
ENEE 621: Estimation and Detection Theory

Problem Set 3 Spring 2007

Narayan

1. A IR-valued r.v. θ ∼ N (m, σ2) is observed through a digital instrument with quantiza-

tion levels of width q. A reasonable approach for “small” q is to model the quantizer as

a noise source Z whose distribution is uniform over
[

− q
2
, q

2

]

with Z being independent

of θ. The observation r.v. Y is given by

Y = θ + Z.

(i) Find the linear mean-square error (LMSE) estimate of θ given Y = y.

(ii) Find the MLE of θ given Y = y, assuming now that θ is an unknown IR-valued

constant.

2. The R.V. Y is uniformly distributed on (0, θ].

(i) Let θ be an unknown constant in (0, 1). Find the MLE of θ given Y = y.

(ii) Now let θ be a (0, 1)-valued r.v. with probability density function gθ(·) given by.

gθ(t) =

{ 0, t < 0
2t, 0 ≤ t < 1
0, t ≥ 1.

(a) Find the MAP estimate of θ given Y = y.

(b) Find the minimum mean-squared error estimate (MMSE) of θ given Y = y.

(c) Find the LMSE estimate of θ given Y = y.

In each case, check the estimate for bias.

3. (Poor, p. 200, #15). Let Y be a Poisson r.v. with unknown rate θ in (0,∞). Find

the MLE of θ on the basis of Y = y, and compute its bias and error covariance. Also,

determine the corresponding Cramér-Rao bound.

4. (Poor, p. 201, #17). Let Y1 and Y2 be IR-valued jointly Gaussian r.v.’s, each with zero

mean and unit variance. Find the MLE of the correlation coefficient θ = E[Y1Y2], lying

in (-1,1), on the basis of (Y1Y2) = (y1, y2). Compute the Cramér-Rao lower bound.
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5. (Poor, p. 203, #23). Let Yk = A sin
(

kπ
2 + Φ

)

+ Nk, k = 1, . . . , n, where {Nk}n
k=1 are

i.i.d. ∼ N (0, σ2) r.v.’s, with n being even. If θ = (A, Φ) with A > 0, Φ in (−π, π),

find the MLE of θ on the basis of Y = y.

6. Let Y1, . . . , Yn be IR-valued i.i.d. r.v.’s with (common) density function

fθ(y) = exp{−(y − θ)}u(y − θ), θ ∈ IR

where u(·) is the unit step function. Find the MLE of θ given (y1, . . . , yn).

7. Consider the lognormal density

fθ(y) =

{

(
√

2πyσ)−1 exp
{

−1
2
| ln(y/θ)

σ
|2

}

, y > 0

0, otherwise

where σ > 0, and θ is an unknown parameter in (0,∞). find the MLE of θ on the

basis of the i.i.d. observations {Yk}n
k=1, each with common density fθ. Is gML,n a

consistent estimator? Is it efficient? Compute its bias.

[HINT: Useful fact: Y ∼ lognormal with parameters (θ, σ2) ⇔ Y = exp Z, where

Z ∼ N (ln θ, σ2).]

8. Consider a discrete-time Markov chain {Yk}∞0 with states {1, . . . , M}, M > 1, and

stationary transition probabilities

θij
∆
= P (Yk+1 = j|Yk = i) , 1 ≤ i, j ≤ M

for k ≥ 0. (Thus, Yk denotes the state at time instant k.) We assume that the initial

state Y0 = y0 is fixed. If the chain is observed for n time instants, find the MLE of

θij , 1 ≤ i, j ≤ M , given the observations, (Y1, . . . , Yn) = (y1, . . . , yn), and given that

the initial state is Y0 = y0.

Next, consider a Markov chain consisting of two states - state 1 and state 2. If the

sequence of observed states is 1,1,1,2,1,2,2,1,1,2,2,2,1,2,1,2, use the results obtained

above to obtain the MLE of θij , 1 ≤ i, h ≤ 2.

9. The IR-valued observation r.v. Y has (marginal) probability density function

f(y) =

{

1
2 , −1 ≤ y ≤ 1
0, otherwise.
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The parameter θ to be estimated is a r.v. given by θ = Y 2.

