ENEE 621: ESTIMATION AND DETECTION

Spring 2007

Problem Set 4

Narayan

1. Let θ be a \mathbb{R} -valued Gaussian r.v. with mean 1 and variance 2. Two observations Y_1 and Y_2 of θ in noise are made as follows:

$$Y_1 = (1 + N_1)\theta, \qquad Y_2 = (1 + N_2)\theta,$$

where θ is independent of (N_1, N_2) , $E[N_1] = E[N_2] = 0$, $E[N_1^2] = E[N_2^2] = 1$, and $N_1 \perp N_2$.

- (i) Find $\hat{E}[\theta|Y_1]$.
- (ii) Find $\hat{E}[\theta|Y_1, Y_2]$ in terms of $\hat{E}[\theta|Y_1]$ and Y_2 in a recursive fashion.
- 2. Consider the one-dimensional system

$$\theta_{t+1} = \theta_t + bW_t, \qquad t = 0, 1, \dots$$

where the observation process is

$$Y_t = \theta_t + W_t, \quad t = 0, 1, \dots$$

Here, $\{W_t\}_0^{\infty}$ is a sequence of \mathbb{R} -valued Gaussian r.v.'s with $E[W_t] = 0$, $E[W_tW_s] = Q_t\delta_{ts}$, where $Q_t > 0$, t, $s = 0, 1, \ldots$ Let $\theta_0 \sim \mathcal{N}(0, \sum_0)$, and assume that $\theta_0 \perp \{W_t\}_0^{\infty}$; $b \neq 0$ is a known constant. Let $Y^t \stackrel{\triangle}{=} (Y_0, \ldots, Y_t)$.

- (a) Find a recursive scheme for generating $\hat{E}[\theta_t|Y^t], t=0,1,\ldots$
- (b) Find a recursive scheme for generating $\hat{E}[\theta_{t+T}|Y^t]$, where T is a positive integer.
- 3. Let θ, Y and Z be \mathbb{R} -valued r.v.'s with $E[|\theta|^2] < \infty, \ E[|Y|^2] < \infty, \ E[|Z|^2] < \infty.$ It is true that

$$\hat{E}[\theta|Y,Z] = \hat{E}[\theta|Y,\hat{E}[Y|Z]].$$

(If true, provide a formal proof; if not, give a counter-example.)

4. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of \mathbb{R} -valued, zero-mean r.v.'s with $E[X_nX_m] = R_{n-m}$ for all $n, m \geq 1$. Assuming that $R_{n-m} > 0$ for all $n, m \geq 1$, and that $R_0 \neq R_2$, find $\hat{E}[X_n|X_{n-1},X_{n+1}]$ – the best **linear interpolator**.

5. Let $Y^n \stackrel{\Delta}{=} (Y_1, \dots, Y_n)$ be a sequence of i.i.d. \mathbb{R} -valued r.v.'s, each distributed uniformly on $[0, \theta]$, where θ is itself a \mathbb{R} -valued r.v. distributed uniformly on [a, b], where a, b are known constants with 0 < a < b.

Let $u(\cdot)$ denote the unit step function on \mathbb{R} , i.e.,

$$u(x) = \begin{cases} 1, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

(i) Show that the conditional probability density function of θ given $Y^n = y^n$, where $y^n = (y_1, \dots, y_n)$, is

$$\gamma_{y^n}(t) = \frac{(n-1)t^{-n}u(t - \max_{1 \le i \le n} y_i)}{\left[\left\{\max(a, \max_{1 \le i \le n} y_i)\right\}^{-(n-1)} - b^{-(n-1)}\right]u(b - \max(a, \max_{1 \le i \le n} y_i))}$$

- (ii) Find the MAP estimate of θ given $Y^n = y^n$.
- (iii) For the estimator of part (ii) above, compute the bias $E[g_{MAP}(Y^n) \theta]$.
- (iv) Show that the minimum mean-squared error estimate of θ given $Y^n = y^n$ is

$$g_{MSE}(y^n) = \left(\frac{n-1}{n-2}\right) \frac{\left\{\max(a, \max_{1 \le i \le n} y_i)\right\}^{-(n-2)} - b^{-(n-2)}}{\left\{\max(a, \max_{1 \le i \le n} y_i)\right\}^{-(n-1)} - b^{-(n-1)}}.$$

(v) Let a = 1, b = 2. Find the linear least-squares error estimate $\hat{E}[\theta|Y_1]$ of θ given the single observation Y_1 .