ENEE 621: Estimation and Detection Theory

Problem Set 1: Solutions

Spring 2007

Narayan

Problem [1] Straightforward.

Problem [2](i) Assume that the family $\{F_{\theta}, \theta \in \Theta\}$ satisfies the absolute continuity assumptions with respect to a distribution F on \mathbb{R}^k . Let $\{f_{\theta}, \theta \in \Theta\}$ be the corresponding family of densities. Since $\varphi_o T$ is a sufficient statistic, we know by the Factorization Theorem that there exist Borel mappings $h : \mathbb{R}^{\ell} \times \Theta \to [0, \infty)$ and $q : \mathbb{R}^k \to [0, \infty)$ such that for each θ in Θ , we have

$$f_{\theta}(y) = h(\varphi(T(y)); \theta)q(y)$$
 F a.e.

Consider the Borel mapping $g: \mathbb{R}^d \times \Theta \to [0,\infty)$ defined by

$$g(x;\theta) = h(\varphi(x);\theta), \quad x \in \mathbb{R}^d, \theta \in \Theta.$$

It then follows for each θ in Θ that

$$f_{\theta}(y) = g(T(y); \theta)q(y)$$
 F a.e.,

so that by the Factorization Theorem, T is a sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$. (ii) Since φ is invertible, we can write $T = \varphi_0^{-1}(\varphi_0 T)$. Since $T = \varphi_0^{-1}(\varphi_0 T)$ is a sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$, then so is $\varphi_0 T$ by part (i).

Problem [3] Consider a Borel mapping $\phi : \mathbb{R} \to \mathbb{R}$ satisfying $E_{\theta}[|\phi(Y)|] < \infty$ for each $\theta > 0$,

$$\sum_{y=0}^{\infty} \frac{\theta^y}{y!} \exp(-\theta) |\varphi(y)| < \infty, \ \theta > 0.$$
(1)

The condition $E_{\theta}[\varphi(Y)] = 0$ for every $\theta > 0$ yields

$$\sum_{y=0}^{\infty} \frac{\theta^y}{y!} \varphi(y) = 0, \quad \theta > 0.$$
⁽²⁾

We need to show that $\varphi(y) = 0$ F a.e., where F is the counting measure on \mathbb{N} , i.e., that $\varphi(y) = 0$ for all y in \mathbb{N} .

Define a mapping $\psi: C \to C$ (C = Complex plane) by

$$\psi(z) = \sum_{y=0}^{\infty} \frac{\varphi(y)}{y!} z^y, \quad z \in C.$$

This mapping is well-defined and analytic on C since

$$\sum_{y=0}^{\infty} \left| \frac{\varphi(y)}{y!} z^y \right| = \sum_{y=0}^{\infty} \frac{|\varphi(y)|}{y!} |z|^y < \infty, \ z \in C$$

in view of (1). Since (2) is equivalent to $\psi(u+i0) = 0$ for all u > 0, we obtain that $\psi(z) = 0$ for all z in C, by standard properties of analytic functions, i.e., $\frac{\varphi(y)}{y!} = 0$ for all y in \mathbb{N} , whence $\varphi(y) = 0$ for all y in \mathbb{N} .

Problem [4] Consider a Borel mapping $\varphi : \mathbb{R}^k \to \mathbb{R}$ satisfying $E_{\theta}[|\varphi(Y)|] < \infty$ for each θ in \mathbb{R}^k , i.e.,

$$\int_{\mathbb{R}^k} |\varphi(y)| \exp[-\frac{1}{2}(y-\theta)^T R^{-1}(y-\theta)] dy < \infty, \quad \theta \in \mathbb{R}^k.$$

The condition $E_{\theta}[\varphi(Y)] = 0$ for all θ in \mathbb{R}^k is equivalent to

$$\int_{\mathbb{R}^k} \varphi(y) \exp\left[-\frac{1}{2} (y-\theta)^T R^{-1} (y-\theta)\right] dy = 0, \quad \theta \in \mathbb{R}^k.$$
(3)

We need to show as a consequence that $\phi(y) = 0$ F a.e., where F is the Lebesgue measure on \mathbb{R}^k . Consider the mapping $\psi: C^k \to C^k$ defined by

$$\psi(z) = \int_{\mathbb{R}^k} \varphi(y) \exp\left[-\frac{1}{2}(y-z)^T R^{-1}(y-z)\right] dy, \quad z \in C^k$$

Then, (3) means that $\psi(u+i0) = 0$ for all $u \in \mathbb{R}^k$, whence $\psi(z) = 0$ for all z in C^k . Consequently, $\varphi(y) = 0$ F a.e.