(i) Find Ê[θ|Y ], the LMSE of θ given Y .

(ii) Find gMSE(Y ), the MMSE of θ given Y .

10. Let Y k ∆
= (Y1, . . . , Yk) be a sequence of i.i.d. r.v.’s uniformly distributed on [θ1, θ2],

where θ1 and θ2 are unknown constants satisfying 0 ≤ θ1 < θ2. Set θ
∆
= (θ1, θ2).

(i) Find gθ
ML,k(Y k)

∆
=

[

gθ1

ML,k(Y k)

gθ2

ML,k(Y k)

]

– the MLE’s of θ1 and θ2 given Y k.

Next, consider gθ1

ML,k – the MLE of θ1.

(ii) Determine whether or not gθ1

ML,k is unbiased, k ≥ 1.

(iii) Determine if
{

gθ1

ML,k

}

∞

k=1
is asymptotically unbiased.

(iv) Determine if
{

gθ1

ML,k

}

∞

k=1
is consistent.

11. Let the observation be a IR-valued r.v. Y with (marginal) probability density function

f(y) =

{

e−y , y ≥ 0
0, y < 0.

The parameter θ to be estimated is also a IR-valued r.v. whose conditional probability

density function given the observation Y = y is

Gy(t) =
1√
2π

exp

{

−1

2
(t − y − y2

2
)2

}

,−∞ < t < ∞.

(i) Find Ê[θ|Y ], the LMSE estimate of θ given Y .

(ii) Compute the error covariance cov

[

θ − Ê [θ|Y ]

]

.

12. Let Y1, . . . , Ym be the IR+-valued r.v.’s with (common)-probability density function

fθ(y) =
1

θ
exp

(

−y

θ

)

, y > 0

where θ in IR+(= (0,∞)) is an unknown constant.

(i) Find the MLE gML,n(Y1, . . . , Yn) of θ on the basis of (Y1, . . . , Yn).
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(ii) Show whether or not gML,n is a MVUE of θ.

13. Let the r.v. θ be uniformly distributed on [0, 1]. Let Y be a {0, 1}-valued r.v. with

P (Y = 1|θ = t) = t = 1 − P (Y = 0|θ = t), 0 ≤ t ≤ 1.

(i) Find the MMSE estimate of θ given Y .

(ii) For each t in [0, 1], let Y1, . . . , Yn be i.i.d. r.v.’s with (common) distribution

specified above. Determine the MAP estimate of θ given (Y1, . . . , Yn).

(iii) Compute the bias of the estimator in part (ii) above.

14. Let X1 and X2 be i.i.d. IR-valued r.v.’s. Let θ = X , and Y
∆
= X1 + X2.

(i) Find the MMSE estimator of θ on the basis of Y .

(ii) If the r.v.’s X1 and X2 are Gaussian with zero mean and unit variance, compute

the estimation error covariance E[|θ − gMSE(Y )|2].

15. Let the parameter θ be a IR-valued exponential rv with probability density function

g(t) = αe−αt, t ≥ 0,

where α > 0 is given. The observation is modelled by a R-valued rv Y given by

Y = θX + N

where

• the rv’s θ, X, N are mutually independent;

• X ∼ N (1, 1);

• N ∼ N (0, 1).

(i) Determine Ê[θ|Y ].

(ii) Determine the error covariance, E[(θ − Ê[θ|Y ])2], of the estimator in part (i).

16. This problem concerns the estimation of the rate of a Poisson process. Let {N(t), t ≥
0}, be a Poisson process with rate θ ≥ 0.

Consider first the non-Bayesian situation in which θ ≥ 0 is an unknown constant. The

Poisson process is observed for a time-interval [0, T ], where T > 0 is fixed. Thus,
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the observations consist of (M, Y1, . . . , YM ), where M is a rv with values in {1, 2, . . .}
denoting the number of events observed in [0, T ], and Yi ≥ 0 is a rv representing the

interarrival time between the (i − 1)st and ith of these events, i = 1, . . . , M .

(i) Determine a nontrivial sufficient statistic for the family of distributions {F (θ), θ ≥
0}, where F (θ) is the joint probability distribution of the rv’s (M, Y1, . . . , YM ) as

above corresponding to a Poisson process of rate θ.

