ENEE 621: Estimation and Detection Theory

Problem Set 1: Solutions
Spring 2007
Narayan
Problem [1] Straightforward.
Problem [2](i) Assume that the family $\left\{F_{\theta}, \theta \in \Theta\right\}$ satisfies the absolute continuity assumptions with respect to a distribution F on \mathbb{R}^{k}. Let $\left\{f_{\theta}, \theta \in \Theta\right\}$ be the corresponding family of densities. Since $\varphi_{o} T$ is a sufficient statistic, we know by the Factorization Theorem that there exist Borel mappings $h: \mathbb{R}^{\ell} \times \Theta \rightarrow[0, \infty)$ and $q: \mathbb{R}^{k} \rightarrow[0, \infty)$ such that for each θ in Θ, we have

$$
f_{\theta}(y)=h(\varphi(T(y)) ; \theta) q(y) \quad F \text { a.e. }
$$

Consider the Borel mapping $g: \mathbb{R}^{d} \times \Theta \rightarrow[0, \infty)$ defined by

$$
g(x ; \theta)=h(\varphi(x) ; \theta), \quad x \in \mathbb{R}^{d}, \theta \in \Theta .
$$

It then follows for each θ in Θ that

$$
f_{\theta}(y)=g(T(y) ; \theta) q(y) \quad F \text { a.e., }
$$

so that by the Factorization Theorem, T is a sufficient statistic for $\left\{F_{\theta}, \theta \in \Theta\right\}$.
(ii) Since φ is invertible, we can write $T=\varphi_{0}^{-1}\left(\varphi_{o} T\right)$. Since $T=\varphi_{0}^{-1}\left(\varphi_{0} T\right)$ is a sufficient statistic for $\left\{F_{\theta}, \theta \in \Theta\right\}$, then so is $\varphi_{0} T$ by part (i).

Problem [3] Consider a Borel mapping $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $E_{\theta}[|\phi(Y)|]<\infty$ for each $\theta>0$,

$$
\begin{equation*}
\sum_{y=0}^{\infty} \frac{\theta^{y}}{y!} \exp (-\theta)|\varphi(y)|<\infty, \theta>0 \tag{1}
\end{equation*}
$$

The condition $E_{\theta}[\varphi(Y)]=0$ for every $\theta>0$ yields

$$
\begin{equation*}
\sum_{y=0}^{\infty} \frac{\theta^{y}}{y!} \varphi(y)=0, \quad \theta>0 \tag{2}
\end{equation*}
$$

We need to show that $\varphi(y)=0 F$ a.e., where F is the counting measure on \mathbb{N}, i.e., that $\varphi(y)=0$ for all y in \mathbb{N}.

Define a mapping $\psi: C \rightarrow C$ ($C=$ Complex plane) by

$$
\psi(z)=\sum_{y=0}^{\infty} \frac{\varphi(y)}{y!} z^{y}, \quad z \in C
$$

This mapping is well-defined and analytic on C since

$$
\sum_{y=0}^{\infty}\left|\frac{\varphi(y)}{y!} z^{y}\right|=\sum_{y=0}^{\infty} \frac{|\varphi(y)|}{y!}|z|^{y}<\infty, z \in C
$$

in view of (1). Since (2) is equivalent to $\psi(u+i 0)=0$ for all $u>0$, we obtain that $\psi(z)=0$ for all z in C, by standard properties of analytic functions, i.e., $\frac{\varphi(y)}{y!}=0$ for all y in \mathbb{N}, whence $\varphi(y)=0$ for all y in \mathbb{N}.