Problem [5] Pick a Borel mapping $\varphi : \mathbb{R} \to \mathbb{R}$ given by

$$\varphi(y) = \begin{cases} 1, & y \ge 0\\ -1, & y < 0 \end{cases}$$

Then $E_{\theta}[|\varphi(Y)|] = 1 < \infty$ for each $\theta > 0$. Observe that $E_{\theta}[\varphi(Y)] = 0$ for each $\theta > 0$, whereas clearly $\varphi(y) \neq 0$ F a.e. on \mathbb{R} . Hence, the family $\{\mathcal{N}(0,\theta), \theta > 0\}$ is not complete. **Problem** [6] Pick a Borel mapping $\varphi : \mathbb{R} \to \mathbb{R}$ given by $\varphi(y) = y$ for all y in \mathbb{R} . Then for each $\theta > 0$,

$$E_{\theta}[|\varphi(Y)|] = E_{\theta}[|Y|] = \frac{\theta}{2} < \infty.$$

Clearly, $E_{\theta}[\varphi(Y)] = 0$ for every $\theta > 0$, while $P_{\theta}[\varphi(Y) = 0] = 0$ for every $\theta > 0$. Hence, $\{\mathcal{U}(-\theta, \theta), \theta > 0\}$ is not a complete family. Note on the other hand that the (larger) family of distributions $\{\mathcal{U}(\alpha, \beta), \alpha < \beta\}$ is a complete family.

Problem [7] Consider the Borel mapping $\varphi : \mathbb{R}^n \to \mathbb{R}$ given by

$$\varphi(\mathbf{y}^n) = y_1 - y_2, \quad \mathbf{y}^n \in \mathbb{R}^n$$

where $n \ge 2$. Clearly, $E_{\theta}[\varphi(Y^n)] = E_{\theta}[Y_1] - E_{\theta}[Y_2] = 0$ for every θ in (0, 1), whereas

$$P_{\theta}[\varphi(\mathbf{y}^n) = 0] = P_{\theta}[Y_1 = Y_2] = \theta^2 + (1 - \theta)^2 < 1, \ \theta \in (0, 1),$$

the given family is not complete.

Problem [8] Observe that for each θ in \mathbb{R}, \mathbf{y}^n is a Gaussian $\mathrm{rv} \sim \mathcal{N}(O_n, R^{(n)}(\theta))$, with

$$(R^{(n)}(\theta))_{ij} = \theta^2 + \delta_{ij}, \quad 1 \le i, j \le n.$$

Consequently, we can write the densities $\{f_{\theta}^{(n)}, \theta \in \mathbb{R}\}$ as

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \frac{1}{\sqrt{(2\pi)^n \det R^{(n)}(\theta)}} \exp\left[-\frac{1}{2}\mathbf{y}^{n^T} R^{(n)^{-1}}(\theta) \mathbf{y}^n\right], \quad \mathbf{y}^n \in \mathbb{R}.$$

Verify that

$$R^{(n)^{-1}} = \frac{1}{(1+n\theta^2)} \begin{bmatrix} 1+(n-1)\theta^2 & -\theta^2 & \dots & -\theta^2 \\ -\theta^2 & 1+(n-1)\theta^2 & \dots & -\theta^2 \\ \vdots & \vdots & \ddots & \vdots \\ -\theta^2 & -\theta^2 & \dots & 1+(n-1)\theta^2 \end{bmatrix}$$

so that

$$\mathbf{y}^{n^{T}} R^{(n)^{-1}}(\theta) \mathbf{y}^{n} = \frac{1}{(1+n\theta^{2})} \left[\sum_{i=1}^{n} y_{i}^{2} (1+(n-1)\theta^{2}) - \sum_{\substack{i\neq j\\1\leq i,j\leq n}} y_{i} y_{j} \theta^{2} \right]$$
$$= \sum_{i=1}^{n} y_{i}^{2} - \left(\frac{\theta^{2}}{1+n\theta^{2}}\right) \left[\sum_{i=1}^{n} y_{i}^{2} + \sum_{\substack{u\neq j\\1\leq i,j\leq n}} y_{i} y_{j} \right]$$
$$= \sum_{i=1}^{n} y_{i}^{2} - \left(\frac{\theta^{2}}{1+n\theta^{2}}\right) \left(\sum_{i=1}^{n} y_{i}\right)^{2}.$$

Setting $T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i$, we see that for each θ in \mathbb{R} ,

$$f_{\theta}^{(n)}(\mathbf{y}^n) = h(T_n(\mathbf{y}^n); \theta)q(\mathbf{y}^n), \quad \mathbf{y}^n \in \mathbb{R}^n$$

where

$$h(T_n(\mathbf{y}^n); \theta) = \frac{1}{\sqrt{(2\pi)^n \det R^{(n)}(\theta)}} \exp\left[\frac{-\theta^2}{2(1+n\theta^2)} \left(T_n(\mathbf{y}^n)^2\right)\right]$$
$$q(\mathbf{y}^n) = \exp\left[\frac{1}{2}\sum_{i=1}^n y_i^2\right].$$

By the Factorization Theorem, $T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i, n = 1, 2, \dots$ is a sufficient statistic.

