− 1

n
, k = 1, . . . , n.

We write

Sn =
n∑
k=1

Xn,k, n = 1, 2, . . . .
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a. For each n = 1, 2, . . ., compute E [Xn,k] and Var [Xn,k] for all k =
1, . . . , n.

6.b. Does the sequence {Snn , n = 1, 2, . . .} converge in probability? In the
event it does, identify the limiting rv.

Exercise 20.1 explores a related CLT-like result.

Ex. 19.10 Show that the uniform integrability condition (19.20) implies the bound-
edness (19.21) of the moments.



Chapter 20

From convergence in distribution
to weak convergence

This chapter develops some useful tools to establish convergence in distribution.
We start by recalling the definition of convergence in distribution as given in Defi-
nition 19.4.1

Definition 20.0.1
The sequence of rvs {Xn, n = 1, 2, . . .} converges in distribution to the rv X

if
lim
n→∞

FXn(x) = FX(x), x ∈ C(FX).(20.1)

We shall write Xn =⇒n X or Xn
L−→n X . Some authors refer to this mode of

convergence as convergence in law or as weak convergence.

20.1 Weak convergence via characteristic functions

Weak convergence of a sequence of rvs can be characterized through the limiting
behavior of the corresponding sequence of characteristic functions.

Theorem 20.1.1 The sequence of rvs {Xn, n = 1, 2, . . .} converges distribution
to the rv X if and only if

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.

293
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This result suggests the following strategy: Consider the limit

Φ(θ) = lim
n→∞

ΦXn(θ), θ ∈ R(20.2)

and identify the rv X whose characteristic function coincides with Φ : R → C.
However, a word of caution is in order as the limit (20.2) may not necessarily define
the characteristic function of a rv as can be seen from the following example.

Example 20.1.1 The limit of characteristic functions is not always a charac-
teristic function For each n = 1, 2, . . ., the rv Xn is the uniform rv on the interval
(−n, n). Easy calculations show that

ΦXn(θ) =

∫ n

−n

eiθx

2n
dx =


sin(nθ)
n if θ 6= 0

1 if θ = 0,

(20.3)

so that

Φ(θ) = lim
n→∞

ΦXn(θ) =


0 if θ 6= 0

1 if θ = 0.

Obviously, there are no rvX whose characteristic function coincides with the limit.

This difficulty can be remedied with the help of the next result by simply check-
ing continuity at θ = 0 for the limit (20.2). This is a consequence of the Bochner-
Herglotz Theorem.

Theorem 20.1.2 Consider a sequence of rvs {Xn, n = 1, 2, . . .} such that the
limits

Φ(θ) = lim
n→∞

ΦXn(θ), θ ∈ R

all exist. If Φ : R→ C is continuous at θ = 0, then it is the characteristic function
of some rv X , and Xn =⇒n X .

Proof. For each n = 1, 2, . . ., the function ΦXn : R→ C is a characteristic func-
tion. Therefore, by Theorem 17.4.1 it is (i) bounded with |ΦXn(θ)| ≤ ΦXn(0) = 1
for all θ in R; (ii) uniformly continuous on R; and (iii) positive semi-definite.
Properties (i) and (iii) are clearly inherited by the limit Φ : R → C. Therefore,
by Theorem 17.4.2 the assumed continuity of Φ implies that it is a characteristic
function, i.e., there exists a rv X such that Φ = ΦX . Invoking Theorem 20.1.1 we
conclude that Xn =⇒n X .
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20.2 Weak convergence via the Skorokhod representation

Consider a collection {F, Fn, n = 1, 2, . . .} of probability distribution functions
on R. The Skorokhod representation discussed in Section 7.6 provides a natural
connection between convergence in distribution and a.s. convergence. This is de-
veloped in the next result.

Theorem 20.2.1 If the sequence of probability distribution functions {Fn, n =
1, 2, . . .} converges weakly to F , then there exists a probability triple (Ω?,F?,P?)
and a collection of R-valued rvs {X?, X?

n, n = 1, 2, . . .} all defined on Ω? with
the following properties:

(i) We have

Fn(x) = P?[X?
n ≤ x]

x ∈ R
n = 1, 2, . . .

(20.4)

and
F (x) = P?[X? ≤ x], x ∈ R.(20.5)

(ii) The rvs {X?
n, n = 1, 2, . . .} converges a.s. to X? (under P?), i.e.,

P?
[{
ω? ∈ Ω? : lim

n→∞
X?
n(ω?) = X?(ω?)

}]
= 1.

Proof. The existence follows from the Skorokhod representation described in
Lemma 7.6.1 with Ω? = [0, 1],F? = B([0, 1]) and P taken to be Lebesgue measure
λ. The rvs {X?, X?

n, n = 1, 2, . . .} are taken to be

X?
n ≡ F←n (ω?),

ω? ∈ [0, 1]
n = 1, 2, . . .

and
X? ≡ F←(ω?), ω? ∈ [0, 1].

It is easy to check that limn→∞X
?
n(ω?) = X?(ω?) for every ω? in Ω? as a result

of the weak convergence condition limn→n Fn(x) = F (x) for every x in C(F ).

The a.s. convergence (under P?) of the sequence of rvs {X?
n, n = 1, 2, . . .} in now

way implies the a.s. convergence of any other collection of rvs {Xn, n = 1, 2, . . .}
defined on some other probability triple (Ω,F ,P) such that the probability distri-
bution function of the rv Xn under P coincides with FXn fort all n = 1, 2, . . ..
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20.3 Functional characterization of convergence in distri-
bution

The following equivalent characterizations of distributional convergence have many
use.

Theorem 20.3.1 Consider the R-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). The following three statements are equivalent:

(i) The rvs {Xn, n = 1, 2, . . .} converge in distribution to the rv X , i.e.,

lim
n→∞

FXn(x) = FX(x), x ∈ C(FX).

(ii) For every bounded continuous mapping g : R→ R, it holds that

lim
n→∞

E [g(Xn)] = E [g(X)] .(20.6)

(iii) The characteristic functions converge in the sense that

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.(20.7)

Proof. It follows from Theorem 20.2.1 that (i) implies the validity of (ii): Indeed,
with the notation used in that result, consider the probability triple (Ω?,F?,P?)
and the R-valued rvs {X?, X?

n, n = 1, 2, . . .} all defined on Ω? such that

P [X ≤ x] = P?[X? ≤ x], x ∈ R(20.8)

and

P [Xn ≤ x] = P?[X?
n ≤ x]

x ∈ R
n = 1, 2, . . .

(20.9)

with
P?
[
ω? ∈ Ω? : lim

n→∞
X?
n(ω?) = X?(ω?)

