ENEE 621: Solutions Problem Set 3
Spring 2007

Narayan
grusp(Y) S BOIY] = o + Soy By (Y — ).
fe =m = iy
¢
Yy = o? +var[Z] = 0 + .
12
Yoy = E[(0 —m)(Y —m)] = E[(0 — m)(0 + Z — m)]
= E[(0 —m)*] + E[(6 —m)(Z - 0)]
Since 0 L Z, E[(0 —m)(Z — 0)] = 0. Then
E@y = 02
Hence,
~ 1202
E0)Y] = —— | (Y —m).
o] =+ (fgayas ) O =)
(ii) Assume now that 6 is an unknown IR-valued constant. Then
L p—1<y<o+4
= ’ 2 =9 = 2
Jo() { 8, otherwise.
= argmaxgcr fo(y) = any 0 in [y — 4,y + {].
= for a given y € R, 3 a family of ML estimates given by
o _ q q
WS =aly-H+0-a)p+DHo<a<y
3, 0<y<(<1)
= =
Jo() { 0, otherwise. (+)

Hence,

gmr(y) = arg Jnax ft(y)

= arg max fu(y), by (+)

=Y



=gur(y) =y, O0<y<L
Further, Eglgan(Y)] = Eg[Y] = § = gary is biased.
(i)

0<y,t<l.

12 0<y<t<l1
0, otherwise

—y .
0, otherwise.

{%, 0<y<t<1 (why?)

i.e., vy(t) is uniform for ¢ in [y, 1).
(a) Thus,

gmap(y) = any tin [y, 1)

Therefore, for a given y in (0,1), there exists a family of MAP estimates given
by:

9vapy) =ay+(1-a), 0<a<1}.

Further,
Elgirap(Y)] = aE[Y]+ (1 —-a)

o[ ([ ) s

o 2c
— Yy 1-a=1-2,
g tioa 3

Also, E[0] = f01t~2t -dt = 2. Thus, E[g3;4p(Y)] = E[6] only when 1 — 2& = 2,

ie., if a = %, so that g§;4p is unbiased only for o = %; else, it is biased.

1 1
1
ausely) = EO1Y =yl = [ w0t = [
Y Yy
1
= %, 0<y<l.

Since E[E[0|Y]] = E[0],gusk is (always) unbiased.

(¢) From (b), grmse(v) = E[p)Y =y] = HTy; Therefore, g1 arsg is unbiased.

e 00y

y!

foly) 2 Py(Y = y) = . y=0,1,2,..., 0€(0,00).



In fo(y) = -0+ yInf —In(y!).

0 y
5g o) =-1+75
= 0 = gnr(y) satisfied — 1+ v - 0,
gmr(y)

whence gyr(y) =y, =0,1,2,...
Eolgmrn(Y)] = EglY] = 0 = garr is unbiased.
So(gar) = Eol(gur(Y) — 0)°] = E[(Y - 0)°] = 0.

<% 1nf9(Y))2

Using 6 > 0, we have M~1(0) =0 = > ,(g9m1), so that garr, is efficient.

= BV 6] = 7.

M(0) = B, 7

. For -1 <0 <1:

faly y)Z;eXp[_—l[yy]{l _0] [yIH —00 < Y1,Y2 < 00
1, Y2 27‘(‘@ 2(1_02) 192 _9 1 Yo ) 1, Y2
1

=5 Xp [—;(?J% — 2y1y20 + y%)}
211 — 602 2(1 — 62)
= 1I1f9(y1,y2) = —In27 — %ln(l — 92) — ﬁ(y% — 2y1y29 + y%)

Let us use the notation g4,; (y1,2) 2 9* for convenience. If 6* € (—1,1), then

0
2 In fo(y1,92)|9=0= =0

Then,
= 0"(1 — 0"%) + y1y2(1 — 6°%) — 0" (v — 21920 +y3) =0

ie.,

0" — 1920 + (yi + 3 — 10" — y1y2 = 0. (%)

Let f(0) = 6° — y1920* + (v + y3 — 1)0 — y1y2. Note that f(—1) = —(y1 +2)> <0
and f(1) = (y1 —y2)? > 0. Thus, f() has at least one root in [—1,1]. Next, it can be
easily verified that 6 = 1 is a root only if y; = ys, and that § = —1 is a root only when
y1 = —yo. Hence for all (y1,y2) such that |y1| # |y2|, MLE exists (i.e., in (—1,1)).