Problem [9](i) For each $\theta \neq 0$ in \mathbb{R} , we have

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \frac{1}{\sqrt{2\pi\theta^{2n}}} \exp\left[-\frac{1}{2}\sum_{y=1}^n \frac{(y_i - \theta)^2}{\theta^2}\right], \quad \mathbf{y}^n \in \mathbb{R}^n$$
$$= \frac{e^{1/2}}{\sqrt{2\pi\theta^{2n}}} e^{\frac{1}{2\theta^2}\sum_{i=1}^n y_i^2} e^{\frac{1}{\theta}\sum_{i=1}^n y_i}, \quad \mathbf{y} \in \mathbb{R}^n,$$

So that by the Factorization Theorem,

$$T_n(\mathbf{y}^n) = \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n y_i^2 \end{bmatrix}, \qquad \mathbf{y}^n \in \mathbb{R}^n$$

is a (nontrivial) sufficient statistic.

(ii) Note that

$$E_{\theta} \left[\left(\sum_{i=1}^{n} Y_i \right)^2 \right] = 2n\theta^2 + n(n-1)\theta^2$$
$$= n(n+1)\theta^2$$

and

$$E_{\theta}\left[\sum_{i=1}^{n} Y_i^2\right] = 2n\theta^2.$$

Define $\phi(T_n(\mathbf{Y}^n)) = 2(\sum_{i=1}^n Y_i)^2 - (n+1)(\sum_{i=1}^n Y_i^2)$. Then, clearly

$$E_{\theta}\left[\varphi(T_n(\mathbf{Y}^n))\right] = 0, \quad \theta \neq 0 \text{ in } \mathbb{R}$$

while

$$P_{\theta}\left[\varphi(T_n(\mathbf{Y}^n))=0\right] \neq 1, \quad \theta \neq 0 \text{ in } \mathbb{R}$$

Hence, T_n is not a complete sufficient statistic.

Problem [10] (i) For each $\theta > 0$, we have

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \frac{1}{\theta^n} \mathbb{1}(\max_{1 \le i \le n} y_i < \theta) \cdot \mathbb{1}(\min_{1 \le i \le n} y_i > 0),$$

so that by the Factorization Theorem,

$$T_n(\mathbf{y}^n) = \max_{1 \le i \le n} y_i, \quad \mathbf{y}^n \in \mathbb{R}^n$$

is a sufficient statistic.

We shall examine next T_n for completeness. Observer that

$$P_{\theta} [T_n \le t] = \begin{cases} 0, & t \le 0\\ (P_{\theta}[Y < t])^n, & 0 < t \le \theta\\ 1, & t > \theta \end{cases}$$
$$= \begin{cases} 0, & t \le 0\\ \theta^{-n}t^n, & 0 < t \le \theta\\ 1, & t > \theta. \end{cases}$$

The corresponding density of T_n , denoted by h_{θ} , is given by

$$h_{\theta}(t) = \begin{cases} 0, & t \leq 0\\ n\theta^{-n}t^{n-1}, & 0 < t \leq \theta\\ 0, & t > \theta. \end{cases}$$

Then, for a Borel mapping $\varphi : \mathbb{R} \to \mathbb{R}$,

$$E_{\theta}[\varphi(T_n)] = 0, \quad \theta > 0$$

means

$$\int_0^\theta \varphi(t) n \theta^{-n} t^{n-1} dt = 0, \quad \theta > 0$$

which implies

$$\int_0^\theta \varphi(t)t^{n-1}dt = 0, \quad \theta > 0.$$

The previous condition implies that $\varphi(t) = 0$ F a.e. on $(0, \infty)$, where F is the Lebesque measure on \mathbb{R} . Hence, T_n is a complete sufficient statistic.

(ii) For each $\theta > 0$, we have

$$E_{\theta}[T_n(\mathbf{y}^n)] = \int_0^{\theta} tn\theta^{-n}t^{n-1}dt = \frac{n}{\theta^n}\int_0^{\theta} t^n dt$$
$$= \left(\frac{n}{n+1}\right)\theta.$$

Consequently, the estimator g given by

$$g(\mathbf{y}^n) = \left(\frac{n+1}{n}\right) T_n(\mathbf{y}^n), \quad \mathbf{y}^n \in \mathbb{R}^n$$

is unbiased. Clearly, g is also a MVUE.

Problem [11] For each $\theta = \alpha^2 > 0, Y \sim \mathcal{N}(0, 1 + \theta)$. The family of distributions $\{\mathcal{N}(0, 1 + \theta), \theta > 0\}$ is not complete. To see this, pick a Borel mapping $\varphi : \mathbb{R} \to \mathbb{R}$ given by

$$\varphi(y) = \begin{cases} 1, & y \ge 0\\ -1, & y < 0. \end{cases}$$

Then, $E_{\theta}[|\phi(Y)|] = 1 < \infty$ for each $\theta > 0$. While $E_{\theta}[\varphi(Y)] = 0$ for each $\theta > 0$, clearly $\varphi(y) \neq 0$ F a.e.