ENEE 621: Estimation and Detection Theory

Problem Set 2: Solutions

Narayan
Problem 1. First observe that the family $\{\mathcal{U}(1, \ldots, \theta), \theta \in\{1,2, \ldots\}\}$ is complete. For any $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with $E_{\theta}[|\varphi(Y)|]=\sum_{y=1}^{\theta}|\varphi(y)| \frac{1}{\theta}<\infty, \theta \in\{1,2, \ldots\}$, we have that $E_{\theta}[\varphi(Y)]=0, \theta \in\{1,2, \ldots\}$, implies $\sum_{y=1}^{\theta} \varphi(y)=0, \theta \in\{1,2, \ldots\}$, i.e., $\varphi(y)=0, y \in$ $\{1,2 \ldots\}$. Consequently, if $g: \mathbb{R} \rightarrow \mathbb{R}$ is an unbiased estimator of θ on the basis of Y, it is "essentially unique": if $\tilde{g}: \mathbb{R} \rightarrow \mathbb{R}$ is another unbiased estimator, then it must hold by the completeness of $\{\mathcal{U}(1, \ldots, \theta), \theta \in\{1,2 \ldots\}\}$ that $\tilde{g}(Y)=g(Y) P_{\theta}$-a.s. $\theta \in\{1,2, \ldots\}$, whence $\tilde{g}(y)=g(y), y \in\{1,2, \ldots\}$.

Next, $E_{\theta}[g(Y)]=\theta, \theta \in\{1,2, \ldots\}$, implies that

$$
\begin{equation*}
\sum_{y=1}^{\theta} g(y)=\theta^{2}, \quad \theta \in\{1,2, \ldots\} \tag{1}
\end{equation*}
$$

Consequently, $g(1)=1, g(2)=3, g(3)=5, \ldots$, suggesting that a solution to (1) is given by $g(y)=2 y-1, y \in\{1,2, \ldots\}$. This is, in fact, true and can be verified by direct substitution in (1) since $\sum_{y=1}^{\theta}(2 y-1)=\theta^{2}$.

Thus, the estimator $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $g(y)=2 y-1, y \in\{1,2, \ldots\}$, is the only unbiased estimator for θ on the basis of Y.

Problem 2. (a) Since the family $\{\mathbf{G}(\theta), \theta \in(0,1)\}$ is complete, if $g: \mathbb{R} \rightarrow \mathbb{R}$ is an unbiased estimator of θ on the basis of Y, then g is "essentially unique."

Next, $E_{\theta}[g(Y)]=\theta, \quad \theta \in(0,1)$ implies

$$
\begin{equation*}
\sum_{y=0}^{\infty} g(y)(1-\theta)^{y}=1, \quad \theta \in(0,1) \tag{2}
\end{equation*}
$$

Equating coefficients of powers of $(1-\theta)$, we see that

$$
g(y)= \begin{cases}1, & y=0 \\ 0, & y=1,2, \ldots\end{cases}
$$

Also,

$$
\begin{aligned}
\Sigma_{\theta}(g) & =E_{\theta}\left[(g(Y)-\theta)^{2}\right]=E_{\theta}\left[g^{2}(Y)\right]-\theta^{2} \\
& =P_{\theta}[g(Y)=1]-\theta^{2}=P_{\theta}[Y=0]-\theta^{2}=\theta(1-\theta), \theta \in(0,1)
\end{aligned}
$$

(b)

$$
\begin{equation*}
E_{\theta}[\tilde{g}(Y)]=\sum_{y=1}^{\infty} \frac{1}{y} \theta(1-\theta)^{y}=\theta \sum_{y=1}^{\infty} \frac{(1-\theta)^{y}}{y}=-\theta \ln \theta, \quad \theta \in(0,1) \tag{3}
\end{equation*}
$$

so that \tilde{g} is a biased estimator. Next,

$$
\begin{aligned}
\Sigma_{\theta}(\tilde{g}) & =E_{\theta}\left[(\tilde{g}(Y)-\theta)^{2}\right]=E_{\theta}\left[\tilde{g}^{2}(Y)\right]+\theta^{2}-2 \theta(-\theta \ln \theta) \\
& =\sum_{y=1}^{\infty} \frac{1}{y^{2}} \theta(1-\theta)^{y}+\theta^{2}(1+2 \ln \theta) \\
& <\sum_{y=1}^{\infty} \frac{1}{y} \theta(1-\theta)^{y}+\theta^{2}(1+2 \ln \theta) \\
& =-\theta \ln \theta+\theta^{2}(1+2 \ln \theta), \quad \text { by }(3) \\
& =\theta^{2}+\theta(2 \theta-1) \ln \theta, \\
& =\theta[\theta+(2 \theta-1) \ln \theta],
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\Sigma_{\theta}(\tilde{g})<\theta[\theta+(2 \theta-1) \ln \theta], \theta \in(0,1) . \tag{4}
\end{equation*}
$$