The actual determination of the MLE (for |yi| # |y2|) is tedious. For certain values
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of (y1,y2) (ly1| # |yz2]), the equation f(#) = 0 has a single root in (—1,
(y1,y2), it has 3 roots in (—1,1).

. For y”é(y, .+ s Yn), we have

1); for other

n 1 1 n . kr o
Joly") = faalyr, - syn) = (@ro2yn2 NP | T2 > (g — Asin(—- + @)

(270

so that

n 1 . km
Infae(yi,....yn) = ) In270? — 552 (yr — ASlIl(? + <I>))2.

#I;(yk—A*sin(%T-i-qb*))sin <k§+@*> =0
:Zyks1n(k—+¢) A*Zsm <—+<I>>=0
:Zyksln<k—+®> A*Zsm (——i—@)

k=1

Using the fact that n is even,

Zsm <—+<I>*) :g

=cos® [y1 —ys+uys...|] —sin® [y —ys +ys...] =

Next,
0

B

;$; (yk—A* sin (kg—l—fb*)) (—A")cos (]%T-i-@*) =0
- km . i~ . (kT . km
:Zy;&os(;#—@ ) —A ZSlIl(?—i—(I) )COS(7+(I>)

k=1 k=1

lan @( n)|A:A* =0
D=P*

4

0



Since n is even,

- k k
Zsin <—7T + <I>*> cos (—W + <I>*> =0
— 2 2

So that,
km
Zykcos 7+<I> =0
k=1
=cos® [—y2+ys—ys+..]—sin® [y —ys+ys...] =0
= V2T YL Yot
Y1—Ys+ys...
i.e.,

—y2+y4—y6+~-l

P
g Yl h Y :arctan[
g n) Yyi—ys+ys...

Finally, from (i)

g]‘@L(yla SR 7yn) = [(yl —Ys+ys.. ) COSg%L(yla SR 7yﬂ)

SN

—(Y2—Ya+¥6--)singL (Y1, yn)] -

Cfoyr, - oyn) = Ty (e_(y’f_e)u(y;.C — 9)) Note that given y™ 2 (Y1,---sYn), for
fo(yr,--.,yn) # 0, we need that 0 < y;, for k = 1,...,n, ie., that miny<p<, yr > 0.

Under this condition, i.e., for § < min; <<y, yz, we have that

n n

fe(yla'-'vyn) = H 6_(yk_0) = e’rL@ H e vr

which (subject to # < minj<g<y, y) is maximized by 6* = minj <<, yx. Thus,

g (Yi,s - Yn) = 1g}clgnyzc




1 Yk
so that,
n Uk . n
Zl (9—*>—0 = Inéd ——Zlnyk
=1 k=1
n 1/n
= 0" = (H yk>
k=1
ie.,

Now, use the fact that Y ~ lognormal with parameters (6,0%) < Y = exp Z, where
Z ~N(Inf,0?), and we get

E[Y] = ElexpZ], E[Y? = Elexp2Z]

The moments of Y can then be obtained from the moment-generating function Mz(+)
of Z. Specifically,

2,2

Mz (u) = ElexpuZ] = exp(ulnf + 2 ) (check!)
= E[Y] = Mz(1) = 0e” /2,
E[Y?] = My(2) = 62> .