Problem [4] Consider a Borel mapping $\varphi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ satisfying $E_{\theta}[|\varphi(Y)|]<\infty$ for each θ in \mathbb{R}^{k}, i.e.,

$$
\int_{\mathbb{R}^{k}}|\varphi(y)| \exp \left[-\frac{1}{2}(y-\theta)^{T} R^{-1}(y-\theta)\right] d y<\infty, \quad \theta \in \mathbb{R}^{k}
$$

The condition $E_{\theta}[\varphi(Y)]=0$ for all θ in \mathbb{R}^{k} is equivalent to

$$
\begin{equation*}
\int_{\mathbb{R}^{k}} \varphi(y) \exp \left[-\frac{1}{2}(y-\theta)^{T} R^{-1}(y-\theta)\right] d y=0, \quad \theta \in \mathbb{R}^{k} \tag{3}
\end{equation*}
$$

We need to show as a consequence that $\phi(y)=0 F$ a.e., where F is the Lebesgue measure on \mathbb{R}^{k}. Consider the mapping $\psi: C^{k} \rightarrow C^{k}$ defined by

$$
\psi(z)=\int_{\mathbb{R}^{k}} \varphi(y) \exp \left[-\frac{1}{2}(y-z)^{T} R^{-1}(y-z)\right] d y, \quad z \in C^{k}
$$

Then, (3) means that $\psi(u+i 0)=0$ for all $u \in \mathbb{R}^{k}$, whence $\psi(z)=0$ for all z in C^{k}. Consequently, $\varphi(y)=0 F$ a.e.

Problem [5] Pick a Borel mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\varphi(y)= \begin{cases}1, & y \geq 0 \\ -1, & y<0\end{cases}
$$

Then $E_{\theta}[|\varphi(Y)|]=1<\infty$ for each $\theta>0$. Observe that $E_{\theta}[\varphi(Y)]=0$ for each $\theta>0$, whereas clearly $\varphi(y) \neq 0 \quad F$ a.e. on \mathbb{R}. Hence, the family $\{\mathcal{N}(0, \theta), \theta>0\}$ is not complete.

Problem [6] Pick a Borel mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ given by $\varphi(y)=y$ for all y in \mathbb{R}. Then for each $\theta>0$,

$$
E_{\theta}[|\varphi(Y)|]=E_{\theta}[|Y|]=\frac{\theta}{2}<\infty .
$$

Clearly, $E_{\theta}[\varphi(Y)]=0$ for every $\theta>0$, while $P_{\theta}[\varphi(Y)=0]=0$ for every $\theta>0$. Hence, $\{\mathcal{U}(-\theta, \theta), \theta>0\}$ is not a complete family. Note on the other hand that the (larger) family of distributions $\{\mathcal{U}(\alpha, \beta), \alpha<\beta\}$ is a complete family.

Problem [7] Consider the Borel mapping $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
\varphi\left(\mathbf{y}^{n}\right)=y_{1}-y_{2}, \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

where $n \geq 2$. Clearly, $E_{\theta}\left[\varphi\left(Y^{n}\right)\right]=E_{\theta}\left[Y_{1}\right]-E_{\theta}\left[Y_{2}\right]=0$ for every θ in $(0,1)$, whereas

$$
P_{\theta}\left[\varphi\left(\mathbf{y}^{n}\right)=0\right]=P_{\theta}\left[Y_{1}=Y_{2}\right]=\theta^{2}+(1-\theta)^{2}<1, \theta \in(0,1),
$$

the given family is not complete.
Problem [8] Observe that for each θ in $\mathbb{R}, \mathbf{y}^{n}$ is a Gaussian $\mathrm{rv} \sim \mathcal{N}\left(O_{n}, R^{(n)}(\theta)\right)$, with

$$
\left(R^{(n)}(\theta)\right)_{i j}=\theta^{2}+\delta_{i j}, \quad 1 \leq i, j \leq n
$$

Consequently, we can write the densities $\left\{f_{\theta}^{(n)}, \theta \in \mathbb{R}\right\}$ as

$$
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right)=\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} R^{(n)}(\theta)}} \exp \left[-\frac{1}{2} \mathbf{y}^{n^{T}} R^{(n)^{-1}}(\theta) \mathbf{y}^{n}\right], \quad \mathbf{y}^{n} \in \mathbb{R}
$$

