Problem Set 2: Solutions

Spring 2007

Narayan

Problem 1. First observe that the family $\{\mathcal{U}(1,\ldots,\theta),\theta\in\{1,2,\ldots\}\}$ is complete. For any $\varphi:\mathbb{R}\to\mathbb{R}$ with $E_{\theta}[|\varphi(Y)|]=\sum\limits_{y=1}^{\theta}|\varphi(y)|\frac{1}{\theta}<\infty,\theta\in\{1,2,\ldots\}$, we have that $E_{\theta}[\varphi(Y)]=0,\theta\in\{1,2,\ldots\}$, implies $\sum\limits_{y=1}^{\theta}\varphi(y)=0,\theta\in\{1,2,\ldots\}$, i.e., $\varphi(y)=0,y\in\{1,2,\ldots\}$. Consequently, if $g:\mathbb{R}\to\mathbb{R}$ is an unbiased estimator of θ on the basis of Y, it is "essentially unique": if $\tilde{g}:\mathbb{R}\to\mathbb{R}$ is another unbiased estimator, then it must hold by the completeness of $\{\mathcal{U}(1,\ldots,\theta),\theta\in\{1,2,\ldots\}\}$ that $\tilde{g}(Y)=g(Y)$ P_{θ} -a.s. $\theta\in\{1,2,\ldots\}$, whence $\tilde{g}(y)=g(y),y\in\{1,2,\ldots\}$.

Next, $E_{\theta}[g(Y)] = \theta, \theta \in \{1, 2, ...\}$, implies that

$$\sum_{y=1}^{\theta} g(y) = \theta^2, \ \theta \in \{1, 2, \ldots\}.$$
 (1)

Consequently, $g(1) = 1, g(2) = 3, g(3) = 5, \ldots$, suggesting that a solution to (1) is given by $g(y) = 2y - 1, y \in \{1, 2, \ldots\}$. This is, in fact, true and can be verified by direct substitution in (1) since $\sum_{y=1}^{\theta} (2y - 1) = \theta^2$.

Thus, the estimator $g: \mathbb{R} \to \mathbb{R}$ satisfying $g(y) = 2y - 1, y \in \{1, 2, \ldots\}$, is the only unbiased estimator for θ on the basis of Y.

Problem 2. (a) Since the family $\{G(\theta), \theta \in (0,1)\}$ is complete, if $g : \mathbb{R} \to \mathbb{R}$ is an unbiased estimator of θ on the basis of Y, then g is "essentially unique."

Next, $E_{\theta}[g(Y)] = \theta$, $\theta \in (0, 1)$ implies

$$\sum_{y=0}^{\infty} g(y)(1-\theta)^y = 1, \quad \theta \in (0,1).$$
 (2)

Equating coefficients of powers of $(1 - \theta)$, we see that

$$g(y) = \begin{cases} 1, & y = 0 \\ 0, & y = 1, 2, \dots \end{cases}$$

Also,

$$\Sigma_{\theta}(g) = E_{\theta}[(g(Y) - \theta)^{2}] = E_{\theta}[g^{2}(Y)] - \theta^{2}$$
$$= P_{\theta}[g(Y) = 1] - \theta^{2} = P_{\theta}[Y = 0] - \theta^{2} = \theta(1 - \theta), \theta \in (0, 1).$$

(b)
$$E_{\theta}[\tilde{g}(Y)] = \sum_{y=1}^{\infty} \frac{1}{y} \theta (1 - \theta)^{y} = \theta \sum_{y=1}^{\infty} \frac{(1 - \theta)^{y}}{y} = -\theta \ln \theta, \quad \theta \in (0, 1),$$
 (3)

so that \tilde{g} is a biased estimator. Next,

$$\Sigma_{\theta}(\tilde{g}) = E_{\theta}[(\tilde{g}(Y) - \theta)^{2}] = E_{\theta}[\tilde{g}^{2}(Y)] + \theta^{2} - 2\theta(-\theta \ln \theta)$$

$$= \sum_{y=1}^{\infty} \frac{1}{y^{2}} \theta(1 - \theta)^{y} + \theta^{2}(1 + 2 \ln \theta)$$