Returning to our estimation problem:

1 n
I (gfr,, (V™)) = - > Yy
k=1

Since InYy, ~ N (In6,0?), In(g§,, ,(Y"™)) ~ N(Inb, %2), so that ¢, ,(Y™) is lognor-

mal with parameters (6, %2) Hence,

Ep (940, (Y")] = 07 /7"
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o?/2n

so that g9, L is biased. However, since lim,, fe = @, we see that the sequence

of estimators {g9, L.ntne1 is asymptotically unbiased. Next,

2o (910\/1L,n) = Ey [(9]0\/11: (Y") — 9)2}
= By (08120 Y™)"] = 20B0 [gh11,(Y")] + 67

20

2 o2
= 0% —20- ez + >
= 62 |:62T — 2e2n 4 1]
Thus,
lim g (g]%L’n) =0

i.e.,

limg?w,;,n(Y”) =6 in q.m. under Py
= lim gl‘QWL’n(Y”) = 6 in probability Pp.

Hence, gy, is a (weakly) consistent estimator. Turning finally to the notion of
efficiency, we see that the notion does not apply as g9, Ln 1S biased. (We have
defined “efficiency” in class only for unbiased estimators.) However, it is of interest to
see how ", (94, ) differs from the appropriate Cramér-Rao lower bound (CRLB).
For the problem at hand, the CRLB = b3 (gf,’WLm)—i— [1+ d%bg(gﬁ/m’n)f M(”)(g)_l, To
compute CRLB, first note that M (0) = nM (0), where M (0) = —F, [66—022 In f@(Yl)].

Since
0? o1, y 1 1
—1 =—|=n2) -] = —1—(Iny —Iné
S o) = o [ S5 5] = S (-1 - (g~ o],
we have
M(0) = —Ey [—W — (InY — lnG)}
1
= —g2 + Eyp[InY —In#]
= g2 because Fy[lnY —Inf] =0
Next,

be(g?\u,n) =Fy [gg/[L’n(Y")} —f = 060'2/2n .y
=0 [602/2n . 1]
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d
= @be (9]9\4L,n) = 602/% -1

2 5242

n

— CRLB = ¢° [(e”2/2” _ 1)2] + (1 Feotm 1)

=62 [/ (14 0¥/m) 41— 207 /2]

Hence,
Yo (9%Ln) — CRLB
2
— 02 6202/n . 602/n 1+ U_
n
2 2 2
:0260 /n |:ecr /n <1+0_):|
n
2 O'2
>0, since e /™ > 14 — (why?)
n
However,

tim | 3" (¢4s7,.) ~ CRLB
0

= lim [026"2/" [6‘72/” - (14 Uz/n)H

n

=0.

. Unknown parameters: 6 = {Hij}f‘f[jzl where 6;; = P(Yyp41 = j|Yr =14),k=0,1,2,....

Observations:
(yl,...,yn), Wlth P(YO :y()) = 1 (*)
Then,
Jo(os---,yn) = P(Yo = v0) - Oyoys Oyrys - - - Oy, 1y, ( using the Markov property)

M M N
=TI 0", by(x)
i=1j=1

where n(i,j) = # of different values of k in {0,...,n = 1} such that y, = 7 and
Yg+1 = J (i.e., the number of times the process goes directly from state i to state 7).

Since Zj‘ileij =1fori=1,..., M, we have 9¢M:1—Z]M:119ij,i:1,...,M.

:>f9(y07y17'--ayn) :H (1— Z 9%) H 9;;(17])
i=1 j=1

(=1
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M M—1 M—1
= In fo(yo, Y1, - yn) = D |n(i, M)1n (1 - > 9%) + > n(i,j) In6;
i=1 =1 j=1
For notational convenience, let g?\j’i(yo, Ylye - Yn) 2 0%,. Then, for 1 <a < M,1 <
b<M-1,
—n(a, M) n(a,b)
lng 5 sy Un)|6,p=0" =0= -
90 f (yo Y1 Y )‘ b=0%, 1_ ﬁiIl@Zl gab

whence 6%, = nn(fla}a,)) 6% ,;. Summing both sides over b yields:

M n(a,b) 0 M
1= 0 = —M n(a,b).
2 30 1) 2
M
b b
=0, = ]\Z(a’ ) _nla ), where n(a) 2 Zn(a,ﬁ).
2621 n(avé) n(a) =1
Thus,
0:; . n('l/,j) <ji<
gML(yanla"'ayn)_ n(z) 9 1_Z7.]—M'
“Intuitively,”

(# of times process leaves state i directly for state 7)

0 _
90 (Yos -+ Yn) (# of times it leaves state 7 for state i or any other state.)

