ENEE 621: ESTIMATION AND DETECTION THEORY

Problem Set 5: Solutions

Spring 2007
Narayan

1. Note that Y_{1} is independent of $\left\{X_{n}\right\}_{n=1}^{\infty}$. Now, observe that H_{0} is a composite hypothesis, and we are in a Bayesian situation with the rv $\theta\left(=\right.$ the rv $\left.P_{0}\right)$ taking values in $\Theta_{0}=\{1 / 4,3 / 4\}$ with $P_{0}\left[\theta=\frac{1}{4}\right]=\frac{1}{4}=1-P_{0}\left[\theta=\frac{3}{4}\right]$, where P_{0} denotes the conditional pmf of θ given $H=H_{0} . H_{1}$ is a simple hypothesis.

Under H_{0} : For each $t \in \Theta_{0}=\left\{\frac{1}{4}, \frac{3}{4}\right\},\left\{Y_{n}\right\}_{n=1}^{\infty}$ is a 1st order Markov process with transition probabilities:

$$
\begin{aligned}
P_{t}\left[Y_{n+1}=0 \mid Y_{n}=0\right] & =P_{t}\left[X_{n}=0 \mid Y_{n}=0\right] \\
& =P_{t}\left[X_{n}=0\right] \quad(w h y ?) \\
& =t
\end{aligned}
$$

Similarly,

$$
P_{t}\left[Y_{n+1}=0 \mid Y_{n}=0\right]=P_{t}\left[Y_{n+1}=0 \mid Y_{n}=1\right]=1-t,
$$

and

$$
P_{t}\left[Y_{n+1}=1 \mid Y_{n}=1\right]=t .
$$

Let $Y=\left(Y_{1}, \ldots, Y_{n}\right)$. Given a sequence of observations $y=\left(y_{1}, \ldots, y_{N}\right)$ where $P_{0}\left[Y_{1}=0\right]=1$, we have for each $t \in\{1 / 4,3 / 4\}: f_{t}(y)=P_{t}[Y=y]=(1-t)^{\tilde{N}} t^{N-1-\tilde{N}}$, where \tilde{N} is a rv with values in $\{0,1, \ldots, N-1\}$ denoting the number of transitions from " 0 " to " 1 " and from " 1 " to " 0 " in $y=\left(y_{1}, \ldots, y_{N}\right)$ (with $y_{1}=0$). Then:

$$
\begin{aligned}
\tilde{f}_{0}(y) & =f_{\frac{1}{4}}(y) P_{0}[\theta=1 / 4]+f_{\frac{3}{4}}(y) P_{0}[\theta=3 / 4] \\
& =\left(\frac{3}{4}\right)^{\tilde{N}}\left(\frac{1}{4}\right)^{N-1-\tilde{N}}\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)^{\tilde{N}}\left(\frac{3}{4}\right)^{N-1-\tilde{N}}\left(\frac{3}{4}\right) \\
& =\left(\frac{1}{4}\right)^{N}\left[3^{\tilde{N}}+3^{N-\tilde{N}}\right] .
\end{aligned}
$$

Under $H_{1}:\left\{Y_{n}\right\}_{n=1}^{\infty}$ is a 1st order Markov process with transition probabilities

$$
P_{1}\left[Y_{n+1}=0 \mid Y_{n}=0\right]=P_{1}\left[Y_{n+1}=0 \mid Y_{n}=1\right]=1 / 2
$$

Then, for $P_{1}\left[Y_{1}=0\right]=1$, we have

$$
f_{1}(y)=P_{1}[Y=y]=\left(\frac{1}{2}\right)^{\tilde{N}}\left(\frac{1}{2}\right)^{N-1-\tilde{N}}=\left(\frac{1}{2}\right)^{N-1} .
$$

Then:

$$
(\ell r t)_{\eta}: \tilde{L}(y)=\frac{f_{1}(y)}{\tilde{f}_{0}(y)} \stackrel{\substack{H_{0}}}{\stackrel{H_{0}}{>}} \eta
$$

i.e.,

$$
\frac{\left(\frac{1}{2}\right)^{N-1}}{\left(\frac{1}{4}\right)^{N}\left[3^{\tilde{N}}+3^{N-\tilde{N}}\right]} \stackrel{H_{0}}{<} \eta
$$

i.e.,

$$
3^{\tilde{N}}+3^{N-\tilde{N}} \underset{H_{1}}{\stackrel{H_{0}}{<} \frac{2^{N+1}}{\eta}}
$$