Verify that

$$
R^{(n)^{-1}}=\frac{1}{\left(1+n \theta^{2}\right)}\left[\begin{array}{cccc}
1+(n-1) \theta^{2} & -\theta^{2} & \cdots & -\theta^{2} \\
-\theta^{2} & 1+(n-1) \theta^{2} & \cdots & -\theta^{2} \\
\vdots & \vdots & \ddots & \vdots \\
-\theta^{2} & -\theta^{2} & \cdots & 1+(n-1) \theta^{2}
\end{array}\right]
$$

so that

$$
\begin{aligned}
\mathbf{y}^{n^{T}} R^{(n)^{-1}}(\theta) \mathbf{y}^{n} & =\frac{1}{\left(1+n \theta^{2}\right)}\left[\sum_{i=1}^{n} y_{i}^{2}\left(1+(n-1) \theta^{2}\right)-\sum_{\substack{i \neq j \\
1 \leq i, j \leq n}} y_{i} y_{j} \theta^{2}\right] \\
& =\sum_{i=1}^{n} y_{i}^{2}-\left(\frac{\theta^{2}}{1+n \theta^{2}}\right)\left[\sum_{i=1}^{n} y_{i}^{2}+\sum_{\substack{u \neq j \\
1 \leq i, j \leq n}} y_{i} y_{j}\right] \\
& =\sum_{i=1}^{n} y_{i}^{2}-\left(\frac{\theta^{2}}{1+n \theta^{2}}\right)\left(\sum_{i=1}^{n} y_{i}\right)^{2} .
\end{aligned}
$$

Setting $T_{n}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}$, we see that for each θ in \mathbb{R},

$$
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right)=h\left(T_{n}\left(\mathbf{y}^{n}\right) ; \theta\right) q\left(\mathbf{y}^{n}\right), \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

where

$$
\begin{aligned}
h\left(T_{n}\left(\mathbf{y}^{n}\right) ; \theta\right) & =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} R^{(n)}(\theta)}} \exp \left[\frac{-\theta^{2}}{2\left(1+n \theta^{2}\right)}\left(T_{n}\left(\mathbf{y}^{n}\right)^{2}\right)\right] \\
q\left(\mathbf{y}^{n}\right) & =\exp \left[\frac{1}{2} \sum_{i=1}^{n} y_{i}^{2}\right] .
\end{aligned}
$$

By the Factorization Theorem, $T_{n}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}, n=1,2, \ldots$ is a sufficient statistic.
Problem [9](i) For each $\theta \neq 0$ in \mathbb{R}, we have

$$
\begin{aligned}
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right) & =\frac{1}{\sqrt{2 \pi \theta^{2 n}}} \exp \left[-\frac{1}{2} \sum_{y=1}^{n} \frac{\left(y_{i}-\theta\right)^{2}}{\theta^{2}}\right], \quad \mathbf{y}^{n} \in \mathbb{R}^{n} \\
& =\frac{e^{1 / 2}}{\sqrt{2 \pi \theta^{2 n}}} e^{\frac{1}{2 \theta^{2}} \sum_{i=1}^{n} y_{i}^{2}} e^{\frac{1}{\theta} \sum_{i=1}^{n} y_{i}}, \quad \mathbf{y} \in \mathbb{R}^{n}
\end{aligned}
$$

So that by the Factorization Theorem,

$$
T_{n}\left(\mathbf{y}^{n}\right)=\left[\begin{array}{cc}
\sum_{i=1}^{n} & y_{i} \\
\sum_{i=1}^{n} & y_{i}^{2}
\end{array}\right], \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

is a (nontrivial) sufficient statistic.
(ii) Note that

$$
\begin{aligned}
E_{\theta}\left[\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right] & =2 n \theta^{2}+n(n-1) \theta^{2} \\
& =n(n+1) \theta^{2}
\end{aligned}
$$

