ENEE 621: ESTIMATION AND DETECTION THEORY

Midterm Examination II: Solutions

Spring 2007
Narayan

Problem 1

It is easily seen that

$$
\begin{aligned}
P(\theta=-1 \mid Y=y) & =\frac{f_{-1}(y) \cdot \frac{1}{2}}{f(y)}=\frac{\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y+1)^{2}}{2}} \cdot \frac{1}{2}}{\frac{1}{2}\left[\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y+1)^{2}}{2}}+\frac{1}{\sqrt{2 \pi}} e^{-\frac{(y-1)^{2}}{2}}\right]} \\
& =\frac{e^{-\frac{(y+1)^{2}}{2}}}{e^{-\frac{(y+1)^{2}}{2}}+e^{-\frac{(y-1)^{2}}{2}}}
\end{aligned}
$$

and

$$
P(\theta=1 \mid Y=y)=\frac{e^{-\frac{(y-1)^{2}}{2}}}{e^{-\frac{(y+1)^{2}}{2}}+e^{-\frac{(y-1)^{2}}{2}}}
$$

Hence,

$$
P(\theta=-1 \mid Y=y)<P(\theta=1 \mid Y=y), \quad y>0
$$

and $P(\theta=-1 \mid Y=y) \geq P(\theta=1 \mid Y=y), \quad y \leq 0$
whence $G_{\theta}(t \mid Y=y)$ has the form as in Fig. 1:
Thus,

$$
g_{M E M}(y)= \begin{cases}-1, & y<0 \\ 1, & y>0 \\ \text { any value in }[-1,1], & y=0\end{cases}
$$

Fig. 1.

Problem 2

[2a] Here, $g(t)=1,0 \leq t \leq 1$, and

$$
P_{t}(Y \leq y)=P(V \leq y-t)=\left\{\begin{array}{l}
0, y<t \\
1-e^{-\alpha(y-t)}, y \geq t
\end{array}\right.
$$

whence

$$
f_{t}(y)=\alpha e^{-\alpha(y-t)} 1(y \geq t), \quad 0 \leq t \leq 1 .
$$

Then,

$$
f(t, y)=\alpha e^{-\alpha(y-t)} 1(0 \leq t \leq \min (y, 1)), y \geq 0
$$

so that

$$
f(y)= \begin{cases}\int_{0}^{y} \alpha e^{-\alpha(y-t)} d t=1-e^{-\alpha y}, & y \leq 1 \\ \int_{0}^{1} \alpha e^{-\alpha(y-t)} d t=\left(e^{\alpha}-1\right) e^{-\alpha y}, & y>1\end{cases}
$$

Hence,

$$
g(t \mid y)= \begin{cases}\frac{\alpha e^{-\alpha(y-t)}}{1-e^{-\alpha y}}, & 0 \leq t \leq y \leq 1 \\ \frac{\alpha e^{-\alpha(y-t)}}{\left(e^{\alpha}-1\right) e^{-\alpha y}}=\frac{\alpha e^{\alpha t}}{e^{\alpha}-1}, & 0 \leq t \leq 1, y>1\end{cases}
$$

Observe that $g(t \mid y)$ does not depend on y for $y>1$ (why?)
[2b] $g_{M S E}$ is given by

$$
g_{M S E}(y)=\mathrm{E}[\theta \mid Y=y]= \begin{cases}\int_{0}^{y} \frac{t \alpha e^{-\alpha(y-t)}}{1-e^{-\alpha y}} d t=\frac{\alpha y}{1-e^{-\alpha y}}-1, & 0 \leq y \leq 1 \\ \int_{0}^{1} \frac{t \alpha \alpha^{\alpha t}}{e^{\alpha}-1} d t=\frac{e^{\alpha}}{e^{\alpha}-1}-\frac{1}{\alpha}, & y>1\end{cases}
$$

[2c] $g_{M A P}$ is given by

$$
\begin{aligned}
g_{M A P}(y) & = \begin{cases}y, & 0 \leq y \leq 1 \\
1, & y \geq 1\end{cases} \\
& =\min \{y, 1\}, \quad y \geq 0
\end{aligned}
$$