The LHS is the test statistic, and the RHS is the threshold.
(b) $g_{M A P}(y)=\arg \max _{\theta \in\{1 / 4,3 / 4\}} g_{y}(\theta)$. Since $g_{y}(\theta)=\frac{f_{\theta}(y) g(\theta)}{f(y)}$, it suffices to maximize the numerator as a function of θ.

$$
\begin{aligned}
& \text { For } \theta=\frac{1}{4}, f_{\theta}(y) g(\theta)=\left(1-\frac{1}{4}\right)^{\tilde{N}}\left(\frac{1}{4}\right)^{N-1-\tilde{N}} \cdot \frac{1}{4}=3^{\tilde{N}} 4^{-N} \\
& \text { For } \theta=\frac{3}{4}, f_{\theta}(y) g(\theta)=\left(1-\frac{3}{4}\right)^{\tilde{N}}\left(\frac{3}{4}\right)^{N-1-\tilde{N}} \cdot \frac{3}{4}=3^{N-\tilde{N}} 4^{-N} \\
& \qquad \Rightarrow g_{M A P}(y)= \begin{cases}\frac{1}{4}, & \text { if } \tilde{N} \geq N-\tilde{N} \text { i.e. if } \tilde{N} \geq N / 2 \\
\frac{3}{4}, & \text { if } \tilde{N} \leq \frac{N}{2} .\end{cases}
\end{aligned}
$$

2. Given $c(0,0)=c(1,1)=0$, and $\nu_{0}=c(0,1)=2 c(1,0)=2 \nu_{1}$. For the Bayes' decision rule $d^{*}: \mathcal{Y}^{*}=\left\{y \in \mathbb{R}: d^{*}(y)=0\right\}=\{y \in \mathbb{R}: h(y)<0\}$, where $h(y)=\nu_{1} p f_{1}(y)-$ $2 \nu_{1}(1-p) f_{0}(y)$. Clearly for $|y| \geq 1, h(y)=\nu_{1} p f_{1}(y) \geq 0 \Rightarrow d^{*}(y)=1$ for $|y| \geq 1$. Next observe that $f_{1}(y)=0 \Rightarrow f_{0}(y)=0$, so that

$$
\ell \mathrm{rt}: \frac{f_{0}(y)}{f_{1}(y)}{\underset{H}{H_{1}}}_{\stackrel{H_{0}}{<}}^{\frac{\nu_{1} p}{2 \nu_{1}(1-p)}=\frac{p}{1-p} . . ~}
$$

We are only concerned with $|y|<1$ now, in which case

$$
\ell r t: \frac{1-|y|}{2-|y|} \stackrel{H_{0}}{\stackrel{~}{H_{1}}}<\frac{1}{8} \cdot \frac{p}{1-p},
$$

which simplifies to $|y|(9 p-8) \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}}(10 p-8)$. so that for $|y|<1$:

$$
\begin{aligned}
& |y| \stackrel{H_{0}}{\stackrel{H_{1}}{<}} \frac{10 p-8}{9 p-8} \text {, if } p \in\left(\frac{8}{9}, 1\right) \\
& |y| \stackrel{H_{1}}{\stackrel{H_{1}}{<}} \frac{10 p-8}{9 p-8}, \text { if } p \in\left(0, \frac{8}{10}\right)
\end{aligned}
$$

and always say H_{1} if $p \in\left[\frac{8}{10}, \frac{8}{9}\right]$.
3. H_{0} is a simple hypothesis whereas H_{1} is composite. Fix $p_{1} \neq p_{0}$ and consider the simple hypothesis testing problem that results. Consider the Neyman-Pearson test of size α. In a manner similar to Prob. 1 , we get:

$$
\alpha^{N P\left(\alpha ; p_{1}\right)}: \frac{\left(1-p_{1}\right)^{\tilde{N}} p_{1}^{N-1-\tilde{N}}}{\left(1-p_{0}\right)^{\tilde{N}} p_{0}^{N-1-\tilde{N}}} \underset{H_{0}}{\stackrel{H_{1}}{<}} \eta\left(\alpha ; p_{1}\right)
$$

where $\tilde{N} \in\{0, \ldots, N-1\}$ is a r.v. representing the $\#$ of transitions from " 0 " to " 1 " and from " 1 " to " 0 ", and $\eta\left(\alpha ; p_{1}\right)$ is the corresponding threshold. Upon simplification

$$
d^{N P\left(\alpha ; p_{1}\right)}: \tilde{N} \log \frac{\left(1-p_{1}\right) p_{0}}{\left(1-p_{0}\right) p_{1}} \stackrel{H_{1}}{\stackrel{H_{1}}{H_{0}}} \stackrel{<}{<} \log \eta\left(\alpha ; p_{1}\right)+(N-1) \log \left(\frac{p_{0}}{p_{1}}\right)
$$