and

$$
E_{\theta}\left[\sum_{i=1}^{n} Y_{i}^{2}\right]=2 n \theta^{2}
$$

Define $\phi\left(T_{n}\left(\mathbf{Y}^{n}\right)\right)=2\left(\sum_{i=1}^{n} Y_{i}\right)^{2}-(n+1)\left(\sum_{i=1}^{n} Y_{i}^{2}\right)$. Then, clearly

$$
E_{\theta}\left[\varphi\left(T_{n}\left(\mathbf{Y}^{n}\right)\right)\right]=0, \quad \theta \neq 0 \text { in } \mathbb{R}
$$

while

$$
P_{\theta}\left[\varphi\left(T_{n}\left(\mathbf{Y}^{n}\right)\right)=0\right] \neq 1, \quad \theta \neq 0 \text { in } \mathbb{R}
$$

Hence, T_{n} is not a complete sufficient statistic.
Problem [10] (i) For each $\theta>0$, we have

$$
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right)=\frac{1}{\theta^{n}} 1\left(\max _{1 \leq i \leq n} y_{i}<\theta\right) \cdot 1\left(\min _{1 \leq i \leq n} y_{i}>0\right)
$$

so that by the Factorization Theorem,

$$
T_{n}\left(\mathbf{y}^{n}\right)=\max _{1 \leq i \leq n} y_{i}, \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

is a sufficient statistic.
We shall examine next T_{n} for completeness. Observer that

$$
\begin{aligned}
P_{\theta}\left[T_{n} \leq t\right] & = \begin{cases}0, & t \leq 0 \\
\left(P_{\theta}[Y<t]\right)^{n}, & 0<t \leq \theta \\
1, & t>\theta\end{cases} \\
& = \begin{cases}0, & t \leq 0 \\
\theta^{-n} t^{n}, & 0<t \leq \theta \\
1, & t>\theta\end{cases}
\end{aligned}
$$

The corresponding density of T_{n}, denoted by h_{θ}, is given by

$$
h_{\theta}(t)= \begin{cases}0, & t \leq 0 \\ n \theta^{-n} t^{n-1}, & 0<t \leq \theta \\ 0, & t>\theta\end{cases}
$$

Then, for a Borel mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
E_{\theta}\left[\varphi\left(T_{n}\right)\right]=0, \quad \theta>0
$$

means

$$
\int_{0}^{\theta} \varphi(t) n \theta^{-n} t^{n-1} d t=0, \quad \theta>0
$$

which implies

$$
\int_{0}^{\theta} \varphi(t) t^{n-1} d t=0, \quad \theta>0
$$

The previous condition implies that $\varphi(t)=0 F$ a.e. on $(0, \infty)$, where F is the Lebesque measure on \mathbb{R}. Hence, T_{n} is a complete sufficient statistic.
(ii) For each $\theta>0$, we have

$$
\begin{aligned}
E_{\theta}\left[T_{n}\left(\mathbf{y}^{n}\right)\right] & =\int_{0}^{\theta} t n \theta^{-n} t^{n-1} d t=\frac{n}{\theta^{n}} \int_{0}^{\theta} t^{n} d t \\
& =\left(\frac{n}{n+1}\right) \theta
\end{aligned}
$$

Consequently, the estimator g given by

$$
g\left(\mathbf{y}^{n}\right)=\left(\frac{n+1}{n}\right) T_{n}\left(\mathbf{y}^{n}\right), \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

is unbiased. Clearly, g is also a MVUE.
Problem [11] For each $\theta=\alpha^{2}>0, Y \sim \mathcal{N}(0,1+\theta)$. The family of distributions $\{\mathcal{N}(0,1+\theta), \theta>0\}$ is not complete. To see this, pick a Borel mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
\varphi(y)= \begin{cases}1, & y \geq 0 \\ -1, & y<0\end{cases}
$$

Then, $E_{\theta}[|\phi(Y)|]=1<\infty$ for each $\theta>0$. While $E_{\theta}[\varphi(Y)]=0$ for each $\theta>0$, clearly $\varphi(y) \neq 0 \mathrm{~F}$ a.e.