It can now be directly verified that

$$
\theta[\theta+(2 \theta-1) \ln \theta]<\Sigma_{\theta}(g)=\theta(1-\theta), \quad \theta \in\left(e^{-1}, 1\right)
$$

so that (at least) for $\theta \in\left(e^{-1}, 1\right)$, we have

$$
\Sigma_{\theta}(\tilde{g})<\Sigma_{\theta}(g)
$$

(c) Verify that (CR1)-(CR4) are satisfied. Now, for each $\theta \in(0,1)$,

$$
\ln \left(f_{\theta}(y)\right)=\ln \theta+y \ln (1-\theta), y \in \mathbb{N} .
$$

For each θ in $(0,1)$, we then have

$$
\begin{aligned}
M(\theta) & =E_{\theta}\left[\left|\frac{d}{d \theta} \ln f_{\theta}(Y)\right|^{2}\right] \\
& =E_{\theta}\left[\left(\frac{1}{\theta}-\frac{Y}{1-\theta}\right)^{2}\right]=E_{\theta}\left[\frac{1}{(1-\theta)^{2}}\left(Y-\frac{1-\theta}{\theta}\right)^{2}\right] \\
& =\frac{1}{(1-\theta)^{2}} \frac{(1-\theta)}{\theta^{2}} \\
& =\frac{1}{\theta^{2}(1-\theta)} .
\end{aligned}
$$

(d) Since $\Sigma_{\theta}(g)=\theta(1-\theta)$ and $M^{-1}(\theta)=\theta^{2}(1-\theta), \theta \in(0,1)$, we see that $\Sigma_{\theta}(g)>$ $M^{-1}(\theta), \theta \in(0,1)$, so that g is not an efficient estimator.

Problem 3. The family $\left\{\mathcal{N}^{(n)}\left(\theta, \sigma^{2}\right), \theta \in \mathbb{R}\right\}$ is an exponential family, with the correspondence $K^{(n)}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}, \mathbf{y}^{n}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$. Furthermore, $K^{(n)}$ is a complete sufficient statistic for the family. Next, since $E_{\theta}\left[K^{(n)}\left(\mathbf{Y}^{n}\right)\right]=E_{\theta}\left[\sum_{i=1}^{n} Y_{i}\right]=$ $n \theta, \theta \in \Theta$, it is clear that

$$
T_{n}\left(\mathbf{Y}^{n}\right) \triangleq \frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

is an unbiased estimator for θ on the basis of \mathbf{Y}^{n}, which is also a complete sufficient statistic. Thus, the three-step method simplifies in this case to yield that the estimator $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $g\left(\mathbf{y}^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is a MVUE.
Problem 4. (a) For each θ in $(0,1)$, we have

$$
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right)=\Pi_{i=1}^{n} f_{\theta}\left(y_{i}\right)=\theta^{n}(1-\theta)^{\sum_{i=1}^{n} y_{i}}, \mathbf{y}^{n} \in \mathbb{N}^{n}
$$

so that $T_{n}\left(\mathbf{y}^{n}\right) \triangleq \sum_{i=1}^{n} y_{i}$ defines a sufficient statistic for the family $\left\{\mathcal{G}^{(n)}(\theta), \theta \in(0,1)\right\}$. (b) The family $\left\{\mathcal{G}^{(n)}(\theta), \theta \in(0,1)\right\}$ is an exponential family with the correspondence $K^{(n)}\left(\mathbf{y}^{n}\right)=T_{n}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}$, so that T_{n} is a completely sufficient statistic for the family (since $K^{(n)}$ is a complete sufficient statistic).
(c) For each θ in $(0,1)$, the Fisher information matrix $M^{(n)}(\theta), n=1,2, \ldots$, is given by

$$
\begin{aligned}
M^{(n)}(\theta) & =n M(\theta) \\
& =\frac{n}{\theta^{2}(1-\theta)} .
\end{aligned}
$$

(d) Clearly, there exist no efficient estimators for θ on the basis of $Y^{n}, n=1,2, \ldots$, as is clear from the answer to Problem 2, part (d), for the case $n=1$.