]
= 1.

Consider a mapping g : R→ R which is continuous and bounded - Set

Bg ≡ sup
x∈R
|g(x)| <∞.

We obviously have E [g(X)] = E? [g?(X?)] and

E [g(Xn)] = E? [g?(X?
n)] , n = 1, 2, . . .
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By the continuity of g we get

lim
n→∞

g(X?
n) = g(X?) P?-a.s.

with

|g(X?
n(ω?))| ≤ Bg,

ω? ∈ Ω?

n = 1, 2, . . .

Invoking the Dominated Convergence Theorem we readily conclude that

lim
n→∞

E? [g?(X?
n)] = E? [g?(X?)] .

This completes the proof of the validity of (ii). The proof that (ii) implies (i) is
rather technical and is omitted; see [] for details.

The equivalence of (i) and (iii) is just Theorem 20.1.1. Note that (iii) is a sim-
ple consequence of (ii) since for every θ in R the mappings x → cos(θx) and
x→ sin(θx) are bounded and continuous on R.

An immediate consequence of Theorem 20.4 is the following continuity result
for weak convergence.

Theorem 20.3.2 Consider the R-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). If the rvs {Xn, n = 1, 2, . . .} converge in dis-
tribution to the rv X , then the R-valued rvs {h(Xn), n = 1, 2, . . .} converge in
distribution to the rv h(X) for any continuous mapping h : R→ R, namely

h(Xn) =⇒n h(X).

Proof. The proof follows by a simple application of Theorem 20.4: Pick a bounded
continuous mapping g : R → R. Given the continuous mapping h : R → R, we
note that the mapping g ◦ h : R→ R given by

g ◦ h(x) = g(h(x)), x ∈ R

is also a bounded continuous mapping R→ R. Therefore, by Part (ii) of Theorem
20.4 we conclude from the assumed convergence Xn =⇒n X that

lim
n→∞

E [g ◦ h(Xn)] = E [g ◦ h(X)] .
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or equivalently,
lim
n→∞

E [g(h(Xn))] = E [g(h(X))] .

Invoking one more time Part (ii) of Theorem 20.4 we now conclude that h(Xn) =⇒n

h(X) as desired.

20.4 Weak convergence of discrete rvs

In this section we consider a collection of discrete rvs {X,Xn, n = 1, 2, . . .} with

P [X ∈ S] = P [Xn ∈ S] = 1, n = 1, 2, . . .

where S = {ai, i ∈ I} is a countable subset of Z.

Theorem 20.4.1 The sequence of discrete rvs Xn =⇒n X converges weakly to
the rv X if and only if

lim
n→∞

P [Xn = ai] = P [X = ai] , i ∈ I.

Proof. Assume first that Xn =⇒n X . Let a be a point of discontnuity for FX . By
assumption a is an element of Z, and therefore ε can be selected in (0, 1) so that
both a± ε are not in Z and are points of continuity for FX . It follows that

lim
n→∞

P [Xn ≤ a± ε] = P [X ≤ a± ε] .(20.10)

Note however that

P [Xn ≤ a− ε] = P [Xn ≤ a+ ε] + P [Xn = a] , n = 1, 2, . . .(20.11)

and
P [X ≤ a− ε] = P [X ≤ a+ ε] + P [X = a] .(20.12)

since the probability distribution functions are piecewise constant with jumps only
at points in Z.

Let n go to infinity in (20.11). It is plain from (20.10) that limn→∞ P [Xn = a]
exists and is given by

lim
n→∞

P [Xn = a] = P [X ≤ a+ ε]− P [X ≤ a− ε] = P [X = a]
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as we make use of (20.12).

Conversely, assume that

lim
n→∞

P [Xn = a] = P [X = a] , a /∈ C(FX).(20.13)

With any Borel subset B in R, we shall show that

lim
n→∞

P [Xn ∈ B] = P [X ∈ B] .(20.14)

This will immediately imply Xn =⇒n X upon specializing B to sets of the form
B = (−∞, x] with x in C(FX).

To establish (20.14), fix n = 1, 2, . . . and pick an arbitrary positive integer A:
We see that

P [Xn ∈ B]

= P [|Xn| ≤ A,Xn ∈ B] + P [|Xn| > A,Xn ∈ B]

=
∑

a∈Z∩B:|a|≤A
P [Xn = a] + P [|Xn| > A,Xn ∈ B](20.15)

while

P [X ∈ B] = P [|X| ≤ A,X ∈ B] + P [|X| > A,X ∈ B]

=
∑

a∈Z∩B:|a|≤A
P [X = a] + P [|X| > A,X ∈ B] .

Substracting we conclude that

|P [Xn ∈ B]− P [X ∈ B]|
≤

∑
a∈Z∩B:|a|≤A

|P [Xn = a]− P [X = a]|+ P [|Xn| > A] + P [|X| > A] .

Let n go to infinity in this last inequality: Using (20.13) we get

lim
n→∞

∑
a∈Z∩B:|a|≤A

|P [Xn = a]− P [X = a]| = 0

since this sum has at most 2A+ 1 terms, while

lim
n→∞

P [|Xn| > A] = lim
n→∞

(1− P [|Xn| > A])

= 1− P [|X| ≤ A] = P [|X| ≤ A](20.16)

by a similar argument.
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Collecting these facts we conclude that

lim sup
n→∞

(|P [Xn ∈ B]− P [X ∈ B]|) ≤ 2P [|X| > A] .

Now, letting A go to infinity in this last inequality, we note that

lim sup
n→∞

|P [Xn ∈ B]− P [X ∈ B]| = 0

since the left handside does not depend on A. The desired conclusion (20.14) im-
mediately follows.

In the more restrictive setting where S ⊆ N, probability generating functions
can be defined, and the following analog of Theorem 20.1.1 holds.

Theorem 20.4.2 The sequence of N-valued rvs {Xn, n = 1, 2, . . .} converges
weakly to the rv X if and only if

lim
n→∞

GXn(z) = GX(z), |z| ≤ 1.

The sequence of Rp-valued rvs {Xn, n = 1, 2, . . .} converges in distribution
to the Rp-valued rv X if for every bounded continuous mapping g : Rp → R, it
holds that

lim
n→∞

E [g(Xn)] = E [g(X)] .(20.17)

Here as well we shall write Xn =⇒n X or Xn
L−→nX . Some authors also refer to

this mode of convergence as convergence in law or as weak convergence.
Theorem 20.4 has the following multi-dimensional analog.