Problem 3

[3a] Observe that

$$
\begin{align*}
\hat{\mathrm{E}}\left[X_{t+1} \mid X_{0}, X_{1}, \cdots, X_{t}\right] & =\hat{\mathrm{E}}\left[X_{t+1} \mid X^{t-1}, X_{t}\right] \\
& =\hat{\mathrm{E}}\left[X_{t+1} \mid X^{t-1}, X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right] \\
& =\hat{\mathrm{E}}\left[X_{t+1} \mid X^{t-1}\right]+\hat{\mathrm{E}}\left[X_{t+1} \mid X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right] \tag{1}
\end{align*}
$$

since $\mathrm{E}\left[X_{t+1}\right]=0$, and X^{t-1} and $X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]$ are uncorrelated. In (1), $X_{t+1}=\left(W_{t}+W_{t+1}\right) \perp X^{t-1} \in$ $\operatorname{span}\left\{W^{t-1}\right\}$ and $\mathrm{E}\left[X_{t+1}\right]=0$, so that

$$
\begin{aligned}
\hat{\mathrm{E}}\left[X_{t+1} \mid X^{t}\right] & =\hat{\mathrm{E}}\left[X_{t+1} \mid X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right] \\
& =\alpha(t)\left(X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right)
\end{aligned}
$$

since $\mathrm{E}\left[X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right]=0$.
Thus, $\hat{\mathrm{E}}\left[X_{t+1} \mid X^{t}\right]=\alpha(t)\left(X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right)$ where

$$
\begin{aligned}
\alpha(t) & =\operatorname{cov}\left[X_{t+1}, X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right]\left(\operatorname{var}\left[X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right]\right)^{-1} \\
& =\mathrm{E}\left[\left(W_{t}+W_{t+1}\right)\left(W_{t-1}+W_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right)\right] \Sigma_{t}^{-1} \\
& =\Sigma_{t}^{-1}
\end{aligned}
$$

where $\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right] \in \operatorname{span}\left\{W^{t-1}\right\}$, and $\Sigma_{t}=\operatorname{var}\left[X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right]$.
[3b] The error variance in question is

$$
\begin{aligned}
\Sigma_{t} & =\operatorname{var}\left[X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right]=\mathrm{E}\left[\left(X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right)^{2}\right] \\
& =\mathrm{E}\left[X_{t}\left(X_{t}-\hat{\mathrm{E}}\left[X_{t} \mid X^{t-1}\right]\right)\right], \quad \text { by OP } \\
& =\mathrm{E}\left[X_{t}\left(X_{t}-\left\{\alpha(t-1)\left(X_{t-1}-\hat{\mathrm{E}}\left[X_{t-1} \mid X^{t-2}\right]\right)\right\}\right)\right]
\end{aligned}
$$

by the previous part, with $\alpha(t-1)=\Sigma_{t-1}^{-1}$
$=\mathrm{E}\left[X_{t}^{2}\right]-\frac{1}{\Sigma_{t-1}} \mathrm{E}\left[X_{t}\left(X_{t-1}-\hat{\mathrm{E}}\left[X_{t-1} \mid X^{t-2}\right]\right)\right]$
$=2-\frac{1}{\Sigma_{t-1}}$.

Note that $X_{t}=W_{t}+W_{t-1}, X_{t-1}=W_{t-1}+W_{t-2}$, and $\hat{\mathrm{E}}\left[X_{t-1} \mid X^{t-2}\right] \in \operatorname{span}\left\{W^{t-2}\right\}$. Thus,

$$
\Sigma_{t}=2-\frac{1}{\Sigma_{t-1}}, \quad t \geq 1
$$

which, with the initial condition

$$
\Sigma_{0}=\mathrm{E}\left[\left(X_{0}-\hat{\mathrm{E}}\left[X_{0} \mid X^{-1}\right]\right)^{2}\right]=\mathrm{E}\left[X_{0}^{2}\right]=2
$$

gives that

$$
\Sigma_{t}=\frac{t+2}{t+1}, \quad t \geq 0
$$