If $p_{0}>p_{1}$: Then by $\frac{\left(1-p_{1}\right) p_{0}}{\left(1-p_{0}\right) p_{1}}>0$.

$$
d^{N P\left(\alpha ; p_{1}\right)}: \tilde{N} \underset{H_{0}}{\stackrel{H_{1}}{<}} \frac{\log \eta\left(\alpha ; p_{1}\right)+(N-1) \log \left(\frac{p_{0}}{p_{1}}\right)}{\log \left(1-p_{1}\right) p_{0}-\log \left(1-p_{0}\right) p_{1}}
$$

with $\eta\left(\alpha ; p_{1}\right)$ such that

$$
P\left(\left.\tilde{N} \geq \frac{\log \eta\left(\alpha ; p_{1}\right)+(N-1) \log \left(\frac{p_{0}}{p_{1}}\right)}{\log \left(1-p_{1}\right) p_{0}-\log \left(1-p_{0}\right) p_{1}} \right\rvert\, H=0\right)=\alpha
$$

$$
\text { and let } \nu=\frac{\log \eta\left(\alpha ; p_{1}\right)+(N-1) \log \left(\frac{p_{0}}{p_{1}}\right)}{\log \left(1-p_{1}\right) p_{0}-\log \left(1-p_{0}\right) p_{1}}
$$

(assuming α is such that solution \exists).
Under H_{0}, the statistics of \tilde{N} depend on p_{0} so that $\nu=\nu\left(\alpha ; p_{0}\right)$, i.e., ν does not depend on p_{1}. Then

$$
\mathcal{Y}_{d}^{N P\left(\alpha ; p_{1}\right)}=\left\{y \in\{0,1\}^{N}: \tilde{N}(y)<\nu\left(\alpha ; p_{0}\right)\right\} .
$$

If $p_{0}<p_{1}$: Can show since $\log \frac{(1-p) p_{0}}{\left(1-p_{0}\right) p_{1}}<0$ that $d^{N P\left(\alpha ; p_{1}\right)}: \tilde{N} \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}} \nu^{\prime}\left(\alpha ; p_{0}\right)$, where ν^{\prime} does not depend on p_{1}

$$
\Rightarrow \mathcal{Y}_{d}^{N P\left(\alpha ; p_{1}\right)}=\left\{y \in\{0,1\}^{N}: \tilde{N}(y)>\nu^{\prime}\left(\alpha ; p_{0}\right)\right\}
$$

If $p_{0}=p_{1}$:

$$
\mathcal{Y}_{d}^{N P\left(\alpha ; p_{1}\right)}= \begin{cases}\left\{y \in\{0,1\}^{N}: \tilde{N}(y)<\nu\left(\alpha, p_{0}\right)\right\} & \text { if } p_{0}>p_{1} \\ \left\{y \in\{0,1\}^{N}: \tilde{N}(y)>\nu^{\prime}\left(\alpha, p_{0}\right)\right\} & \text { if } p_{0}<p_{1}\end{cases}
$$

Clearly, if $\Theta_{0}=\left\{p_{0}\right\}, \Theta_{1}=\left\{p_{1} \in(0,1)=p_{1}>p_{0}\right\}$, a UMP test of size α exists. If $\Theta_{0}=\left\{p_{0}\right\}, \Theta_{1}=\left\{p_{1} \in(0,1) ; p_{1}<p_{0}\right\}, \exists$ UMP test of size α. If $\Theta_{0}=\left\{p_{0}\right\}, \Theta_{1}=$ $\left(0, p_{0}\right) \bigcup\left(p_{0}, 1\right)$, clearly we must know if $p_{1}>p_{0}$ or $p_{1}<p_{0}$ to execute $d^{N P\left(\alpha ; p_{1}\right)}$; hence, no UMP exists. When the UMP test does exist, the test statistic $=\tilde{N}$.
4. Fix $\sigma_{1}^{2} \neq \sigma_{0}^{2}$. Consider the corresponding simple hypothesis testing problem with the Neyman-Pearson test of size α. Recalling that $f_{h}(y)=\frac{y}{\sigma_{h}^{2}} e^{-y^{2} / \sigma_{h}^{2}}, y \geq 0, h=0,1$.