Theorem 20.4.3 Consider the Rp-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). Then, the rvs {Xn, n = 1, 2, . . .} converge in
distribution to the rv X if and only if

lim
n→∞

ΦXn(θ) = ΦX(θ), θ ∈ R.(20.18)

This amounts to

lim
n→∞

E
[
eiθ
′Xn
]

= E
[
eiθ
′X
]
, θ ∈ R.

In the same way that Theorem implied Theorem 20.3.2, we readily see that
Theorem 20.4.3has the following important consequence.
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Theorem 20.4.4 Consider the Rp-valued rvs {X,Xn, n = 1, 2, . . .} defined on
some probability triple (Ω,F ,P). If the rvs {Xn, n = 1, 2, . . .} converge in dis-
tribution to the rv X , then the Rq-valued rvs {h(Xn), n = 1, 2, . . .} converge in
distribution to the Rq-valued rv h(X) for any continuous mapping h : Rp → Rq,
namely

h(Xn) =⇒n h(X).

20.5 Convergence of Gaussian rvs

Gaussian rvs have a very compact characterization in terms of their characteristic
functions. This can be used to show that the class of Gaussian distributions is stable
under weak convergence in the following sense.

Lemma 20.5.1 Let {Xk, k = 1, 2, . . .} denote a collection of Rp-valued Gaussian
rvs. For each k = 1, 2, . . ., let µk and Σk denotes the mean vector and covariance
matrix of the rv Xk. The rvs {Xk, k = 1, . . .} converge in distribution (in law) if
and only there exist an element µ in Rp and a p× p matrix Σ such that

lim
k→∞

µk = µ and lim
k→∞

Σk = Σ,(20.19)

in which case, Xk =⇒k X where X is an Rd-valued Gaussian rv N(µ,Σ) with
mean vector µ and covariance matrix Σ.

Proof. Assume first that the conditions (20.19) hold. Using the fact that

ΦXk(θ) = eiθ
tµk− 1

2
θtΣkθ,

θ ∈ Rk
k = 1, 2, . . .

we note that
lim
k→∞

ΦXk(θ) = eiθ
tµ− 1

2
θtΣθ, θ ∈ R

The second half of condition (20.19) ensures that the matrix Σ is symmetric and
non-negative definite, hence a covariance matrix. Therefore, limk→∞ΦXk is the
characteristic function of a Gaussian rv X with X ∼ N(µ,Σ). Applying Theorem
20.1.1 we conclude that Xk =⇒k X where X ∼ N(µ,Σ).

Conversely, assumeXk =⇒k X . Applying Theorem 20.1.1 again we conclude
that

lim
k→∞

ΦXk(θ) = ΦX(θ), θ ∈ R.(20.20)



302CHAPTER 20. FROM CONVERGENCE IN DISTRIBUTION TO WEAK CONVERGENCE

Using the decomposition into real and imaginary components yields

ΦXk(θ) = cos
(
θtµk

)
e−

1
2
θtΣkθ + i sin

(
θtµk

)
,

θ ∈ Rp
k = 1, 2, . . .

It is plain that the convergence (20.20) is equivalent to the simultaneous validity of
the two convergence statements

lim
k→∞

cos
(
θtµk

)
e−

1
2
θtΣkθ = E

[
cos
(
θtX

)]
, θ ∈ Rp(20.21)

and
lim
k→∞

sin
(
θtµk

)
= E

[
sin
(
θtX

)]
, θ ∈ Rp.(20.22)

For any any convergent subsequence {µk` , ` = 1, 2, . . .}with lim`→∞ µk` = µ
for some vector µ in Rp, the convergence (20.22) yields

sin
(
θtµ
)

= lim
`→∞

sin
(
θtµk`

)
= E

[
sin
(
θtX

)]
, θ ∈ Rp.

Therefore, if µ? and µ? are accumulation points of the sequence {µk, k = 1, 2, . . .}
we must necessarily have

sin
(
θtµ?

)
= sin

(
θtµ?

)
, θ ∈ Rp

and the equality µ? = µ? follows. Therefore, all accumulation points of the se-
quence {µk, k = 1, 2, . . .} coincide and the sequence converges, say with limit µ
in Rp.

For any convergent subsequence {Σk` , ` = 1, 2, . . .} with lim`→∞Σk` = Σ
for some p× p matrix Σ, the convergence (20.21) yields

cos
(
θtµ
)
e−

1
2
θtΣθ = lim

`→∞
cos
(
θtµk`

)
e−

1
2
θtΣk`θ = E

[
cos
(
θtX

)]
, θ ∈ Rp

and we conclude that

e−
1
2
θtΣθ =

E
[
cos
(
θtX

)]
cos (θtµ)

, θ ∈ Rp whenever cos
(
θtµ
)
6= 0

As a result, all accumulation points of the sequence {Σk, k = 1, 2, . . .} coincide
and the sequence converges, say with limit Σ, said limit being a p × p being nec-
essarily a covariance matrix.
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20.6 Exercises

Ex. 20.1 As in Exercise 19.9, consider the triangular array of rvs {Xn,k, k =
1, . . . , n; n = 1, 2, . . .} defined on some probability triple (Ω,F ,P). For each
n = 1, 2, . . ., we assume that the rvs Xn,1, . . . , Xn,n are i.i.d. rvs with

P
[
Xn,k = −

√
n
]

= P
[
Xn,k =

√
n
]

=
1

2n
, k = 1, . . . , n

and
P [Xn,k = 0] = 1− 1

n
, k = 1, . . . , n.

We write

Rn ≡
Sn√

Var [Sn]
with Sn =

n∑
k=1

Xn,k, n = 1, 2, . . .

Explore the weak convergence of the sequence {Rn, n = 1, 2, . . .}. In particular,
identify a rv R such that Rn =⇒n R [HINT: What is the characteristic function
of Poisson rvs?].

Ex. 20.2 Consider a sequence of p × p matrices {Rk, k = 1, 2, . . .} such that
for each k = 1, 2, . . ., the matrix Rk is a covariance matrix. Show that if R ≡
limk→∞Rk exists entrywise as a p× p, then R is also a covariance matrix.
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Chapter 21

The classical limit theorems

In this chapter we explore the classical limit theorem of Probability Theory. The
setting of the next four sections is as follows: The rvs {Xn, n = 1, 2, . . .} are rvs
defined on some probability triple (Ω,F ,P). With this sequence we associate the
sums

Sn =
n∑
k=1

Xk, n = 1, 2, . . .

Two types of results will be discussed: The first class of results, known as Laws of
Large Numbers, deal with the convergence of the sample averages

S̄n =
1

n

n∑
k=1

Xk, n = 1, 2, . . .

The second class of results are called Central Limit Theorems and provide a rate
of convergence in the Laws of Large Numbers.