Notice that:
# of times it leave state i for state ¢ or any other state

= # of times it resides in state ¢ in times 0,...,n — 1

Observations: 1112122112221212
n(l,1) =3;n(1,2) =5n(2,1) =4n(2,2) =3,n(l) =8;n(2) =T.
3 A . _ 3 :
=07, = §,012 = §,021 = ?,022 = are the ML estimates.

- () E[0]Y] = po+ gy Xy (Y —py). Note that 35, = E[(Y? = E[Y?])Y] = E[Y*] -
E[Y]E[Y?]. Since E[Y?] = E[Y] = 0,3y = 0. Hence, E[0|Y] = g = E[Y?] = 1, a

constant, and clearly a poor estimator.



(i) gusp(Y) = E[0]Y] = E[Y?|Y] = Y?

. Here 0 = (61,0,),0 < 6; < 0. Let y* 2 (Y1,---,9k). Then

k
(92i91> if min{ylv s 7yk} > 917 maX{yh ) yk} < 92
0 otherwise.

foy®) = {

01 k .
Y
:>919\4L,k(Yk) {QML,k( )1 _ {mm{Yl,...,Yk}

gi}Lyk(Yk) max{Yl,...,Yk}
By g8, (VF)| = Bo min{¥i,..., Vi}]

= / P(min{Yy,..., Yy} > x)dx,
0

using the fact that min{Yy,..., Yy} >0

_ /OOO[P(Yl > 2)]*da.

Now,
1, O§x§01
P(Y, > x) = {992—;1 0, <z <0y
1’>(92

01
:>E9[gg/f,L7k, Yk /dm—i—/ ( _0) dx
o, \02 1
92—:1'}
=40 +/ ( ) dx.
' 0, \ 02— 01

Since fe < 9;7;?) dx > 0, we see that gML .. 1s biased for k = 1,2

(iii) limy Py [g (Y’fﬂ =60,4+0=01ie., {gl\/llL,k(Yk)}zozl is asymptotically unbi-
ased.
(iv) Given € > 0,
P9 <|9ML k( k) —91| > 6)
Notice that,
Py(ghy, o (Y") < 01 — €) = 0(why?)
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So that
(|gML R (Y ) — 01 >¢)

= Py(min{Y1,..., Y3} > 01 +¢) = (Pp(Y1 > 01 +¢)F

:(2‘9“)

= € —>0ask—>oo,aslongase§92—91
0y — 6y

If € > 03—61, then clearly Py(Y; > 01+€) = 0. Thus, for every € > 0, limy, Py <|g]9\}L7k(Yk) — 61| >

0. Therefore, {g5} Lk ther is (weakly) consistent.

11. vy(t) = \/% exp [ Tt—y-— 2] 00 < t < 00, = conditioned on Y = y, 6 is Gaussian

2
with mean y + %-, and variance 1, i.e.,

E9)Y] =Y + YT E[(60 — E[9]Y])?] = 1. (%)

(1) BIO]Y] = po+ Xgy Sy (Y = py)
o = El6] = E[E[B|Y)] = E[Y + ¥'] =1+ 2 = 2. (Verify: E[Y] =1,E[Y?] = 2)
Sey = E[0Y] — E[9]E[Y] = E[§Y] — 2
— E[E[0Y|Y]] -2 = E[YE[0]Y]] -2 = E[Y (Y + —)] — 2
= E[Y?] + %E[Y:”] —2=2+ %6 — 2 =3 (verify E[Y?] = 6)
= E[0]Y] :2+§(Y—1) =3Y — 1.
(i)
covld — E[9|Y]] = E[(6 — E[6]Y])?]
= E[(6 — E[0]Y])0], by orthogonality principle
=E[0*] - E[0(BY —1)|=E[0?] -3.5+2=E[0*] - 13 (%)
From (§) above:
= E[(0 - B[9]Y])’]
— E[( — E[0]Y))6], by orthogonality principle
= E[0?] — E[0E[0|Y]]

11



12.

