ENEE 621: Estimation and Detection Theory

Problem Set 2

Spring 2007 Narayan

- 1. Find all the unbiased estimators for estimating the parameter θ from the parameter set $\Theta = \{0, 1, 2, \ldots\}$, given that the observation rv Y is uniformly distributed on $\{0, \ldots, \theta\}$.
- **2.** Let $\Theta = (0, 1)$. For each θ in Θ , let the rv Y be a geometric rv with parameter θ , i.e.,

$$\mathbf{P}_{\theta}[Y=y] = \theta(1-\theta)^y, \quad y = 0, 1, \dots$$

- (a) Find all the unbiased estimators of θ on the basis of Y.
- (b) Consider the estimator $\tilde{g} : \mathbb{R} \to \mathbb{R}$ defined by

$$\tilde{g}(y) = \begin{cases} \frac{1}{y}, & y \neq 0\\ 0, & y = 0. \end{cases}$$

Show that \tilde{g} is a biased estimator which yields a smaller error covariance than *any* unbiased estimator, at least for certain values of θ .

- (c) Determine the Fisher information matrix $M(\theta)$ for each θ in Θ .
- (d) Determine if the set of estimators found in part (a) contains an efficient estimator.
- **3.** Let $\Theta = \mathbb{R}$. Let $Y^n = (Y_1, \ldots, Y_n)$ consist of *n* i.i.d. Gaussian rv's, each with unknown mean θ and know variance σ^2 . Find a MVUE for θ on the basis of Y^n , using the three-step method described in the class.
- 4. Let $\{\mathcal{G}(\theta), \theta \in (0,1)\}$ denote the family of geometric distributions in Problem 2. Consider the families of distributions $\{\mathcal{G}^{(n)}(\theta), \theta \in (0,1)\}, n = 1, 2, \ldots$, associated with n i.i.d. observations $Y^n = (Y_1, \ldots, Y_n)$.
 - (a) Find (nontrivial) sufficient statistics for the family $\{\mathcal{G}^{(n)}(\theta), \theta \in (0,1)\}$.
 - (b) Are the statistics in part (a) above complete sufficient statistics?
 - (c) Compute the Fisher information matrix $M^{(n)}(\theta), \theta \in (0, 1)$.
 - (d) Determine the efficient estimators for θ on the basis of Y^n .
- **5.** Repeat Problem 4 for the family of discrete uniform distributions $\{\mathcal{U}(1,\ldots,\theta), \theta \in \mathbb{N}\}$.

- **6.** Repeat Problem 4 for the family of Gaussian distributions $\{\mathcal{N}(0,\theta), \theta > 0\}$.
- 7. Repeat Problem 4 for the family of exponential distributions $\{\mathcal{E}(\theta), \theta > 0\}$.
- 8. Let $T_c : \mathbb{R}^k \to \mathbb{R}^d$ be a complete sufficient statistic for the family $\{F_\theta, \theta \in \Theta\}$. Show that T_c is then a minimal sufficient statistic for this family.
- **9.** This problem concerns the direct estimation of a function $d(\theta)$ of the parameter θ , rather than θ itself.

Let $\Theta = (0, \infty)$, and for $\theta \in \Theta$, let Y be a Poisson rv with parameter θ , i.e.,

$$\mathbf{P}_{\theta}[Y=y] = \frac{\theta^{y} e^{-\theta}}{y!}, \quad y \in \mathbb{N}$$

Define a mapping $d: (0,\infty) \to (0,1)$ by

$$d(\theta) = e^{-\theta}$$

and denote $\tilde{\theta} = d(\theta)$.

- (a) For each $\tilde{\theta}$ in $\tilde{\Theta} = (0, 1)$, compute the Fisher information matrix $M(\tilde{\theta})$.
- (b) Find all the unbiased estimators of $\tilde{\theta}$ on the basis of a (single) observation Y.
- (c) For each estimator g in part (b) above, compute the error covariance $\sum_{\tilde{\theta}}(g)$.

10. For each θ in (0, 1), let the rv Y be a binomial rv, with

$$P_{\theta}[Y=y] = \binom{m}{y} \theta^{y} (1-\theta)^{m-y}, \qquad y = 0, 1, \dots, m,$$

where *m* is a fixed positive integer, and $\binom{m}{y} = \frac{m!}{y!(m-y)!}, y = 0, 1, \dots, m.$

- (a) Compute the Fisher information matrix $M(\theta), \theta \in (0, 1)$.
- (b) Determine an efficient estimator for θ on the basis of Y.