$$< \sum_{y=1}^{\infty} \frac{1}{y} \theta(1 - \theta)^{y} + \theta^{2}(1 + 2 \ln \theta)$$

$$= -\theta \ln \theta + \theta^{2}(1 + 2 \ln \theta), \quad \text{by (3)}$$

$$= \theta^{2} + \theta(2\theta - 1) \ln \theta,$$

$$= \theta[\theta + (2\theta - 1) \ln \theta].$$

i.e.,

$$\Sigma_{\theta}(\tilde{g}) < \theta[\theta + (2\theta - 1)\ln\theta], \ \theta \in (0, 1). \tag{4}$$

It can now be directly verified that

$$\theta[\theta + (2\theta - 1)\ln\theta] < \Sigma_{\theta}(g) = \theta(1 - \theta), \quad \theta \in (e^{-1}, 1),$$

so that (at least) for $\theta \in (e^{-1}, 1)$, we have

$$\Sigma_{\theta}(\tilde{g}) < \Sigma_{\theta}(g).$$

(c) Verify that (CR1)-(CR4) are satisfied. Now, for each $\theta \in (0, 1)$,

$$\ln(f_{\theta}(y)) = \ln \theta + y \ln(1 - \theta), y \in \mathbb{N}.$$

For each θ in (0,1), we then have

$$M(\theta) = E_{\theta} \left[\left| \frac{d}{d\theta} \ln f_{\theta}(Y) \right|^{2} \right]$$

$$= E_{\theta} \left[\left(\frac{1}{\theta} - \frac{Y}{1 - \theta} \right)^{2} \right] = E_{\theta} \left[\frac{1}{(1 - \theta)^{2}} (Y - \frac{1 - \theta}{\theta})^{2} \right]$$

$$= \frac{1}{(1 - \theta)^{2}} \frac{(1 - \theta)}{\theta^{2}}$$

$$= \frac{1}{\theta^{2} (1 - \theta)}.$$

(d) Since $\Sigma_{\theta}(g) = \theta(1-\theta)$ and $M^{-1}(\theta) = \theta^2(1-\theta), \theta \in (0,1)$, we see that $\Sigma_{\theta}(g) > M^{-1}(\theta), \theta \in (0,1)$, so that g is not an efficient estimator.

Problem 3. The family $\{\mathcal{N}^{(n)}(\theta, \sigma^2), \theta \in \mathbb{R}\}$ is an exponential family, with the correspondence $K^{(n)}(\mathbf{y}^n) = \sum_{i=1}^n y_i, \mathbf{y}^n = (y_1, \dots, y_n) \in \mathbb{R}^n$. Furthermore, $K^{(n)}$ is a complete sufficient statistic for the family. Next, since $E_{\theta}\left[K^{(n)}(\mathbf{Y}^n)\right] = E_{\theta}\left[\sum_{i=1}^n Y_i\right] = n\theta, \theta \in \Theta$, it is clear that

$$T_n(\mathbf{Y}^n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^n Y_i$$

is an unbiased estimator for θ on the basis of \mathbf{Y}^n , which is also a complete sufficient statistic. Thus, the three-step method simplifies in this case to yield that the estimator $g: \mathbb{R}^n \to \mathbb{R}$ given by $g(\mathbf{y}^n) = \frac{1}{n} \sum_{i=1}^n y_i$ is a MVUE.

Problem 4. (a) For each θ in (0,1), we have

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \prod_{i=1}^n f_{\theta}(y_i) = \theta^n (1-\theta)^{\sum_{i=1}^n y_i}, \ \mathbf{y}^n \in \mathbb{N}^n$$

so that $T_n(\mathbf{y}^n) \stackrel{\Delta}{=} \sum_{i=1}^n y_i$ defines a sufficient statistic for the family $\{\mathcal{G}^{(n)}(\theta), \theta \in (0,1)\}$. (b) The family $\{\mathcal{G}^{(n)}(\theta), \theta \in (0,1)\}$ is an exponential family with the correspondence $K^{(n)}(\mathbf{y}^n) = T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i$, so that T_n is a completely sufficient statistic for the family (since $K^{(n)}$ is a complete sufficient statistic).