So that,
2

E[0* ) =1+ EQPEQY]] =1+ E[O(Y + YT)]
=1+ EY] + %E[9Y2], notice that E[0Y] =5

=6+ %E[E[9Y2|Y]]

— 6+ %E[YQE[YZE[H\Y]] =6+ %E[YQ(Y + Y?)]

i.e.,

E6%) = 6 + %E[Y?’] + %E[Y‘*]

1 1
=645 -6+ - 24 (verify : E[Y*] = 24.)

=15
= from (*) above, cov[d — E[A|Y]] = 15 — 13 = 2.

(i) Letting y™ 2 (Y1,---,Yn), we have

0 n n 1
= %lﬂfe(y ) = —§+§Z%-

Setting % In fo(y™) =0 at 0 = gy n(y™), we get

" 1
gML,n(y ) — ﬁ ;yz

(ii)
So(grrn) = Eoll0 — grrrn(Y™))?]

i=1
ie.,

=1
1 - 1
= —varg ZYi =-—5n varg[Y1]
i=1
92
T

12



13.

Next,

n

1
rPIRG

=1

Eolgpmrn(Y")] = Ey =0

= gmL,n is unbiased.

Compare Y ,(g9rr,n) with CRLB. To this end, observe that

g—;lnfe(y) = 9—12 - Z—é’
so that ,
MM () = —E, {% lnfg(Y)} = —ei? + Z—f = 9%
:>M(")(9):6—n;,n:1,2,...

Since > 4(grrr.n) = (M™ ()Y, garr.n is a MVUE.

(i) Fist note that

Next, for 0 <t < 1:

t
PO<tY=1)= / P(Y =1|0 = a)v(a)da, where v(a) is the density of 6
0

so that P(6 < t|Y = 1) = G1(t) = t2. Hence,
mt)=2t, 0<t<1
where v (t) is the conditional density of 6 at ¢, when Y = 1. Similarly, for 0 <¢ < 1:
t
PO<tY =0)= / P(Y =0|0 = a)v(a)da
0

t t?
:/(l—a)da:t——,
0 2

so that
Go(t) = P(0 < t]Y =0) =2t — %

13



whence

vo(t)=2(1-1t), 0<t<l1.

where v(t) is the conditional density of # at t, given Y = 0. Finally,

1

guse(y=1)=E[Q]Y =1] t-2t-dt =2/3

1

guse(y=0)=EP)Y =01 = [ t-2(1—t)dt=1/3.

Nh

(ii) Let y™ 2 (Y1,---,Yn). Then

P(Y" = "0 = t) = t2eima ¥ (1 — )" 2 ¥

Also, for 0 <t < 1:

t
PO<t,Y"=y")= / PY"™ =4"10 = a)v(a)da
0

PO <tlY" =y") = Gyn(t) =

n

fl alui=1 ¥ (1 — 04)”72?:1 Yida

Hence,
tzz; Yi | 1—t¢ n—zi: Yi
ety = Lot U Ty
Jo at=i=¥ (1 - a)n_zizlyida

= guap(y") = arg 0%?2{1 tz (1 - t)n_zizl Yi

Take log of tz:;l Yio(1- t)"’zzlzl Y to get:

gmar(y Z Yi

(This result also follows from the fact that 6 being uniform on [0,1] = gy = gymap-)
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(iii) E[0] = L; Elgmap(Y™)] = B[ 37 Vi) = L 3" | E[E[Y;]6]]. Notice that
ElY;|0] =6
so that
Elguap(Y™)] = E[0]
Hence, gprap(Y™) is unbiased.
14. (i) Since X; and X, are i.i.d., the conditional distribution of X; given (X; + X5) is
the same as that of Xy given (X; + X3)

