ENEE 621: ESTIMATION AND DETECTION THEORY

Midterm Examination I: Solutions

Spring 2007
Narayan

Problem 1

[1a] Since

$$
\frac{\partial}{\partial \theta} \ln f_{\theta}(y)=\frac{2(y-\theta)}{2 \sigma^{2}}
$$

we have

$$
M(\theta)=\mathrm{E}_{\theta}\left[\frac{(Y-\theta)^{2}}{\sigma^{4}}\right]=\frac{\sigma^{2}}{\sigma^{4}}=\frac{1}{\sigma^{2}}
$$

[1b] The ML estimate of θ on the basis of $y^{n}=\left(y_{1}, \cdots, y_{n}\right)$ is $g_{M L}\left(y^{n}\right)=\frac{\sum_{i=1}^{n} y_{i}}{n}$. The error covariance of $g_{M L}$ is

$$
\begin{aligned}
\Sigma_{\theta}\left(g_{M L}\right) & =\mathrm{E}_{\theta}\left[\left(g_{M L}\left(Y^{n}\right)-\theta\right)^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}-\theta\right)^{2}\right] \\
& =\frac{1}{n^{2}} \mathrm{E}_{\theta}\left[\left(\sum_{i=1}^{n} Y_{i}-n \theta\right)^{2}\right] \\
& =\frac{1}{n^{2}} n \sigma^{2}=\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Noting that $M^{(n)}(\theta)=\frac{n}{\sigma^{2}}$, it follows that $g_{M L}$ is efficient since $\Sigma_{\theta}\left(g_{M L}\right)=M^{(n)}(\theta)^{-1}$.
Alternatively, the efficiency of $g_{M L}$ also follows upon verifying that

$$
g_{M L}\left(y^{n}\right)-\theta=M^{(n)}(\theta)^{-1} \frac{\partial}{\partial \theta} f_{\theta}\left(y^{n}\right) .
$$

Problem 2

[2a] Since

$$
f_{\theta}\left(y_{1}, \cdots, y_{n}\right)=\prod_{i=1}^{n} \frac{e^{-\theta} \theta^{y_{i}}}{y_{i}!}=\frac{e^{-n \theta} \theta^{\sum_{i=1}^{n} y_{i}}}{\prod_{i=1}^{n} y_{i}!}
$$

we have for $\tilde{\theta} \triangleq e^{-\theta}$ that

$$
f_{\tilde{\theta}}\left(y^{n}\right)=\frac{\tilde{\theta}^{n}\left(\ln \frac{1}{\bar{\theta}}\right)^{\sum_{i=1}^{n} y_{i}}}{\prod_{i=1}^{n} y_{i}!}
$$

where $\tilde{\theta} \in(0,1)$.
Next,

$$
\ln f_{\tilde{\theta}}\left(y^{n}\right)=n \ln \tilde{\theta}+\sum_{i=1}^{n} y_{i} \ln \left(\ln \frac{1}{\tilde{\theta}}\right)-\sum_{i=1}^{n} \ln y_{i}!
$$

so that

$$
\frac{\partial}{\partial \tilde{\theta}} \ln f_{\tilde{\theta}}\left(y^{n}\right)=\frac{n}{\tilde{\theta}}+\left(\sum_{i=1}^{n} y_{i}\right) \frac{1}{\left(\ln \frac{1}{\tilde{\theta}}\right)}\left(-\frac{1}{\tilde{\theta}}\right),
$$

which, upon being equated to 0 , gives $\tilde{\theta}=e^{-\frac{\sum_{i=1}^{n} y_{i}}{n}}$.
Hence, $\tilde{\theta}_{M L}\left(y^{n}\right)=e^{-\frac{\sum_{i=1}^{n} y_{i}}{n}}$, and exists provided $\sum_{i=1}^{n} y_{i} \neq 0$.
[2b] Since $e^{-\theta}=P_{\theta}\left(Y_{1}=0\right)$, we see that the estimator g defined by

$$
g\left(y^{n}\right)=1\left(y_{1}=0\right)
$$

is an unbiased estimator of $e^{-\theta}$ as

$$
\mathrm{E}_{\theta}\left[g\left(Y^{n}\right)\right]=P_{\theta}\left(Y_{1}=0\right)=e^{-\theta} .
$$

Next, we know that the statistic T_{n} defined by

$$
T_{n}\left(y^{n}\right) \triangleq \sum_{i=1}^{n} y_{i}
$$

is a sufficient statistic for θ and, hence, also for $e^{-\theta}$. Also, since $\sum_{i=1}^{n} Y_{i}$ is a Poisson rv with mean $n \theta, T_{n}$ is a complete sufficient statistic for θ and, hence, also for $e^{-\theta}$. Consequently, the
estimator $\tilde{g} o T_{n}$ is a MVUE for $e^{-\theta}$, where

$$
\begin{aligned}
\tilde{g}(t) & =\mathrm{E}_{\theta}\left[g\left(Y^{n}\right) \mid T_{n}=t\right] \\
& =P_{\theta}\left(Y_{1}=0 \mid \sum_{i=1}^{n} Y_{i}=t\right) \\
& =\frac{P_{\theta}\left(Y_{1}=0\right) P_{\theta}\left(\sum_{i=2}^{n} Y_{i}=t\right)}{P_{\theta}\left(\sum_{i=1}^{n} Y_{i}=t\right)} \\
& =\frac{e^{-\theta} \frac{\left.e^{-(n-1) \theta}(n-1) \theta\right)^{t}}{t!}}{e^{-n \theta} \frac{(n \theta)^{t}}{t!}} \\
& =\left(1-\frac{1}{n}\right)^{t} .
\end{aligned}
$$

Hence, the desired MVUE is

$$
\left(\tilde{g} o T_{n}\right)\left(y^{n}\right)=\left(1-\frac{1}{n}\right)^{\sum_{i=1}^{n} y_{i}}
$$

Problem 3

[3a] We have

$$
\begin{aligned}
M(\theta) & =\mathrm{E}_{\theta}\left[\left|\frac{\partial}{\partial \theta} \ln f_{\theta}(Y)\right|^{2}\right] \\
& =\mathrm{E}_{\theta}\left[\left(\frac{1}{\theta}-Y\right)^{2}\right]=\frac{1}{\theta^{2}}
\end{aligned}
$$

[3b] Let A denote the observed event. Then,

$$
\begin{aligned}
P_{\theta}(A) & =\binom{M}{m}\left(P_{\theta}\left(Y>y_{o}\right)\right)^{m}\left(P_{\theta}\left(Y \leq y_{o}\right)\right)^{M-m} \\
& =\binom{M}{m}\left(e^{-\theta y_{o}}\right)^{m}\left(1-e^{-\theta y_{o}}\right)^{M-m}
\end{aligned}
$$

whence,

$$
\ln P_{\theta}(A)=\ln \binom{M}{m}-\theta y_{o} m+(M-m) \ln \left(1-e^{-\theta y_{o}}\right)
$$

Upon setting $\frac{\partial}{\partial \theta} \ln P_{\theta}(A)=0$, we get

$$
\theta=\frac{1}{y_{o}} \ln \frac{M}{m}
$$

Thus, $\theta_{M L}\left(M, m, y_{o}\right)=\frac{1}{y_{o}} \ln \frac{M}{m}$, which exists provided $m<M$.

