ENEE 621: Estimation and Detection Theory

Problem Set 3 Spring 2007

Narayan

1. A \mathbb{R} -valued r.v. $\theta \sim \mathcal{N}(m, \sigma^2)$ is observed through a digital instrument with quantization levels of width q. A reasonable approach for "small" q is to model the quantizer as a noise source Z whose distribution is uniform over $\left[-\frac{q}{2}, \frac{q}{2}\right]$ with Z being independent of θ . The observation r.v. Y is given by

$$Y = \theta + Z$$
.

- (i) Find the linear mean-square error (LMSE) estimate of θ given Y = y.
- (ii) Find the MLE of θ given Y = y, assuming now that θ is an unknown \mathbb{R} -valued constant.
- 2. The R.V. Y is uniformly distributed on $(0, \theta]$.
 - (i) Let θ be an unknown constant in (0,1). Find the MLE of θ given Y=y.
 - (ii) Now let θ be a (0,1)-valued r.v. with probability density function $g_{\theta}(\cdot)$ given by.

$$g_{\theta}(t) = \begin{cases} 0, t < 0 \\ 2t, 0 \le t < 1 \\ 0, t > 1. \end{cases}$$

- (a) Find the MAP estimate of θ given Y = y.
- (b) Find the minimum mean-squared error estimate (MMSE) of θ given Y = y.
- (c) Find the LMSE estimate of θ given Y = y.

In each case, check the estimate for bias.

- 3. (Poor, p. 200, #15). Let Y be a Poisson r.v. with unknown rate θ in $(0, \infty)$. Find the MLE of θ on the basis of Y = y, and compute its bias and error covariance. Also, determine the corresponding Cramér-Rao bound.
- 4. (Poor, p. 201, #17). Let Y_1 and Y_2 be \mathbb{R} -valued jointly Gaussian r.v.'s, each with zero mean and unit variance. Find the MLE of the correlation coefficient $\theta = E[Y_1Y_2]$, lying in (-1,1), on the basis of $(Y_1Y_2) = (y_1, y_2)$. Compute the Cramér-Rao lower bound.

- 5. (Poor, p. 203, #23). Let $Y_k = A \sin\left(\frac{k\pi}{2} + \Phi\right) + N_k$, k = 1, ..., n, where $\{N_k\}_{k=1}^n$ are i.i.d. $\sim \mathcal{N}(0, \sigma^2)$ r.v.'s, with n being even. If $\theta = (A, \Phi)$ with A > 0, Φ in $(-\pi, \pi)$, find the MLE of θ on the basis of Y = y.
- 6. Let Y_1, \ldots, Y_n be \mathbb{R} -valued i.i.d. r.v.'s with (common) density function

$$f_{\theta}(y) = \exp\{-(y-\theta)\}u(y-\theta), \quad \theta \in \mathbb{R}$$

where $u(\cdot)$ is the unit step function. Find the MLE of θ given (y_1, \ldots, y_n) .

7. Consider the lognormal density

$$f_{\theta}(y) = \begin{cases} (\sqrt{2\pi}y\sigma)^{-1} \exp\left\{-\frac{1}{2}\left|\frac{\ln(y/\theta)}{\sigma}\right|^{2}\right\}, & y > 0\\ 0, & \text{otherwise} \end{cases}$$

where $\sigma > 0$, and θ is an unknown parameter in $(0, \infty)$. find the MLE of θ on the basis of the i.i.d. observations $\{Y_k\}_{k=1}^n$, each with common density f_{θ} . Is $g_{ML,n}$ a consistent estimator? Is it efficient? Compute its bias.

[HINT: Useful fact: $Y \sim \text{lognormal}$ with parameters $(\theta, \sigma^2) \Leftrightarrow Y = \exp Z$, where $Z \sim \mathcal{N}(\ln \theta, \sigma^2)$.]

8. Consider a discrete-time Markov chain $\{Y_k\}_0^{\infty}$ with states $\{1,\ldots,M\}$, M>1, and stationary transition probabilities

$$\theta_{ij} \stackrel{\Delta}{=} P\left(Y_{k+1} = j | Y_k = i\right), \quad 1 \le i, j \le M$$

for $k \geq 0$. (Thus, Y_k denotes the state at time instant k.) We assume that the initial state $Y_0 = y_0$ is **fixed**. If the chain is observed for n time instants, find the MLE of θ_{ij} , $1 \leq i, j \leq M$, given the observations, $(Y_1, \ldots, Y_n) = (y_1, \ldots, y_n)$, and given that the initial state is $Y_0 = y_0$.

Next, consider a Markov chain consisting of two states - state 1 and state 2. If the sequence of observed states is 1,1,1,2,1,2,2,1,1,2,2,2,1,2,1,2, use the results obtained above to obtain the MLE of θ_{ij} , $1 \le i, h \le 2$.

9. The R-valued observation r.v. Y has (marginal) probability density function

$$f(y) = \begin{cases} \frac{1}{2}, & -1 \le y \le 1\\ 0, & \text{otherwise.} \end{cases}$$

The parameter θ to be estimated is a r.v. given by $\theta = Y^2$.