= E[Xlle + XQ] = E[X2|X1 —+ XQ]

By adding: 2E[X1‘X1 —|—X2] = E[Xl —|—X2|X1 —|—X2] = X1 —|—X2 =Y

Y
= E[X1|X1 + Xo] = 7 using the fact that 6 = X and Y = X; + X

i.e., gMSE(Y) = %

() B0~ gusp(V)P) = B[(X) — 25577 = BNy = § 2= 4

Problem 15
(a) , ,
o = py = E[6X + N| = E[0]E[X] + E[N] = o
1 3
2 2 2
Sy = E[Y?] — ud = E[(0X + N)’| - = =... 5 +1>0,
1 1 1
Zoy = B0 = po)(Y — py)] = E[0Y] = — = E[f(0X + N)| - —] = —.
Hence, R
EOY] = po + Soy Sy (Y — py)
1 1 1
-4 (Y-=
o * (3+a2)( a)
1 2+ a?
= Y .
Grany T o




Problem 16

(a) For each 6 > 0,

m

f9<y1,7ym,m):{9€ yl,,.ee Y e z_ly , Z:’llyng

0, else
i.e.,
f@(yl: s 7ym7m) = gmeigT]- <Z Yi S T) )
i=1
So that by the Factorization Theorem, T'(y1,...,Ym,m) =m is a nontrival sufficient
statistic.
(b)
In fo(y1,-- s Ym,m) =mInf — 0T +1In1 (Zyi < T)
i=1
and
d m
—1 o Ym,m) = — — T,
do n f9 (ylv Y m) 0
whence
m
gML,T(yla cee 7ym7m) = T

(c) For each 6 > 0, M is a Poisson rv with mean 67, so that Eglgymrr(Yi,...,YMm)] =
%Eg [M] = % = 6, and so gpr, 7 is unbiased. Furthermore, by the completeness of
the Poisson family of distributions of mean 07" as  ranges over (0,00), we obtain that
T(Y1,...,Yy, M) = M is a complete sufficient statistic. Hence, the required MVUE

1s:

M M
Yi,....Yuy M)=FEy | =|M| = —
g( 1, s LMy ) 0 |:T| :| T
i.e., the MLE is also a MVUE.
(d) For each 6 > 0,
Eg |:<gML,T (Yl, Ce ,YM,M) — 69)2i|
M 2
=2 |(7-0)
1 2 1 or 0
= 5 B |(M = 0T)?| = —vamg[M] = 75 = .
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Thus, for each 6 > 0, it holds that limyiee o |(9arn,r(Ya, ..., Y, M) — 9)2 =0,
which implies limpyoo gprr, 7 (Y1, ..., Yar, M) = 6 in probability Py, i.e., (weak) con-
sistency of the MLE.

(e) For T = 1, fo(y1,-- - ym,m) = 0me 91 (3" y; < 1), and g(t) = ae 't > 0.

Hence,
| ) tme 1 (Y2 yi<1) ae ot
e s Ym, M) = —55 =
9o\vy,....Yar, M \U|Y1 Y fo rme—71 (Zl LY < 1) ae—ardr
t e (1+a)t
f TMe— (1+a)T Zyz <L
Finally,
gMSE (yla"'aymam) = E[0|Y1 = yl,"'aym = yva = m]
gmttem(tedtgy
o - By B,
Jo Tme=(Fa)Tdr
where U is exponential with mean F Continuing,
( ) (m+1)! / m! m+1
ey Ym, M) = = .
gMmMSsE\Y1, Y (1 + Oé)m+1 (1 + Oé)m 1+a
For m =1,9msE(y1,1) = 124
Problem 17
(a)
fo(y1,y2) = —eXp [ Zlyz —9\]
whence )
In fo(y1,y2) = —Ind — [Z lyi — 9|]
Hence,
2
gurL(y1,ye) = arg min [Z lyi — 9|] : (1)

In (1) observe that for 8 ¢ [y1, 92|, where (71, 72) is a rearrangement of (y1,y2) such

that 77 < 92, we have
2

> lyi =0l > G2 — 1 (>0)

=1

17



whereas for 6 € [§1, §2], we have

2
Zlyi—Gl =Yz — U1-
i=1

Hence, gnrr(y1,y2) = any value in [§1, 92|, so that all the maximum-likelihood esti-

mates can be represented as:

g\ ) = afn + (1 - a)ga, 0<a<l. (2)

In order to identify the unbiased estimator(s) among these, we proceed as follows.