(c) For each θ in (0,1), the Fisher information matrix $M^{(n)}(\theta)$, $n=1,2,\ldots$, is given by

$$M^{(n)}(\theta) = nM(\theta)$$
$$= \frac{n}{\theta^2(1-\theta)}.$$

(d) Clearly, there exist no efficient estimators for θ on the basis of Y^n , n = 1, 2, ..., as is clear from the answer to Problem 2, part (d), for the case n = 1.

Problem 5. (a) For each $\theta \in \mathbb{N}$, we have

$$f_{\theta}(\mathbf{y}^n) = \frac{1}{\theta^n} 1\left(\max_{1 \le i \le n} y_i \le \theta\right) 1\left(\min_{1 \le i \le n} y_i \ge 1\right), \quad \mathbf{y}^n \in \{1, \dots, \theta\}^n,$$

so that by the Factorization Theorem,

$$T_n(\mathbf{y}^n) \stackrel{\Delta}{=} \max_{1 \le i \le n} y_i, \quad \mathbf{y}^n \in \mathbb{N}^n$$

is a sufficient statistic.

(b) For $t = 1, ..., \theta$, note that

$$P_{\theta}[T_n \le t] = P_{\theta} \left[\max_{1 \le i \le n} Y_i \le t \right] = \left(\frac{t}{\theta} \right)^n$$

so that

$$P_{\theta}[T_n = t] = \begin{cases} \left(\frac{t}{\theta}\right)^n - \left(\frac{t-1}{\theta}\right)^n, & t = 1, \dots, \theta \\ 0, & \text{elsewhere.} \end{cases}$$

For any Borel mapping $\varphi : \mathbb{R} \to \mathbb{R}$ with $E_{\theta}[|\varphi(T_n)|] < \infty$, we have

$$E_{\theta}[\varphi(T_n)] = 0, \quad \theta \in \mathbb{N}$$

means

$$\sum_{t=1}^{\theta} \varphi(t) \cdot \frac{1}{\theta^n} [t^n - (t-1)^n] = 0, \quad \theta \in \mathbb{N}$$

so that

$$\sum_{t=1}^{\theta} \varphi(t)[t^n - (t-1)^n] = 0, \quad \theta \in \mathbb{N}.$$

By examining the previous condition for $\theta = 1, 2, \ldots$, it is readily seen that

$$\varphi(t) = 0, \quad t \in \mathbb{N},$$

so that T_n is a complete sufficient statistic.

(c),(d): The condition CR2(a) is not satisfied, so that $M(\theta)$ and efficiency are not defined.

Problem 6. (a) For each $\theta > 0$, we have

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \frac{1}{(2\pi\theta)^{n/2}} \exp\left[-\frac{1}{2\theta} \sum_{i=1}^n y_i^2\right], \quad \mathbf{y}^n \in \mathbb{R}^n$$

so that $T_n(\mathbf{y}^n) \stackrel{\Delta}{=} \sum_{i=1}^n y_i^2$, $\mathbf{y}^n \in \mathbb{R}^n$, is a sufficient statistic by the Factorization theorem.

- (b) The family $\{\mathcal{N}^{(n)}(0,\theta), \theta > 0\}$ is an exponential family with the correspondence $K^{(n)}(\mathbf{y}^n) = T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i^2$, so that the fact that $K^{(n)}$ is a complete sufficient statistic for this family implies the same for T_n .
- (c) Verify first that the family $\{\mathcal{N}(0,\theta), \theta > 0\}$ satisfies (CR1)-(CR4) and the additional integrability and regularity conditions, so that for each $\theta > 0$,

$$M(\theta) = -E_{\theta} \left[\frac{d^2}{d\theta^2} \ln f_{\theta}(Y) \right]$$
$$= -E_{\theta} \left[\frac{1}{2\theta^2} - \frac{Y^2}{\theta^3} \right] = -\frac{1}{2\theta^2} + \frac{\theta}{\theta^3}$$
$$= \frac{1}{2\theta^2}.$$