Problem 5. (a) For each $\theta \in \mathbb{N}$, we have

$$
f_{\theta}\left(\mathbf{y}^{n}\right)=\frac{1}{\theta^{n}} 1\left(\max _{1 \leq i \leq n} y_{i} \leq \theta\right) 1\left(\min _{1 \leq i \leq n} y_{i} \geq 1\right), \quad \mathbf{y}^{n} \in\{1, \ldots, \theta\}^{n}
$$

so that by the Factorization Theorem,

$$
T_{n}\left(\mathbf{y}^{n}\right) \triangleq \max _{1 \leq i \leq n} y_{i}, \quad \mathbf{y}^{n} \in \mathbb{N}^{n}
$$

is a sufficient statistic.
(b) For $t=1, \ldots, \theta$, note that

$$
P_{\theta}\left[T_{n} \leq t\right]=P_{\theta}\left[\max _{1 \leq i \leq n} Y_{i} \leq t\right]=\left(\frac{t}{\theta}\right)^{n}
$$

so that

$$
P_{\theta}\left[T_{n}=t\right]= \begin{cases}\left(\frac{t}{\theta}\right)^{n}-\left(\frac{t-1}{\theta}\right)^{n}, & t=1, \ldots, \theta \\ 0, & \text { elsewhere }\end{cases}
$$

For any Borel mapping $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ with $E_{\theta}\left[\left|\varphi\left(T_{n}\right)\right|\right]<\infty$, we have

$$
E_{\theta}\left[\varphi\left(T_{n}\right)\right]=0, \quad \theta \in \mathbb{N}
$$

means

$$
\sum_{t=1}^{\theta} \varphi(t) \cdot \frac{1}{\theta^{n}}\left[t^{n}-(t-1)^{n}\right]=0, \quad \theta \in \mathbb{N}
$$

so that

$$
\sum_{t=1}^{\theta} \varphi(t)\left[t^{n}-(t-1)^{n}\right]=0, \quad \theta \in \mathbb{N}
$$

By examining the previous condition for $\theta=1,2, \ldots$, it is readily seen that

$$
\varphi(t)=0, \quad t \in \mathbb{N}
$$

so that T_{n} is a complete sufficient statistic.
(c),(d): The condition CR2(a) is not satisfied, so that $M(\theta)$ and efficiency are not defined.

Problem 6. (a) For each $\theta>0$, we have

$$
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right)=\frac{1}{(2 \pi \theta)^{n / 2}} \exp \left[-\frac{1}{2 \theta} \sum_{i=1}^{n} y_{i}^{2}\right], \quad \mathbf{y}^{n} \in \mathbb{R}^{n}
$$

so that $T_{n}\left(\mathbf{y}^{n}\right) \triangleq \sum_{i=1}^{n} y_{i}^{2}, \mathbf{y}^{n} \in \mathbb{R}^{n}$, is a sufficient statistic by the Factorization theorem.
(b) The family $\left\{\mathcal{N}^{(n)}(0, \theta), \theta>0\right\}$ is an exponential family with the correspondence $K^{(n)}\left(\mathbf{y}^{n}\right)=T_{n}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}^{2}$, so that the fact that $K^{(n)}$ is a complete sufficient statistic for this family implies the same for T_{n}.
(c) Verify first that the family $\{\mathcal{N}(0, \theta), \theta>0\}$ satisfies (CR1)-(CR4) and the additional integrability and regularity conditions, so that for each $\theta>0$,

$$
\begin{aligned}
M(\theta) & =-E_{\theta}\left[\frac{d^{2}}{d \theta^{2}} \ln f_{\theta}(Y)\right] \\
& =-E_{\theta}\left[\frac{1}{2 \theta^{2}}-\frac{Y^{2}}{\theta^{3}}\right]=-\frac{1}{2 \theta^{2}}+\frac{\theta}{\theta^{3}} \\
& =\frac{1}{2 \theta^{2}}
\end{aligned}
$$