21.1 Weak Laws of Large Numbers (I)

Laws of Large Numbers come in two types which are distinguished by the mode
of convergence used. When convergence in probability is used, we refer to such
results as Weak Laws of Large Numbers. The most basic such result is given next,
and constitutes the Weak Laws of Large Numbers in its original version.

Theorem 21.1.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E
[
|X|2

]
<∞. Then,

Sn
n

L2

−→n E [X] ,(21.1)

305
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whence
Sn
n

P−→n E [X] .(21.2)

Proof. For each n = 1, 2, . . ., we have

E

[∣∣∣∣Snn − E [X]

∣∣∣∣2
]

= E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [X])

∣∣∣∣∣
2
 =

Var[Sn]

n2
.

By the comments following Lemma 13.3.1 we conclude that Var[Sn] = nVar[X]
since

Cov[Xk, X`] = δ(k; `)Var[X], k, ` = 1, . . . , n

under the enforced independence assumptions. As a result,

E

[∣∣∣∣Snn − E [X]

∣∣∣∣2
]

=
Var[X]

n

and the desired conclusion (21.1) is now immediate, with the convergence (21.2)
following by Theorem 19.3.2.

21.2 Weak Laws of Large Numbers (II)

A careful inspection of the proof of Theorem 21.1.1 suggests a more general result.
Assume that the rvs {Xn, n = 1, 2, . . .} are second-order rvs: For each n =
1, 2, . . ., it is still the case that

E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2
 =

Var[Sn]

n2
.

Again making use of Lemma 13.3.1 we now obtain

E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2
 =

1

n2

n∑
k=1

Var[Xk] +
1

n2

∑
k,`=1, k 6=`

Cov[Xk, X`].

Letting n go to infinity in this last relation we conclude to the next result – Here
as well the passage from mean-square convergence to convergence in probability
is validated by Theorem 19.3.2.
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Proposition 21.2.1 Consider a collection {Xn, n = 1, 2, . . .} of second-order rvs
such that

lim
n→∞

1

n2

n∑
k=1

Var[Xk] = 0.(21.3)

We have
1

n

n∑
k=1

(Xk − E [Xk])
L2

−→n 0(21.4)

and
1

n

n∑
k=1

(Xk − E [Xk])
P−→n 0(21.5)

whenever either one of the following conditions holds:
(i) The rvs {Xn, n = 1, 2, . . .} are uncorrelated
(ii) The rvs {Xn, n = 1, 2, . . .} are negatively correlated, i.e.,

Cov[Xk, X`] ≤ 0,
k 6= `

k, ` = 1, . . . , n.

(iii) The rvs {Xn, n = 1, 2, . . .} satisfy the averaging condition

lim
n→∞

1

n2

∑
k,`=1, k 6=`

Cov[Xk, X`] = 0.(21.6)

Proof. In each case it suffices to show that

lim
n→∞

E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2
 = 0.(21.7)

Case (i) is already contained in Case (ii) for which we have

0 ≤ E

∣∣∣∣∣ 1n
n∑
k=1

(Xk − E [Xk])

∣∣∣∣∣
2
 ≤ 1

n2

n∑
k=1

Var[Xk].

Letting n go to infinity in this chain of inequalities we get (21.7) by making use of
the conditions (21.3).

In Case (iii) the limit (21.7) holds by virtue of (21.6) and (21.7).
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This result is often applied when the rvs {Xn, n = 1, 2, . . .} have identical
means and variances, namely there exist µ and σ2 > 0 such that

E [Xn] = µ and Var[Xn] = σ2, n = 1, 2, . . .

In that case, condition (21.3) is automatically satisfied and the convergence state-
ments take the simpler form

1

n

n∑
k=1

Xk
L2

−→n µ and
1

n

n∑
k=1

Xk
P−→n µ.(21.8)

21.3 The classical Weak Law of Large Numbers (III)

As we now show, in Theorem 21.1.1 the finiteness of the second moments can be
dropped while still insuring the result (21.2) under a finite first moment assumption.
This is done by leveraging the equivalence between convergence in probability and
weak convergence when the limit is a constant, thereby opening up the possibility
to use methods based on characteristic functions.

However note that the mean-square convergence (21.1) is now obviously out
of reach since none of the rvs involved may have finite second moments under the
weaker first moment assumption.

Theorem 21.3.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then, we have

Sn
n

P−→nE [X] .(21.9)

Proof. Fix n = 1, 2, . . . and θ in R. Note that

E
[
eiθ(

Sn
n
−E[X])

]
= E

[
ei
θ
n

∑n
k=1(Xk−E[X])

]
= E

[
n∏
k=1

ei
θ
n

(Xk−E[X])

]

=

n∏
k=1

E
[
ei
θ
n

(Xk−E[X])
]

=
(
E
[
ei
θ
n

(X−E[X])
])n

.(21.10)
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Theorem 17.7.1 (for k = 1 and x = X − E [X]) gives

eiθ(X−E[X]) = 1 + iθ(X − E [X]) + iθ ·
∫ X−E[X]

0

(
eiθt − 1

)
dt,

whence

E
[
eiθ(X−E[X])

]
= 1 + iθ · E

[∫ X−E[X]

0

(
eiθt − 1

)
dt

]
= 1 + iθ · C1(θ)

upon taking expectations with

C1(θ) ≡ E

[∫ X−E[X]

0

(
eiθt − 1

)
dt

]
.

Substituting θ by θ
n in these relations leads to a rewriting of (21.10) as

E
[
eiθ(

Sn
n
−E[X])

]
=

(
E
[
ei
θ
n

(X−E[X])
])n

=

(
1 +

iθ

n
· C1

(
θ

n

))n
.(21.11)

By Dominated Convergence, we conclude that limn→∞C1

(
θ
n

)
= 0, whence

lim
n→∞

(
E
[
eiθ(

Sn
n
−E[X])

])n
= lim

n→∞

(
1 +

iθ

n
· C1

(
θ

n

))n
= 1.

It follows that Snn − E [X]
P−→n 0, and this conclude the proof of (21.9).

21.4 The Strong Law of Large Numbers

Strong Laws of Large Numbers are convergence statements in the a.s. sense. The
classical Strong Law of Large Numbers in its strongest form was proved by Kol-
mogorov.