- (i) Find $\hat{E}[\theta|Y]$, the LMSE of θ given Y.
- (ii) Find $g_{MSE}(Y)$, the MMSE of θ given Y.
- 10. Let $Y^k \triangleq (Y_1, \dots, Y_k)$ be a sequence of i.i.d. r.v.'s uniformly distributed on $[\theta_1, \theta_2]$, where θ_1 and θ_2 are unknown constants satisfying $0 \le \theta_1 < \theta_2$. Set $\theta \triangleq (\theta_1, \theta_2)$.
 - (i) Find $g_{ML,k}^{\theta}(Y^k) \stackrel{\Delta}{=} \begin{bmatrix} g_{ML,k}^{\theta_1}(Y^k) \\ g_{ML,k}^{\theta_2}(Y^k) \end{bmatrix}$ the MLE's of θ_1 and θ_2 given Y^k .

Next, consider $g_{ML,k}^{\theta_1}$ – the MLE of θ_1 .

- (ii) Determine whether or not $g_{ML,k}^{\theta_1}$ is unbiased, $k \geq 1$.
- (iii) Determine if $\left\{g_{ML,k}^{\theta_1}\right\}_{k=1}^{\infty}$ is asymptotically unbiased.
- (iv) Determine if $\left\{g_{ML,k}^{\theta_1}\right\}_{k=1}^{\infty}$ is consistent.
- 11. Let the observation be a \mathbb{R} -valued r.v. Y with (marginal) probability density function

$$f(y) = \begin{cases} e^{-y}, & y \ge 0\\ 0, & y < 0. \end{cases}$$

The parameter θ to be estimated is also a \mathbb{R} -valued r.v. whose conditional probability density function given the observation Y = y is

$$G_y(t) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(t - y - \frac{y^2}{2})^2\right\}, -\infty < t < \infty.$$

- (i) Find $\hat{E}[\theta|Y]$, the LMSE estimate of θ given Y.
- (ii) Compute the error covariance $\operatorname{cov}\left[\theta \hat{E}\left[\theta|Y\right]\right]$.
- 12. Let Y_1, \ldots, Y_m be the \mathbb{R}^+ -valued r.v.'s with (common)-probability density function

$$f_{\theta}(y) = \frac{1}{\theta} \exp\left(-\frac{y}{\theta}\right), \quad y > 0$$

where θ in $\mathbb{R}^+(=(0,\infty))$ is an unknown constant.

(i) Find the MLE $g_{ML,n}(Y_1,\ldots,Y_n)$ of θ on the basis of (Y_1,\ldots,Y_n) .

- (ii) Show whether or not $g_{ML,n}$ is a MVUE of θ .
- 13. Let the r.v. θ be uniformly distributed on [0, 1]. Let Y be a $\{0, 1\}$ -valued r.v. with

$$P(Y = 1 | \theta = t) = t = 1 - P(Y = 0 | \theta = t), \quad 0 \le t \le 1.$$

- (i) Find the MMSE estimate of θ given Y.
- (ii) For each t in [0,1], let Y_1, \ldots, Y_n be i.i.d. r.v.'s with (common) distribution specified above. Determine the MAP estimate of θ given (Y_1, \ldots, Y_n) .
- (iii) Compute the bias of the estimator in part (ii) above.
- 14. Let X_1 and X_2 be i.i.d. \mathbb{R} -valued r.v.'s. Let $\theta = X$, and $Y \stackrel{\Delta}{=} X_1 + X_2$.
 - (i) Find the MMSE estimator of θ on the basis of Y.
 - (ii) If the r.v.'s X_1 and X_2 are Gaussian with zero mean and unit variance, compute the estimation error covariance $E[|\theta g_{MSE}(Y)|^2]$.
- 15. Let the parameter θ be a \mathbb{R} -valued exponential rv with probability density function

$$g(t) = \alpha e^{-\alpha t}, \qquad t \ge 0,$$

where $\alpha > 0$ is given. The observation is modelled by a R-valued rv Y given by

$$Y = \theta X + N$$

where

- the rv's θ, X, N are mutually independent;
- $X \sim \mathcal{N}(1,1)$;
- $N \sim \mathcal{N}(0,1)$.
- (i) Determine $\hat{E}[\theta|Y]$.
- (ii) Determine the error covariance, $E[(\theta \hat{E}[\theta|Y])^2]$, of the estimator in part (i).
- 16. This problem concerns the estimation of the *rate* of a Poisson process. Let $\{N(t), t \ge 0\}$, be a Poisson process with rate $\theta \ge 0$.

Consider first the non-Bayesian situation in which $\theta \geq 0$ is an unknown constant. The Poisson process is observed for a time-interval [0, T], where T > 0 is fixed. Thus,

the observations consist of $(M, Y_1, ..., Y_M)$, where M is a rv with values in $\{1, 2, ...\}$ denoting the number of events observed in [0, T], and $Y_i \geq 0$ is a rv representing the interarrival time between the $(i-1)^{st}$ and i^{th} of these events, i=1,...,M.