(d) Since $E_{\theta}\left[T_{n}\left(Y^{n}\right)\right]=E_{\theta}\left[\sum_{i=1}^{n} Y_{i}^{2}\right]=n \theta, \theta>0$, it is clear that the estimator $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g\left(y^{n}\right) \triangleq \frac{\Delta}{n} \sum_{i=1}^{n} y_{i}^{2}, \mathbf{y}^{n} \in \mathbb{R}^{n}$, is an unbiased estimator of θ on the basis of Y^{n}. Furthermore, since the statistic $T_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by $T_{n}\left(\mathbf{y}^{n}\right)=$ $\frac{1}{n} \sum_{i=1}^{n} y_{i}^{2}, \mathbf{y}^{n} \in \mathbb{R}^{n}$, is a complete sufficient statistic (by part (b)), it follows that g is a

MVUE. To see if g is also efficient, we see that for each $\theta>0$,

$$
\begin{aligned}
\Sigma_{\theta}(g) & =E_{\theta}\left[\left|g\left(\mathbf{Y}^{n}\right)-\theta\right|^{2}\right]=E_{\theta}\left[\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}^{2}-\theta\right)^{2}\right] \\
& =E_{\theta}\left[\left\{\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}^{2}-\theta\right)\right\}^{2}\right] \\
& =\frac{1}{n^{2}} E_{\theta}\left[\sum_{i=1}^{n}\left(Y_{i}^{2}-\theta\right)^{2}+\sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(Y_{i}^{2}-\theta\right)\left(Y_{j}^{2}-\theta\right)\right] \\
& =\frac{1}{n^{2}} E_{\theta}\left[\sum_{i=1}^{n}\left(Y_{i}^{2}-\theta\right)^{2}\right], \text { by the independence of } Y_{1}, \ldots, Y_{n} \\
& =\frac{1}{n}\left[E_{\theta}\left[Y^{4}\right]+\theta^{2}-2 \theta^{2}\right]=\frac{1}{n}\left[E_{\theta}\left[Y^{4}\right]-\theta^{2}\right] \\
& =\frac{1}{n}\left[3 \theta^{2}-\theta^{2}\right]=\frac{2 \theta^{2}}{n} .
\end{aligned}
$$

Since $\Sigma_{\theta}(g)=M^{(n)^{-1}}(\theta), \theta>0$, we see that g is an efficient estimator.
Problem 7. (a) For each $\theta>0$, we have

$$
\begin{aligned}
f_{\theta}^{(n)}\left(\mathbf{y}^{n}\right) & =\Pi_{i=1}^{n}\left[\theta e^{-\theta y_{i}} 1\left(y_{i} \geq 0\right)\right] \\
& =\theta^{n} e^{-\theta \sum_{i=1}^{n} y_{i}} 1\left(\min _{1 \leq i \leq n} y_{i} \geq 0\right)
\end{aligned}
$$

so that by the Factorization theorem, we have that the statistic T_{n} defined by $T_{n}\left(\mathbf{y}^{n}\right)=$ $\sum_{i=1}^{n} y_{i}$ is a sufficient statistic for $\left\{\mathcal{E}^{(n)}(\theta), \theta>0\right\}$.
(b) The family $\left\{\mathcal{E}^{(n)}(\theta), \theta>0\right\}$ constitutes an exponential family with the correspondence $K^{(n)}\left(\mathbf{y}^{n}\right)=T_{n}\left(\mathbf{y}^{n}\right)=\sum_{i=1}^{n} y_{i}, \mathbf{y}^{n} \in \mathbb{R}^{n}$. Since $K^{(n)}$ is a complete sufficient statistic for this family, so is T_{n}.
(c) Verify that the family $\{\mathcal{E}(\theta), \theta>0\}$ satisfies (CR1)-(CR4). Then, for each $\theta>0$,

$$
\begin{aligned}
M(\theta) & =E_{\theta}\left[\left|\frac{d}{d \theta} \ln f_{\theta}(Y)\right|^{2}\right]=E_{\theta}\left[\left(Y-\frac{1}{\theta}\right)^{2}\right] \\
& =\operatorname{var}_{\theta}[Y]=\frac{1}{\theta^{2}}
\end{aligned}
$$

so that

$$
\begin{aligned}
M^{(n)}(\theta) & =n M(\theta) \\
& =\frac{n}{\theta^{2}}, n=1,2, \ldots
\end{aligned}
$$