(ii) Derive a maximum-likelihood estimator (MLE), gML,T (M, Y1, . . . , YM), for θ on

the basis of (M, Y1, . . . , YM), for a fixed value of T > 0.

(iii) Determine a MVUE, gT (M, Y1, . . . , YM ), for θ on the basis of (M, Y, . . . , YM), for

a fixed value of T > 0.

(iv) Determine whether or not the estimators in (ii) and (iii) are consistent (in any

sense) as T → ∞.

Next, consider the Bayesian situation in which θ is an exponential rv with given

parameter α > 0, i.e.,

G(t)
∆
= P [θ ≤ t] = 1 − e−αt, t ≥ 0.

(v) Let T = 1, i.e., the Poisson process is observed for 1 time unit. Determine the

minimum mean-squared error estimator, gMSE(1, Y1), of θ on the basis of (1, Y1).

[Some useful facts: Recall for a Poisson process {N(t), t ≥ 0} with rate θ ≥ 0 that:

• the interarrival times {Y1, Y2, . . .} are i.i.d. rv’s, each exponential with parameter

θ; so, the probability that no event occurs in a time-interval of length ∆t is e−θ∆t;

• the rv N(t), t ≥ 0, denoting the number of events occurring in the interval [0, t],

is a Poisson rv with mean θt.]

17. (i) Let Y1, Y2 be IR-valued i.i.d. rv’s with (common) proability density function

fθ(y) =
1

2
exp[−|y − θ|], −∞ < θ < ∞, −∞ < y < ∞,
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where θ is an unknown constant. Find an unbiased maximum-likelihood estimate

gML(Y1, Y2) of θ on the basis of (Y1, Y2).

(ii) Next, consider a Bayesian estimation problem where the parameter θ is a rv

distributed uniformly on the interval [−1, 1]. The observation consists of a (single)

rv Y whose conditional density function, given θ = t, is

ft(y) =
1

2
exp[−|y − t|], −1 ≤ t ≤ 1, −∞ < y < ∞.

Determine the maximum aposteriori estimate gMAP (Y ) of θ on the basis of Y .

18. (i) For each θ > 0, let Y1, . . . , Yn be IR-valued i.i.d. rv’s, each distributed uniformly

on the interval [−θ, θ]. Find the maximum-likelihood estimate gML,n(Y n) of θ on the

basis of Y n ∆
= (Y1, . . . , Yn).

(ii) Is the sequence of estimates {gML,n(Y n)}∞n=1 asymptotically normal? Substanti-

ate your answer.

(iii) Next, consider a Bayesian situation in which the parameter θ is a rv with values

in the set {1, 2} where

P [θ = 1] = P [θ = 2] =
1

2
.

The observation consists of a (single) rv Y , whose conditional distribution, given

θ = t, is uniform on the interval [−t, t], t = 1, 2. Given that Y = 1 is observed,

determine the mean-error magnitude (MEM) estimate of θ on the basis of Y = 1.

19. A signal with finite energy, modelled by a rv θ with E[θ2] < ∞, is observed in additive

noise as follows:

Yt = θ + Nt, t = 1, 2, . . . ,

where {Nt}∞t=1 is a white noise process with

E[Nt] = 0, E[NtNs] = σ2δ(t, s), t, s = 1, 2, . . .

where σ2 > 0, and δ(t, s) = 1 if t = s and 0 if t 6= s. Assume further that θ and

{Nt}∞t=1 are uncorrelated.
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For t = 1, 2, . . ., consider the following two estimates of θ on the basis of Y t ∆
=

(Y1, . . . , Yt):

θ̂t(Y
t)

∆
= Ê[θ|Y t], the linear least − squares error estimate,

and

θt(Y
t)

∆
=

1

t

t
∑

ℓ=1

Yℓ, the sample − mean estimate.

(i) By using only the orthogonality principle, disprove the claim that

θ̂t(Y
t) = θt(Y

t) P − a.s., t = 1, 2, . . . .

(ii) Is the sequence of estimators {θ̂t}∞t=1 consistent in any sense?
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