(d) Since $E_{\theta}[T_n(Y^n)] = E_{\theta}\left[\sum_{i=1}^n Y_i^2\right] = n\theta, \theta > 0$, it is clear that the estimator $g: \mathbb{R}^n \to \mathbb{R}$ defined by $g(y^n) \stackrel{\Delta}{=} \frac{1}{n} \sum_{i=1}^n y_i^2, \mathbf{y}^n \in \mathbb{R}^n$, is an unbiased estimator of θ on the basis of Y^n . Furthermore, since the statistic $T_n: \mathbb{R}^n \to \mathbb{R}$ given by $T_n(\mathbf{y}^n) = \frac{1}{n} \sum_{i=1}^n y_i^2, \mathbf{y}^n \in \mathbb{R}^n$, is a complete sufficient statistic (by part (b)), it follows that g is a

MVUE. To see if g is also efficient, we see that for each $\theta > 0$,

$$\Sigma_{\theta}(g) = E_{\theta} \left[|g(\mathbf{Y}^n) - \theta|^2 \right] = E_{\theta} \left[\left(\frac{1}{n} \sum_{i=1}^n Y_i^2 - \theta \right)^2 \right]$$

$$= E_{\theta} \left[\left\{ \frac{1}{n} \sum_{i=1}^n (Y_i^2 - \theta) \right\}^2 \right]$$

$$= \frac{1}{n^2} E_{\theta} \left[\sum_{i=1}^n (Y_i^2 - \theta)^2 + \sum_{\substack{i,j=1 \ i \neq j}}^n (Y_i^2 - \theta) (Y_j^2 - \theta) \right]$$

$$= \frac{1}{n^2} E_{\theta} \left[\sum_{i=1}^n (Y_i^2 - \theta)^2 \right], \text{ by the independence of } Y_1, \dots, Y_n$$

$$= \frac{1}{n} \left[E_{\theta} \left[Y^4 \right] + \theta^2 - 2\theta^2 \right] = \frac{1}{n} \left[E_{\theta} \left[Y^4 \right] - \theta^2 \right]$$

$$= \frac{1}{n} \left[3\theta^2 - \theta^2 \right] = \frac{2\theta^2}{n}.$$

Since $\Sigma_{\theta}(g) = M^{(n)^{-1}}(\theta), \theta > 0$, we see that g is an efficient estimator.

Problem 7. (a) For each $\theta > 0$, we have

$$f_{\theta}^{(n)}(\mathbf{y}^n) = \prod_{i=1}^n \left[\theta e^{-\theta y_i} 1(y_i \ge 0) \right]$$
$$= \theta^n e^{-\theta \sum_{i=1}^n y_i} 1 \left(\min_{1 \le i \le n} y_i \ge 0 \right)$$

so that by the Factorization theorem, we have that the statistic T_n defined by $T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i$ is a sufficient statistic for $\{\mathcal{E}^{(n)}(\theta), \theta > 0\}$.

- (b) The family $\{\mathcal{E}^{(n)}(\theta), \theta > 0\}$ constitutes an exponential family with the correspondence $K^{(n)}(\mathbf{y}^n) = T_n(\mathbf{y}^n) = \sum_{i=1}^n y_i, \ \mathbf{y}^n \in \mathbb{R}^n$. Since $K^{(n)}$ is a complete sufficient statistic for this family, so is T_n .
- (c) Verify that the family $\{\mathcal{E}(\theta), \theta > 0\}$ satisfies (CR1)-(CR4). Then, for each $\theta > 0$,

$$M(\theta) = E_{\theta} \left[\left| \frac{d}{d\theta} \ln f_{\theta}(Y) \right|^{2} \right] = E_{\theta} \left[\left(Y - \frac{1}{\theta} \right)^{2} \right]$$
$$= \operatorname{var}_{\theta}[Y] = \frac{1}{\theta^{2}},$$