Problem 8. Let $T_{c}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{d}$ be a complete sufficient statistic for $\left\{F_{\theta}, \theta \in \Theta\right\}$. Let $T: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\ell}$ be a sufficient statistic for $\left\{F_{\theta}, \theta \in \Theta\right\}$, where ℓ is a positive integer. Define a Borel mapping $\varphi_{T}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by

$$
\varphi_{T}\left(T_{c}(Y)\right)=T_{c}(Y)-E_{\theta}\left[T_{c}(Y) \mid T(Y)\right] .
$$

The sufficiency of T ensures that the right side above does not depend on θ, so that the mapping φ_{T} is well-defined. Now, for each $\theta \in \Theta$,

$$
E_{\theta}\left[\varphi_{T}\left(T_{c}\right)\right]=E_{\theta}\left[T_{c}(Y)\right]-E_{\theta}\left[E_{\theta}\left(T_{c}(Y) \mid T(Y)\right]=0,\right.
$$

by standard properties of conditional expectation. Hence, by the completeness of T_{c}, we have that $\varphi_{T}\left(T_{c}\right)=0 P_{\theta}$-a.s., for all $\theta \in \Theta$, i.e.,

$$
T_{c}(Y)=E_{\theta}\left[T_{c}(Y) \mid T(Y)\right] P_{\theta}-\text { a.s. }, \theta \in \Theta .
$$

Thus, for each $\theta \in \Theta$, we see that $T_{c}(Y)$ is equal to a function of $T(Y) P_{\theta}$-a.s. Since the sufficient statistic T was chosen arbitrarily, and since T_{c} is a sufficient statistic, it follows that T_{c} is a minimal sufficient statistic for $\left\{F_{\theta}, \theta \in \Theta\right\}$.

Problem 9. (a) Verify first that the family $\left\{F_{\tilde{\theta}}, \tilde{\theta} \in(0,1)\right\}$ satisfies (CR1)-(CR4). In particular, the densities $\left\{f_{\tilde{\theta}}(y)=P_{\tilde{\theta}}[Y=y]\right\}$ are given by

$$
f_{\tilde{\theta}}(y)=P_{\tilde{\theta}}[Y=y]=\frac{\left(\ln \frac{1}{\tilde{\theta}}\right)^{y} \tilde{\theta}}{y!}, \quad y \in \mathbb{N}
$$

for each $\tilde{\theta} \in(0,1)$. Hence,

$$
\ln f_{\tilde{\theta}}(y)=\ln \tilde{\theta}+y \ln \ln \frac{1}{\tilde{\theta}}-\ln y!, y \in \mathbb{N}
$$

so that

$$
\frac{d}{d \tilde{\theta}} \ln f_{\tilde{\theta}}(y)=\frac{1}{\tilde{\theta}}+Y \frac{1}{\tilde{\theta} \ln \tilde{\theta}}, \quad y \in \mathbb{N} .
$$

Then, for each $\tilde{\theta} \in(0,1)$, we have

$$
\begin{aligned}
M(\tilde{\theta}) & =E_{\tilde{\theta}}\left[\left|\frac{d}{d \tilde{\theta}} \ln f_{\tilde{\theta}}(Y)\right|^{2}\right] \\
& =\sum_{y=0}^{\infty}\left(\frac{1}{\tilde{\theta}}+y \frac{1}{\tilde{\theta} \ln \tilde{\theta}}\right)^{2} \frac{\tilde{\theta}\left(\ln \frac{1}{\tilde{\theta}}\right)^{y}}{y!} \\
& =\sum_{y=0}^{\infty}\left(e^{\theta}-y \frac{1}{\theta e^{-\theta}}\right)^{2} \frac{e^{-\theta} \theta^{y}}{y!} \\
& =e^{2 \theta}-\frac{2 e^{2 \theta} \theta}{\theta}+\frac{e^{2 \theta}}{\theta^{2}}\left[\theta+\theta^{2}\right] \\
& =\frac{e^{2 \theta}}{\theta} \\
& =\frac{1}{\tilde{\theta}^{2}} \ln \frac{1}{\tilde{\theta}}
\end{aligned}
$$

i.e.,

$$
M(\tilde{\theta})=\frac{1}{\tilde{\theta}^{2}} \ln \frac{1}{\tilde{\theta}}, \tilde{\theta} \in(0,1)
$$