Theorem 21.4.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E [|X|] <∞. Then,

lim
n→∞

Sn
n

= E [X] a.s.(21.12)

We give two proofs of this result under stronger assumptions on the moments
of X . One proof assumes E

[
|X|4

]
<∞ while the second proof is given under the

condition E
[
|X|2

]
< ∞. A proof under the first moment condition E [|X|] < ∞

is available in a number of references, see [?, ?].
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Proof 1 Assume E
[
|X|4

]
< ∞ – Note that there is no loss in generality in

assuming that E [X] = 0 as we do from now on in this proof. The basic idea of the
proof is as follows: By the Monotone Convergence Theorem it is always the case
that

E

[ ∞∑
n=1

(
Sn
n

)4
]

=
∞∑
n=1

E

[(
Sn
n

)4
]

Therefore, if we could show that

∞∑
n=1

E

[(
Sn
n

)4
]
<∞,(21.13)

we immediately conclude that

E

[ ∞∑
n=1

(
Sn
n

)4
]
<∞.

As a result,
∞∑
n=1

(
Sn
n

)4

<∞ a.s.

and the conclusion limn→∞
Sn
n = 0 a.s. is now straightforward.

In order to establish (21.13) our starting point is the observation that

E

[(
Sn
n

)4
]

=
1

n4
· E

( n∑
k=1

Xk

)4


with

E

( n∑
k=1

Xk

)4
 =

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

E [XiXjXkX`] .(21.14)

Under the enforced independence assumptions it is plain (with E [X] = 0) that
E [XiXjXkX`] = 0 as soon as one of the indices i, j, k, ` is different from all the
other three, e.g., i /∈ {j, k, `}, etc. The only cases when E [XiXjXkX`] 6= 0 are
as follows: (i) If i = j = k = `, then E [XiXjXkX`] = E

[
X4
]
; there are n

such configurations; (ii) If {i, j, k, `} contains only two distinct values, say a 6= b
appearing as aabb, abab and abba in (21.14), then E [XiXjXkX`] = (E

[
X2
]
)2;

there are 3n(n− 1) such configurations. It follows that

E

( n∑
k=1

Xk

)4
 = nE

[
X4
]

+ 3n(n− 1)(E
[
X2
]
)2,
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whence

E

[(
Sn
n

)4
]

=
1

n3
· E
[
X4
]

+ 3
n− 1

n3
· (E

[
X2
]
)2 ∼

3(E
[
X2
]
)2

n2
.

The conclusion (21.13) readily follows as we recall that
∑∞

n=1
1
n2 < ∞. This

completes the proof.

Proof 2 Assume E
[
|X|2

]
<∞ – For each k = 1, 2, . . ., we note that

Var

[
Sk2

k2

]
=

Var [X]

k2

so that
∞∑
k=1

P
[∣∣∣∣Sk2k2

∣∣∣∣ > ε

]
≤ 1

ε2

∞∑
k=1

Var [X]

k2
<∞, ε > 0.

It follows from Theorem 19.1.2 that

lim
k→∞

Sk2

k2
= E [X] a.s.(21.15)

Now assume that the rvs {X,Xn, n = 1, 2, . . .} are non-negative, i.e., X ≥ 0
a.s. (in which case obviously E [X] ≥ 0). The case when the rvs {X,Xn, n =
1, 2, . . .} are non-positive, i.e., X ≤ 0 a.s., can be handed mutatis mutandis.

Fix n = 1, 2, . . .. There exists a unique positive integer k(n) such that

k(n)2 ≤ n < (k(n) + 1)2.(21.16)

Under the non-negativity assumption, we haveX` ≥ 0 a.s. for ` = k(n)2, . . . , (k(n)+
1)2 − 1, and the inequalities

Sk(n)2 ≤ Sn ≤ S(k(n)+1)2 a.s.

hold. It follows that

k(n)2

n
·
(
Sk(n)2

k(n)2

)
≤ Sn

n
≤ (k(n) + 1)2

n
·
(
S(k(n)+1)2

(k(n) + 1)2

)
.(21.17)

Using (21.16) we readily get

k(n)2

n
≤ 1 <

k(n)2

n
+ 2 · k(n)√

n
· 1√

n
+

1

n
, n = 1, 2, . . .(21.18)
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From the first inequality in (21.18) we conclude that lim supn→∞
k(n)2

n ≤ 1, while

the second inequality leads to 1 ≤ lim infn→∞
k(n)2

n since k(n)√
n
≤ 1 for all n =

1, 2, . . .. As a result, limn→∞
k(n)2

n = 1 (whence limn→∞ k(n) =∞ as expected).
Finally let n go to infinity in (21.17): We readily get (21.12) upon combining this
last conclusion with the convergence (21.15).

To complete the proof note that E
[
(X±)2

]
<∞ since E

[
|X|2

]
= E

[
(X+)2

]
+

E
[
(X−)2

]
(as we note that X+X− = 0). Thus, it holds that

lim
n→∞

∑n
k=1X

±
k

n
= E

[
X±
]

a.s.(21.19)

since the rvs {X±, X±k , k = 1, 2, . . .} form an i.i.d. sequence of second-order rvs.
The desired result (21.12) automatically follows upon noting that

Xn = X+
n −X−n , n = 1, 2, . . .

and E [X] = E [X+]− E [X−].

21.5 The Central Limit Theorem

The Central Limit Theorem complements the Law of Large Numbers, in that it
provides some indication as to the rate at which convergence takes place.

Theorem 21.5.1 Assume the rvs {X,Xn, n = 1, 2, . . .} to be i.i.d. rvs with
E
[
|X|2

]
<∞. Then, we have

√
n

(
Sn
n
− E [X]

)
=⇒n

√
Var[X] · U(21.20)

where U is a standard zero-mean unit-variance Gaussian rv.

Proof. Fix n = 1, 2, . . . and θ in R. This time, as in the proof of Theorem 21.3.1
we get

E
[
eiθ
√
n(Snn −E[X])

]
=
(
E
[
e
i θ√

n
(X−E[X])

])n
under the enforced independence.
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This time Theorem 17.7.1 (with k = 2 and x = X − E [X]) yields

eiθ(X−E[X])

= 1 + iθ(X − E [X])− θ2

2
(X − E [X])2

−θ
2

2

∫ X−E[X]

0
(X − E [X]− t)

(
eiθt − 1

)
dt,(21.21)

Taking expectations we get

E
[
eiθ(X−E[X])

]
= 1− θ2

2
·Var [X]− θ2

2
· C2(θ)(21.22)

with

C2(θ) ≡ E

[∫ X−E[X]

0
(X − E [X]− t)

(
eiθt − 1

)
dt

]
.(21.23)

Substituting θ by θ√
n

in this last relation leads to

E
[
e
i θ√

n
(X−E[X])

]
= 1− θ2

2n
·Var [X]− θ2

2n
· C2

(
θ√
n

)
so that

E
[
eiθ
√
n(Snn −E[X])

]
=

(
1− θ2

2n
·Var [X]− θ2

2n
· C2

(
θ√
n

))n
.