so that

$$M^{(n)}(\theta) = nM(\theta)$$
$$= \frac{n}{\theta^2}, \ n = 1, 2, \dots$$

Problem 8. Let $T_c: \mathbb{R}^k \to \mathbb{R}^d$ be a complete sufficient statistic for $\{F_\theta, \theta \in \Theta\}$. Let $T: \mathbb{R}^k \to \mathbb{R}^\ell$ be a sufficient statistic for $\{F_\theta, \theta \in \Theta\}$, where ℓ is a positive integer. Define a Borel mapping $\varphi_T: \mathbb{R}^d \to \mathbb{R}^d$ given by

$$\varphi_T(T_c(Y)) = T_c(Y) - E_{\theta}[T_c(Y)|T(Y)].$$

The sufficiency of T ensures that the right side above does not depend on θ , so that the mapping φ_T is well-defined. Now, for each $\theta \in \Theta$,

$$E_{\theta}\left[\varphi_T(T_c)\right] = E_{\theta}\left[T_c(Y)\right] - E_{\theta}\left[E_{\theta}\left(T_c(Y)|T(Y)\right)\right] = 0,$$

by standard properties of conditional expectation. Hence, by the completeness of T_c , we have that $\varphi_T(T_c) = 0$ P_{θ} -a.s., for all $\theta \in \Theta$, i.e.,

$$T_c(Y) = E_{\theta} [T_c(Y)|T(Y)] P_{\theta} - \text{a.s.}, \theta \in \Theta.$$

Thus, for each $\theta \in \Theta$, we see that $T_c(Y)$ is equal to a function of T(Y) P_{θ} -a.s. Since the sufficient statistic T was chosen arbitrarily, and since T_c is a sufficient statistic, it follows that T_c is a minimal sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$.

Problem 9. (a) Verify first that the family $\{F_{\tilde{\theta}}, \tilde{\theta} \in (0,1)\}$ satisfies (CR1)-(CR4). In particular, the densities $\{f_{\tilde{\theta}}(y) = P_{\tilde{\theta}}[Y=y]\}$ are given by

$$f_{\tilde{\theta}}(y) = P_{\tilde{\theta}}[Y = y] = \frac{\left(\ln \frac{1}{\tilde{\theta}}\right)^y \tilde{\theta}}{y!}, \quad y \in \mathbb{N},$$

for each $\tilde{\theta} \in (0,1)$. Hence,

$$\ln f_{\tilde{\theta}}(y) = \ln \tilde{\theta} + y \ln \ln \frac{1}{\tilde{\theta}} - \ln y!, \ y \in \mathbb{N}$$

so that

$$\frac{d}{d\tilde{\theta}} \ln f_{\tilde{\theta}}(y) = \frac{1}{\tilde{\theta}} + Y \frac{1}{\tilde{\theta} \ln \tilde{\theta}}, \quad y \in \mathbb{N}.$$

Then, for each $\tilde{\theta} \in (0,1)$, we have

$$\begin{split} M(\tilde{\theta}) &= E_{\tilde{\theta}} \left[\left| \frac{d}{d\tilde{\theta}} \ln f_{\tilde{\theta}}(Y) \right|^2 \right] \\ &= \sum_{y=0}^{\infty} \left(\frac{1}{\tilde{\theta}} + y \frac{1}{\tilde{\theta} \ln \tilde{\theta}} \right)^2 \frac{\tilde{\theta} \left(\ln \frac{1}{\tilde{\theta}} \right)^y}{y!} \\ &= \sum_{y=0}^{\infty} \left(e^{\theta} - y \frac{1}{\theta e^{-\theta}} \right)^2 \frac{e^{-\theta} \theta^y}{y!} \\ &= e^{2\theta} - \frac{2e^{2\theta} \theta}{\theta} + \frac{e^{2\theta}}{\theta^2} [\theta + \theta^2] \\ &= \frac{e^{2\theta}}{\theta} \\ &= \frac{1}{\tilde{\theta}^2} \ln \frac{1}{\tilde{\theta}}, \end{split}$$

i.e.,

$$M(\tilde{\theta}) = \frac{1}{\tilde{\theta}^2} \ln \frac{1}{\tilde{\theta}}, \ \tilde{\theta} \in (0, 1).$$