(b) If g is an unbiased estimator of $\tilde{\theta}$ on the basis of Y, then for each $\tilde{\theta}$ in $(0,1)$,

$$
E_{\tilde{\theta}}[g(Y)]=\tilde{\theta}
$$

or,

$$
\sum_{y=0}^{\infty} g(y) \tilde{\theta} \frac{(\ln (1 / \tilde{\theta}))^{y}}{y!}=\tilde{\theta}
$$

whence

$$
\sum_{y=0}^{\infty} \frac{g(y)}{y!} \theta^{y}=1, \theta \in(0, \infty)
$$

By equating coefficients of the powers of θ, we obtain that

$$
\frac{g(y)}{y!}= \begin{cases}1, & y=0 \\ 0, & \text { else }\end{cases}
$$

whence

$$
g(y)= \begin{cases}1, & y=0 \\ 0, & \text { else }\end{cases}
$$

and this defines the only unbiased estimator of $\tilde{\theta}$ on the basis of Y.
(c) For each $\tilde{\theta} \in(0,1)$, we have

$$
\begin{aligned}
\Sigma_{\tilde{\theta}}(g) & =E_{\tilde{\theta}}\left[|g(Y)-\tilde{\theta}|^{2}\right]=E_{\tilde{\theta}}\left[g^{2}(Y)\right]-\tilde{\theta}^{2} \\
& =P_{\tilde{\theta}}[g(Y)=1]-\tilde{\theta}^{2}=P_{\tilde{\theta}}[Y=0]-\tilde{\theta}^{2} \\
& =\tilde{\theta}-\tilde{\theta}^{2}=\tilde{\theta}(1-\tilde{\theta}) .
\end{aligned}
$$

Finally, observe that $\sum_{\tilde{\theta}}(g)=\tilde{\theta}(1-\tilde{\theta})=e^{-\theta}\left(1-e^{-\theta}\right)$, where $\theta=\ln \frac{1}{\tilde{\theta}}$. From 6 in part (a), we see that $M^{-1}(\tilde{\theta})=\theta e^{-2 \theta}$, where $\theta=\ln \frac{1}{\tilde{\theta}}$. Since $e^{-\theta}\left(1-e^{-\theta}\right)>\theta e^{-2 \theta}, \theta>0$, we see that $\sum_{\tilde{\theta}}(g)>M^{-1}(\tilde{\theta}), \tilde{\theta} \in(0,1)$. Clearly, g is not an efficient estimator of $\tilde{\theta}$ on the basis of Y.

Problem 10. (a) It can be verified that (CRl)-(CR4) and the additional regularity conditions hold. For each θ in $(0,1)$,

$$
\ln f_{\theta}(y)=\ln \binom{m}{y}+y \ln \theta+(m-y) \ln (1-\theta), \quad y=0,1, \ldots, m
$$

whence

$$
\frac{d^{2}}{d \theta^{2}} \ln f_{\theta}(y)=-\frac{y}{\theta^{2}}-\frac{m-y}{(1-\theta)^{2}}
$$

Hence,

$$
\begin{aligned}
M(\theta) & =-E_{\theta}\left[\frac{d^{2}}{d \theta^{2}} \ln f_{\theta}(Y)\right]=E_{\theta}\left[\frac{Y}{\theta^{2}}\right]+E_{\theta}\left[\frac{m-Y}{(1-\theta)^{2}}\right] \\
& =\frac{m \theta}{\theta^{2}}+\frac{m-m \theta}{(1-\theta)^{2}}=\frac{m}{\theta(1-\theta)}, \quad \theta \in(0,1) .
\end{aligned}
$$

(b) Since $E_{\theta}[Y]=m \theta$, the estimator g given by $g(y)=\frac{y}{m}, y \in \mathbb{R}$ is unbiased. Further, for each θ in $(0,1)$,

$$
\begin{aligned}
\Sigma_{\theta}(g) & =E_{\theta}\left[\left(\frac{Y}{m}-\theta\right)^{2}\right]=\frac{1}{m^{2}} E\left[(Y-m \theta)^{2}\right]=\frac{1}{m^{2}} \operatorname{cov}_{\theta}[Y] \\
& =\frac{\theta(1-\theta)}{m}=M^{-1}(\theta), \text { so that } g \text { is efficient. }
\end{aligned}
$$