Again, by Dominated Convergence, we obtain

lim
n→∞

C2

(
θ√
n

)
= 0

under the second moment condition E
[
|X|2

]
<∞, whence

lim
n→∞

n

(
θ2

2n
·Var [X]− θ2

2n
· C2

(
θ√
n

))
=
θ2

2
·Var [X]

It follows that
lim
n→∞

E
[
eiθ
√
n(Snn −E[X])

]
= e−

θ2

2
·Var[X]

This complete the proof of (21.20).
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21.6 The Central Limit Theorem – An application

We are still in the setting of Theorem 21.5.1. We can rephrase (21.20) as

lim
n→∞

P
[√

n

(
Sn
n
− E [X]

)
≤ x

]
= P

[√
Var[X] · U ≤ x

]
, x ∈ R.(21.24)

as we recall that every point in R is a point of continuity for the rv U (or
√

Var[X]·
U ).

It follows that

lim
n→∞

P
[∣∣∣∣√n(Snn − E [X]

)∣∣∣∣ ≤ x]
= P

[√
Var[X] · U ≤ x

]
− P

[√
Var[X] · U ≤ −x

]
= Φ

(
x√

Var[X]

)
− Φ

(
− x√

Var[X]

)

= 2Φ

(
x√

Var[X]

)
− 1, x ≥ 0.(21.25)

Fix x ≥ 0 and n = 1, 2, . . .: We have∣∣∣∣√n(Snn − E [X]

)∣∣∣∣ ≤ x
if and only if

−x ≤
√
n

(
Sn
n
− E [X]

)
≤ x

if and only if

E [X] ∈
[
Sn
n
− x√

n
,
Sn
n

+
x√
n

]
.

Thus, if we think of

X̂n =
Sn
n
, n = 1, 2, . . .

as an estimate of E [X] on the basis of the observations X1, . . . , Xn, then the
SLLNs already tells us that the estimate is increasingly accurate as n gets large
since

lim
n→∞

X̂n = E [X] a.s.
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The calculations above show via (21.25) that

lim
n→∞

P
[
E [X] ∈

[
X̂n −

x√
n
, X̂n +

x√
n

]]
= 2Φ

(
x√

Var[X]

)
− 1, x ≥ 0.(21.26)

In other words, for large n, the unknown value E [X] lies in a symmetric interval
centered at the estimate X̂n (obtained from the observed dataX1, . . . , Xn) of width
2x√
n

with a probability approximately given by

2Φ

(
x√

Var[X]

)
− 1,

the accuracy of this approximation improving with increasing n. With α in (0, 1)
given, we can ensure that

P
[
E [X] ∈

[
X̂n −

x√
n
, X̂n +

x√
n

]]
' 1− α

for large n if we select x ≥ 0 such that

2Φ

(
x√

Var[X]

)
− 1 = 1− α,

or equivalently,

Φ

(
x√

Var[X]

)
= 1− α

2
.

With λ in (0, 1) let zλ denote the unique solution to the nonlinear equation

1− Φ(x) = λ, x ∈ R.

Equivalently,
P [U > x] = λ, x ∈ R.

With this notation we see that the random interval[
Sn
n
−
z1−α

2

√
Var[X]
√
n

,
Sn
n

+
z1−α

2

√
Var[X]
√
n

]

is known as the confidence interval for estimating E [X] on the basis dataX1, . . . , Xn

with confidence (1− α)%
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Note that this analysis is predicated on knowing the variance Var[X]. When
this value is unknown, we replace Var[X] by the sample variance S2

n given by

S2
n =

1

n− 1

n∑
k=1

(
Xk −

1

n

n∑
`=1

X`

)2

, n = 2, 3, . . .

21.7 Poisson convergence

The setting is a follows: For each n = 1, 2, . . ., let X1(pn), . . . , Xn(pn) denote a
collection of i.i.d. Bernoulli rvs with parameters pn in (0, 1). i.e.,

P [Xk,n(pn) = 1] = 1− P [Xk,n(pn) = 0] = pn, k = 1, . . . , n

Write

Sn =
n∑
k=1

Xk(pn), n = 1, 2, . . .

Theorem 21.7.1 Assume there exists λ > 0 such that

lim
n→∞

npn = λ.(21.27)

Then, we have
Sn =⇒n Π(λ)(21.28)

where Π(λ) denotes a Poisson rv with parameter λ.

The convergence (21.28) can be restated as

lim
n→∞

P [Sn = k] =
λk

k!
e−λ, k = 0, 1, . . .(21.29)

We give two proofs of this important result.

Proof 1 The first proof uses the characterization of weak convergence for integer-
valued rvs given in Theorem 20.4.1: Fix n = 1, 2, . . .. Under the independence
assumptions, the rv Sn is a binomial rv Bin(n; pn). Thus, Fix k = 0, 1, . . .. For
every integer n such that k ≤ n we have

P [Sn = k] =

(
n

k

)
pkn (1− pn)n−k

=
n!

k!(n− k)!
· pkn (1− pn)n−k
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=
1

k!

(
pn

1− pn

)k
· n!

(n− k)!
· (1− pn)n

=
1

k!

(
npn

1− pn

)k
· n!

nk(n− k)!
· (1− pn)n .(21.30)

It is plain that

lim
n→∞

n!

nk(n− k)!
= lim

n→∞

n(n− 1) . . . (n− k + 1)

nk
= 1

while (21.27) implies

lim
n→∞

(1− pn)n = lim
n→∞

(
1− npn

n

)n
= e−λ

and
lim
n→∞

pn
1− pn

= λ

since limn→∞ pn = 0. Collecting we conclude to (21.29) as we make use of The-
orem 20.4.1.

Proof 2 This second proof relies on the characterization of weak convergence
for integer-valued rvs given in terms of probability generating functions: Fix n =
1, 2, . . .. For each θ in R we get

E
[
eiθSn

]
= E

[
eiθ

∑n
k=1Xk(pn)

]
= E

[
n∏
k=1

eiθXk(pn)

]

=
n∏
k=1

E
[
eiθXk(pn)

]
=

(
1− pn + pne

iθ
)n

=
(

1− pn
(

1− eiθ
))n

.(21.31)

Under (21.27) we get that

lim
n→∞

npn

(
1− eiθ

)
= λ

(
1− eiθ

)
.
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Thus,
lim
n→∞

E
[
eiθSn

]
= e−λ(1−eiθ), θ ∈ R

and the conclusion (21.28) follows since

E
[
eiθΠ(λ)

]
=

∞∑
k=0

λk

k!
e−λ · eikθ

=

( ∞∑
k=0

1

k!

(
λeiθ

)k)
e−λ = e−λ(1−eiθ), θ ∈ R(21.32)

as we use Theorem 20.4.2.