Note that
By [g](\j‘} (Yl,Yz): = aEy [fq] +(1—a)Ey [YJ , 0<a<l. (3)
Next, ]
P Vi<y| =R [ spiUe <o}, weR
= 2Fy(y) — F§ (),
so that
Vi(y) = 2fs(y) — 2F(9) foly), v € R.
Also,
Py [172 < y} = PY [{Yl <y [z < y}]
=Py [Y1 <y Py[Ya <y] = Fj(y),
so that

Va(y) = 2F(y) foly), yeER

Hence, in (3),

Ey 9§11 (1, 72)| = a [ / Z y{2fo(y) - 2Fe<y>f9<y>}dy}

ra-a)| [y 2R,

— 00

from which, for a = %, we get

oo

By [0 0¥ [ uho(w)dy = Ealy) =6, 0 €.

— 00
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Thus, g](é,/LQ )(Yl, Ys) = % (171 + ?2) = % (Y1 + Y3) is the desired unbiased ML estimate.

(b) Since
Lot—y
. e v, y>t
*Mw_{§&4,y§t
and
1 1<t
Y=< 20
9(t) {O, else
we get

Y 1<t <1,y>t

1
€

foy(t,y) = %ey‘t —1<t<1l,y<t
0

, else
from which we get that
_17 Y S —1
gmap(y) = {97 -1<y<1
I, y=>L

Problem 18
(a) For each 6 > 0,

)” 1 (rniiny@' > —9) 1 (mlaxyi < 0)

1
20
(&) o=

so that

gMmL.n(y ):lfg%xnwd, y" e R".

(b) For each 6 > 0,

gurn(Y") -6 = lril?<xn|Y;| —-60<0 Py—as,n=12...,

so that
Vi (gura(Y™") —0) <0 Pp—as. forn=1,2,...,
and, hence, \/n (gpr.n(Y™) — 6) cannot converge to a Gaussian rv as n — oo.
(¢) From fi(y) = 1-1(Jy| < 1) and fa(y) = 1-1(|y| < 2), together with P[f = 1] = P[f =
2] = 1/2. we obtain

% lyl <1
fy)=q5 1<y <2
0, else.



Hence,

L. 1 9
Po=1Y =1=22="2
o=ty =1 = 22 = 2
and P[0 = 2|Y = 1] = £. This means that
0, t<1
P[Hgt]Y:l]:{%, 1<t<?2
1, t>2

from which it follows that gyrea(1) = 1.

Problem 19

(a) If 6,(Y?) = 6,(Y") P-a.s., then 6, must satisfy the orthogonality principle too. How-
ever, considering the affine estimator ¢ : R — IR given by a(yt) = y1, ¥t € R?, we

see that
E[0-0.Y"))g(Y)] =E||60- %ZW) Y1>
L (=1
—E _ 9—%;(0“\@)) Vi
=F _ %;Ng) 0+ Nqp)| = —E[Nf]
_ 7,
t

i.e., 8; does not satisfy the orthogonality principle.

(b) Since ; is a linear estimator of # on the basis of Y*, we have

E [(0 - 9}<Y'f>)2] <E|(0-00")’]

—E (9%i(0+Ne)>2
1< ’ o?

—E (EZM) =—

A~ 2 N
Hence, lim; F {(9 — Ot(Yt)> ] =0, i.e., 0; (Y*) — 0 in q.m., which implies that
0,(Y") — 0 in probability,
so that the sequence of estimators {,}5°, is (weakly) consistent.
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