(b) If g is an unbiased estimator of $\tilde{\theta}$ on the basis of Y, then for each $\tilde{\theta}$ in (0,1),

$$E_{\tilde{\theta}}[g(Y)] = \tilde{\theta}$$

or,

$$\sum_{y=0}^{\infty} g(y)\tilde{\theta} \frac{\left(\ln\left(1/\tilde{\theta}\right)\right)^{y}}{y!} = \tilde{\theta}$$

whence

$$\sum_{y=0}^{\infty} \frac{g(y)}{y!} \theta^y = 1, \ \theta \in (0, \infty).$$

By equating coefficients of the powers of θ , we obtain that

$$\frac{g(y)}{y!} = \begin{cases} 1, & y = 0 \\ 0, & \text{else} \end{cases}$$

whence

$$g(y) = \begin{cases} 1, & y = 0 \\ 0, & \text{else,} \end{cases}$$

and this defines the only unbiased estimator of $\tilde{\theta}$ on the basis of Y.

(c) For each $\tilde{\theta} \in (0,1)$, we have

$$\begin{split} \Sigma_{\tilde{\theta}}(g) &= E_{\tilde{\theta}} \left[|g(Y) - \tilde{\theta}|^2 \right] = E_{\tilde{\theta}} \left[g^2(Y) \right] - \tilde{\theta}^2 \\ &= P_{\tilde{\theta}} \left[g(Y) = 1 \right] - \tilde{\theta}^2 = P_{\tilde{\theta}} \left[Y = 0 \right] - \tilde{\theta}^2 \\ &= \tilde{\theta} - \tilde{\theta}^2 = \tilde{\theta} (1 - \tilde{\theta}). \end{split}$$

Finally, observe that $\sum_{\tilde{\theta}}(g) = \tilde{\theta}(1-\tilde{\theta}) = e^{-\theta}(1-e^{-\theta})$, where $\theta = \ln \frac{1}{\tilde{\theta}}$. From 6 in part (a), we see that $M^{-1}(\tilde{\theta}) = \theta e^{-2\theta}$, where $\theta = \ln \frac{1}{\tilde{\theta}}$. Since $e^{-\theta}(1-e^{-\theta}) > \theta e^{-2\theta}$, $\theta > 0$, we see that $\sum_{\tilde{\theta}}(g) > M^{-1}(\tilde{\theta})$, $\tilde{\theta} \in (0,1)$. Clearly, g is not an efficient estimator of $\tilde{\theta}$ on the basis of Y.

Problem 10. (a) It can be verified that (CRl)-(CR4) and the additional regularity conditions hold. For each θ in (0,1),

$$\ln f_{\theta}(y) = \ln \left(\frac{m}{y}\right) + y \ln \theta + (m - y) \ln(1 - \theta), \quad y = 0, 1, \dots, m,$$

whence

$$\frac{d^2}{d\theta^2} \ln f_{\theta}(y) = -\frac{y}{\theta^2} - \frac{m-y}{(1-\theta)^2}.$$

Hence,

$$M(\theta) = -E_{\theta} \left[\frac{d^2}{d\theta^2} \ln f_{\theta}(Y) \right] = E_{\theta} \left[\frac{Y}{\theta^2} \right] + E_{\theta} \left[\frac{m - Y}{(1 - \theta)^2} \right]$$
$$= \frac{m\theta}{\theta^2} + \frac{m - m\theta}{(1 - \theta)^2} = \frac{m}{\theta(1 - \theta)}, \quad \theta \in (0, 1).$$

(b) Since $E_{\theta}[Y] = m\theta$, the estimator g given by $g(y) = \frac{y}{m}$, $y \in \mathbb{R}$ is unbiased. Further, for each θ in (0,1),

$$\Sigma_{\theta}(g) = E_{\theta} \left[\left(\frac{Y}{m} - \theta \right)^{2} \right] = \frac{1}{m^{2}} E \left[(Y - m\theta)^{2} \right] = \frac{1}{m^{2}} \operatorname{cov}_{\theta}[Y]$$
$$= \frac{\theta(1 - \theta)}{m} = M^{-1}(\theta), \text{ so that } g \text{ is efficient.}$$