Chapter 22

Appendix A: Limits in R

We begin with several standard definitions. We refer to a mapping a : N0 → R as
a (R-valued) sequence; sometimes we also use the notation {an, n = 1, 2, . . .}.

Definition 22.0.1
A sequence a : N0 → R converges to a? in R if for every ε > 0, there exists

an integer n?(ε) (which depends on ε) such that

|an − a?| ≤ ε, n ≥ n?(ε).(22.1)

We shall write limn→∞ an = a?, and refer to the scalar a? as the limit of the
sequence.

Sometimes it is desirable to make sense of situations where values of the se-
quence become either unboundedly large or unboundely negative, in which case
we shall write limn→∞ an = +∞ and limn→∞ an = −∞, respectively. A precise
definition of such occurences is as follows: We write limn→∞ an = ∞ to signify
that for every M > 0, there exists a finite integer n?(M) (which depends on M )
in N0 such that

an > M, n ≥ n?(M).(22.2)

It is natural to define limn→∞ an = −∞ if limn→∞ (−an) =∞.
If there exists a? in R such that limn→∞ an = a?, we shall simply say that

the sequence a : N0 → R converges or is convergent (without any reference to its
limit). Sometimes we shall also say that the sequence a : N0 → R converges in R
to indicate that the limit a? is an element of R (thus finite).

Applying the definition (22.1) requires that the limit be known. Often this
information is not available, and yet the need remains to determine whether the

319
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sequence converges. The notion of Cauchy sequence, which is instrumental in that
respect, is built around the following observation: If the sequence a : N0 → R
converges to a? in R, then for every ε > 0, there exists a finite integer n?(ε) such
that (22.1) holds, and by the triangular inequality we conclude that

|an − am| ≤ |an − a?|+ |a? − am| ≤ ε+ ε = 2ε, n,m ≥ n?(ε).

This observation is turned into the following definition.

Definition 22.0.2
A sequence a : N0 → R is said to be a Cauchy sequence if for every ε > 0,

there exists an integer n?(ε) such that

|an − am| ≤ ε, m, n ≥ n?(ε).(22.3)

As observed earlier, a convergent sequence a : N0 → R in R is always a
Cauchy sequence. It is a deep fact concerning the topological properties of R that
being a Cauchy sequence is sufficient to ensure the convergence of the sequence in
R.

Theorem 22.0.1 (Cauchy criterion) A sequence a : N0 → R is convergent in R if
and only if it is a Cauchy sequence.

This provides a convergence criterion which does not require knowledge of the
limit.

22.1 Two important facts

In addition to the Cauchy convergence criterion, here are two facts that are often
found useful in studying convergence, namely monotonicy and boundedness.

Definition 22.1.1
A sequence a : N0 → R is said to be non-decreasing (resp. non-increasing) if

an ≤ an+1 (resp. an+1 ≤ an), n = 1, 2, . . .

A monotone sequence is a sequence that is either non-decreasing or non-increasing.
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Convergence is automatically guaranteed for monotone sequences.

Theorem 22.1.1 A monotone sequence a : N0 → R always converges and we
have limn→∞ an = sup (an, n = 1, 2, . . .) (resp. limn→∞ an = inf (an, n = 1, 2, . . .))
if the sequence is non-decreasing (resp. non-increasing).

A convergent sequence in R is always bounded in the following sense.

Definition 22.1.2
The sequence a : N0 → R is said to be bounded if there exists some B > 0

such that
sup (|an|, n = 1, 2, . . .) ≤ B.

While a bounded sequence may not be convergent, some of the subsequences
obtained by sampling the original sequence are convergent in R: Consider a se-
quence a : N0 → R. A subsequence of the sequence a : N0 → R is any sequence
of the form N0 → R : k → ank where

nk < nk+1, k = 1, 2, . . .

The strict inequality forces limk→∞ nk =∞.

Theorem 22.1.2 (Bolzano-Weierstrass) For any bounded sequence a : N0 → R,
there exists a convergent subsequence N0 → R : k → ank with limk→∞ ank = a?

for some a? in R.

22.2 Accumulation points

Since not all sequences converge, it is important to understand how non-convergence
occurs.

Definition 22.2.1
An accumulation point for the sequence a : N0 → R is defined as any element

a? in R such that
lim
k→∞

ank = a?

for some subsequence N0 → R : k → ank .
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Obviously a convergent sequence a : N0 → R has exactly one accumulation
point, namely its limit. In fact, were the sequence not convergent, it must necessar-
ily have distinct accumulation points (in R), in which case there is a smallest and a
largest accumulation point. The next definition formalizes this observation.

Definition 22.2.2
Given a sequence a : N0 → R, the quantities

A = lim sup
n→∞

An = inf
n≥1

(
sup
m≥n

am

)
and

A = lim inf
n→∞

An,= sup
n≥1

(
inf
m≥n

am

)
are known as the limsup and liminf of the sequence a : N0 → R.

The following notation is found to be convenient when using liminf and limsup
quantities: For each n = 1, 2, . . ., we define the quantities

An = sup
m≥n

am and An = inf
m≥n

am(22.4)

Note that An ≤ An, and that the sequences n → An and n → An are non-
increasing and non-decreasing, respectively. Therefore, by Theorem 22.1.2 the
limits A = limn→∞An and A = limn→∞An both exist, but are possibly infinite,
and we always have A ≤ A.

Theorem 22.2.1 Consider a sequence a : N0 → R. If it converges to a?, then
A = A = a?. Conversely, if A = A = a? for some a? in R, then the sequence
converges to a?.

If a, b : N0 → R are two sequences such that

an ≤ bn, n = 1, 2, . . .

then A ≤ B and A ≤ B. The following arguments will often be made on the
basis of this observation: Consider a sequence {pn, n = 1, 2, . . .} where for each
n = 1, 2, . . ., pn is the probability of some event so that

0 ≤ pn ≤ 1, n = 1, 2, . . .(22.5)
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If we show that
1 ≤ lim inf

n→∞
pn,(22.6)

then we necessarily have convergence of the sequence with limn→∞ pn = 1: In-
deed, we always have lim supn→∞ pn ≤ 1 as a result of (22.5), whence

lim inf
n→∞

pn = lim sup
n→∞

pn = 1

upon using (22.6). In a similar vein, if we show lim supn→∞ pn = 0, then we
necessarily have convergence of the sequence with limn→∞ pn = 0.

22.3 Cesàro convergence

With any sequence a : N0 → R we associate the Cesàro sequence ac : N0 → R
given by

acn =
1

n
(a1 + . . .+ an) , n = 1, 2, . . .