- (i) Determine a nontrivial sufficient statistic for the family of distributions $\{F(\theta), \theta \ge 0\}$, where $F(\theta)$ is the joint probability distribution of the rv's (M, Y_1, \dots, Y_M) as above corresponding to a Poisson process of rate θ .
- (ii) Derive a maximum-likelihood estimator (MLE), $g_{ML,T}(M, Y_1, ..., Y_M)$, for θ on the basis of $(M, Y_1, ..., Y_M)$, for a fixed value of T > 0.
- (iii) Determine a MVUE, $g_T(M, Y_1, ..., Y_M)$, for θ on the basis of $(M, Y, ..., Y_M)$, for a fixed value of T > 0.
- (iv) Determine whether or not the estimators in (ii) and (iii) are consistent (in any sense) as $T \to \infty$.

Next, consider the Bayesian situation in which θ is an exponential rv with given parameter $\alpha > 0$, i.e.,

$$G(t) \stackrel{\Delta}{=} P[\theta \le t] = 1 - e^{-\alpha t}, \qquad t \ge 0.$$

(v) Let T=1, i.e., the Poisson process is observed for 1 time unit. Determine the minimum mean-squared error estimator, $g_{MSE}(1, Y_1)$, of θ on the basis of $(1, Y_1)$.

[Some useful facts: Recall for a Poisson process $\{N(t), t \geq 0\}$ with rate $\theta \geq 0$ that:

- the interarrival times $\{Y_1, Y_2, \ldots\}$ are i.i.d. rv's, each exponential with parameter θ ; so, the probability that no event occurs in a time-interval of length Δt is $e^{-\theta \Delta t}$;
- the rv $N(t), t \ge 0$, denoting the number of events occurring in the interval [0, t], is a Poisson rv with mean θt .
- 17. (i) Let Y_1, Y_2 be \mathbb{R} -valued i.i.d. rv's with (common) proability density function

$$f_{\theta}(y) = \frac{1}{2} \exp[-|y - \theta|], \quad -\infty < \theta < \infty, \quad -\infty < y < \infty,$$

where θ is an *unknown constant*. Find an *unbiased* maximum-likelihood estimate $g_{ML}(Y_1, Y_2)$ of θ on the basis of (Y_1, Y_2) .

(ii) Next, consider a Bayesian estimation problem where the parameter θ is a ry distributed uniformly on the interval [-1, 1]. The observation consists of a (single) ry Y whose conditional density function, given $\theta = t$, is

$$f_t(y) = \frac{1}{2} \exp[-|y - t|], \quad -1 \le t \le 1, \quad -\infty < y < \infty.$$

Determine the maximum aposteriori estimate $g_{MAP}(Y)$ of θ on the basis of Y.

- 18. (i) For each $\theta > 0$, let Y_1, \ldots, Y_n be \mathbb{R} -valued i.i.d. rv's, each distributed uniformly on the $interval [-\theta, \theta]$. Find the maximum-likelihood estimate $g_{ML,n}(Y^n)$ of θ on the basis of $Y^n \stackrel{\triangle}{=} (Y_1, \ldots, Y_n)$.
 - (ii) Is the sequence of estimates $\{g_{ML,n}(Y^n)\}_{n=1}^{\infty}$ asymptotically normal? Substantiate your answer.
 - (iii) Next, consider a Bayesian situation in which the parameter θ is a rv with values in the set $\{1,2\}$ where

$$P[\theta = 1] = P[\theta = 2] = \frac{1}{2}.$$

The observation consists of a (single) rv Y, whose conditional distribution, given $\theta = t$, is uniform on the *interval* [-t, t], t = 1, 2. Given that Y = 1 is observed, determine the mean-error magnitude (MEM) estimate of θ on the basis of Y = 1.

19. A signal with finite energy, modelled by a rv θ with $E[\theta^2] < \infty$, is observed in additive noise as follows:

$$Y_t = \theta + N_t, \quad t = 1, 2, \dots,$$

where $\{N_t\}_{t=1}^{\infty}$ is a white noise process with

$$E[N_t] = 0$$
, $E[N_t N_s] = \sigma^2 \delta(t, s)$, $t, s = 1, 2, ...$

where $\sigma^2 > 0$, and $\delta(t,s) = 1$ if t = s and 0 if $t \neq s$. Assume further that θ and $\{N_t\}_{t=1}^{\infty}$ are uncorrelated.

For $t=1,2,\ldots$, consider the following two estimates of θ on the basis of $Y^t \triangleq (Y_1,\ldots,Y_t)$:

$$\hat{\theta}_t(Y^t) \stackrel{\Delta}{=} \hat{E}[\theta|Y^t]$$
, the linear least – squares error estimate,

and

$$\overline{\theta}_t(Y^t) \stackrel{\Delta}{=} \frac{1}{t} \sum_{\ell=1}^t Y_\ell$$
, the sample – mean estimate.

(i) By using only the orthogonality principle, **disprove** the claim that

$$\hat{\theta}_t(Y^t) = \overline{\theta}_t(Y^t) \quad P - a.s., \qquad t = 1, 2, \dots$$

(ii) Is the sequence of estimators $\{\hat{\theta}_t\}_{t=1}^{\infty}$ consistent in any sense?