Theorem 22.3.1 (Cesàro convergence) If the sequence a : N0 → R converges to
a?, then the Cesàro sequence ac : N0 → R also converges with same limit a?.

The convergence of the sequence {acn, n = 1, 2, . . .} is referred to as the Cesàro
convergence of the sequence {an, n = 1, 2, . . .}

Proof. First we assume the convergent sequence a : N0 → R to have a finite limit
a? in R. Note that

acn − a? =
1

n

n∑
k=1

(ak − a?) , n = 1, 2, . . .

Now, for every ε > 0, there exists an integer n?(ε) such that |an − a?| ≤ ε

whenever n ≥ n?(ε). On that range, with B(ε) =
∑n?(ε)

k=1 |ak − a
?|, we have

|acn − a?| ≤
1

n

n∑
k=1

|ak − a?|

=
1

n

n?(ε)∑
k=1

|ak − a?|+
1

n

n∑
k=n?(ε)+1

|ak − a?|

≤ B(ε)

n
+
n− n?(ε)

n
· ε

≤ B(ε)

n
+ ε(22.7)
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Since limn→∞
1
n = 0, for every ε > 0, there exists a finite integer n??(ε) such

that
1

n
<

ε

B(ε)
, n ≥ n??(ε).

Just take n??(ε) = dB(ε)
ε e. As a result, we have |acn − a?| ≤ ε+ ε = 2ε whenever

n ≥ max(n?(ε), n??(ε)), and the proof is now complete since ε is arbitrary. We
leave it as an exercise to show the result when a? = ±∞.

However, the converse is not true:

Counterexample 22.3.1 The sequence a : N0 → R given by an = (−1)n for each
n = 1, 2, . . . does not converge since lim infn→∞ an = −1 and lim supn→∞ an =
1. Yet limn→∞ a

c
n = 0 since

acn =


0 if n = 2p

.
− 1

2p−1 if n = 2p− 1
, p = 1, 2, . . .

This example nicely illustrates the smoothing effect of averaging. It might be
tempting to conjecture that such averaging always produces a convergent sequence.
However, this is not so as the following example shows:

Counterexample 22.3.2 Consider the sequence a : N0 → R given by

an = (−1)k,
22k ≤ n < 22k+1

k = 0, 1, . . .

with a1 = 1. Having two distinct accumulation points, namely ±1, the sequence
a : N0 → R does not converge. However, it is also not Cesàro convergent.



Chapter 23

Appendix A: Sums, series and
summation

23.1 Series

Starting with a sequence a : N0 → R, we define the partial sums

sn = a1 + . . .+ an, n = 1, 2, . . .

where sn is known as the nth partial sum. We refer to the sequence s : N0 → R :
n→ sn as the sequence of partial sums associated with the sequence a : N0 → R.

Definition 23.1.1
The series

∑∞
n=1 an is said to converge (or to be summable) if the sequence

s : N0 → R converges to some s? in R, in which case we write
∑∞

n=1 an as its
limit (and refer to s? as its sum).

Summability amounts to the following: For every ε > 0 there exists a finite integer
n?(ε) such that |sn − s?| < ε whenever n ≥ n?(ε). This readily implies the
following fact:

Lemma 23.1.1 For any sequence a : N0 → R whose sequence of partial sums
converges in R, we have limn→∞ an = 0

Proof. Since the sequence of partial sums s : N0 → R converges in R, it is
a Cauchy sequence. Thus, for every ε > 0, there exists a finite integer n?(ε)

325
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such that |sn − sm| ≤ ε whenever n,m ≥ n?(ε). Selecting m = n + 1 with
n ≥ n?(ε), we get |an+1| = |sn − sn+1| ≤ ε whenever n ≥ n?(ε), and the con-
clusion limn→∞ an = 0 follows.

The following stronger form of convergence is often invoked for series.

Definition 23.1.2
The series s : N0 → R associated with the sequence a : N0 → R is said to be

absolutely convergent if the series associated with the sequence of absolute values
N0 → R+ : n→ |an| does itself converge in R.

A series which is absolutely convergent is also convergent in the usual sense:
Indeed, note that ∣∣∣∣∣

m∑
k=n+1

ak

∣∣∣∣∣ ≤
m∑

k=n+1

|ak| ,
m = n+ 1, . . .
n = 1, 2, . . .

and apply the Cauchy convergencce criterion. However, the converse is not true as
is easily seen through the example

an =
(−1)n

n
, n = 1, 2, . . .

Definition 23.1.3
A series which is convergent in the usual sense but not absolutely convergent

is said to be conditionally convergent.

When the sequence a : N0 → R assumes only non-negative values, i.e., an ≥ 0
for all n = 1, 2, . . ., then the corresponding the sequence s : N0 → R+ of partial
sums is non-decreasing, so that limn→∞ sn always exists, possibly infinite. Many
tests exist to check the convergence of series with non-negative terms The most
basic one is the Comparison Test given next.

Theorem 23.1.1 (Comparison Test) Consider two sequences a, b : N0 → R+ such
that

0 ≤ an ≤ bn, n = 1, 2, . . .

If
∑∞

n=1 bn converges in R, then
∑∞

n=1 an also converges in R with

0 ≤
∞∑
n=1

an ≤
∞∑
n=1

bn.

On the other hand, if
∑∞

n=1 an =∞, then we necessarily have
∑∞

n=1 bn =∞.
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Geometric series play a pivotal role in determining the convergence of series
through the Comparison Test. The geometric series with reason ρ > 0 is the series
associated with the sequence a : N0 → R given by

an = ρn, n = 1, 2, . . .

It well known that

sn = a1 + . . .+ an =


ρ

1−ρ (1− ρn) if ρ 6= 1

n if ρ = 1.

Therefore,
lim
n→∞

sn =
ρ

1− ρ
if |ρ| < 1.

When coupled with the Comparisdion Test of Theorem 23.1.1 this observation con-
stitutes the basis for two criteria to dteermine the absolute convergence of series,
namely the criteria of Cauchy and d’ Alembert, also known as the Root Test and
Ratio Test, respectively.

Theorem 23.1.2 (Ratio Test) Consider a sequence a : N0 → R. Assume that the
limit

lim
n→∞

|an+1|
|an|

= R

exists (possibly infinite). Then,
∑∞

n=1 |an| < ∞ if R < 1 and
∑∞

n=1 |an| = ∞ if
1 < R.

Theorem 23.1.3 (Root Test) Consider a sequence a : N0 → R. Assume that the
limit

lim
n→∞

n
√
|an| = R

exists. Then,
∑∞

n=1 |an| <∞ if R < 1 and
∑∞

n=1 |an| =∞ if 1 < R.