$$
d^{N P\left(\alpha ; \sigma_{1}^{2}\right)}=\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}} e^{-y^{2}\left(\frac{1}{\sigma_{1}^{2}}-\frac{1}{\sigma_{0}^{2}}\right)} \underset{H_{0}}{\stackrel{H_{1}}{<}} \eta\left(\alpha ; \sigma_{1}^{2}\right),
$$

where the threshold η depends on the size α and on σ_{1}^{2}. Upon simplification,

$$
d^{N P\left(\alpha ; \sigma_{1}^{2}\right)}=y^{2}\left(\sigma_{1}^{2}-\sigma_{0}^{2}\right) \stackrel{H_{1}}{\stackrel{H_{0}}{\gtrless}}\left[\log \eta\left(\alpha ; \sigma_{1}^{2}\right)+\log \left(\frac{\sigma_{1}^{2}}{\sigma_{0}^{2}}\right)\right] \sigma_{0}^{2} \sigma_{1}^{2} .
$$

As in problem 3:
$\left(^{*}\right)$ If $\sigma_{1}^{2}>\sigma_{0}^{2}: \mathcal{Y}_{d^{N P\left(\alpha ; \sigma_{1}^{2}\right)}}=\left\{y \in[0, \infty), y^{2}<\nu\left(\alpha, \sigma_{0}^{2}\right)\right\}$ where $\nu\left(\alpha, \sigma_{0}^{2}\right)$ is the soln of $P\left(Y^{2} \geq \nu \mid H=0\right)=\alpha$, and does not depend on σ_{1}^{2}.
$\left(^{* *}\right)$ If $\sigma_{0}^{2}>\sigma_{1}^{2}: \mathcal{Y}_{d^{N P\left(\alpha ; \sigma_{1}^{2}\right)}}=\left\{y \in[0, \infty): y^{2}>\nu^{\prime}\left(\alpha, \sigma_{0}^{2}\right)\right\}$ where $\nu^{\prime}\left(\alpha, \sigma_{0}^{2}\right)($ not depending on $\left.\sigma_{1}^{2}\right)$ solves $P\left(Y^{2} \leq \nu^{\prime} \mid H=0\right)=\alpha$.
$\left({ }^{(* *)}\right.$ If $\sigma_{0}^{2} \neq \sigma_{1}^{2}: \mathcal{Y}_{d^{N P\left(\alpha ; \sigma_{1}^{2}\right)}}= \begin{cases}\left\{y \in[0, \infty): y^{2}<\nu\left(\alpha, \sigma_{0}^{2}\right)\right\} & \text { if } \sigma_{1}^{2}>\sigma_{0}^{2} \\ \left\{y \in[0, \infty): y^{2}>\nu^{\prime}\left(\alpha, \sigma_{0}^{2}\right)\right\} & \text { if } \sigma_{0}^{2}>\sigma_{1}^{2} .\end{cases}$
(a) $\Theta_{0}=\left\{\sigma_{0}^{2}\right\}, \Theta_{1}=\left(\sigma_{0}^{2}, \infty\right) \Rightarrow \exists \operatorname{UMP}$ by $\left({ }^{*}\right)$
(b) $\Theta_{0}=\left\{\sigma_{0}^{2}\right\}, \Theta_{1}=\left(0, \sigma_{0}^{2}\right) \bigcup\left(\sigma_{0}^{2}, \infty\right) \Rightarrow$ no UMP by $\left({ }^{* * *}\right)$
(c) $\Theta_{0}=\left\{\sigma_{0}^{2}\right\}, \Theta_{1}=\left(0, \sigma_{0}^{2}\right) \Rightarrow \exists \mathrm{UMP}$ by ${ }^{(* *)}$.
5. Let $\left(Y_{1}, \ldots, Y_{N}\right)$ represent N independent coin tosses with $Y_{i}=1$ if head, 0 if tail, $1 \leq i \leq N$. The LRT is: \quad rrt $\eta_{\eta}: \frac{f_{1}\left(y_{1}, \ldots, y_{N}\right)}{f_{0}\left(y_{1}, \ldots, y_{N}\right)} \underset{H_{0}}{{ }_{H}} \eta$

$$
\Rightarrow \frac{p^{\tilde{N}}(1-p)^{N-\tilde{N}}}{\left(\frac{1}{2}\right)^{N}} \underset{H_{0}}{\stackrel{H_{1}}{<}} \eta,
$$

where $\tilde{N}=\tilde{N}(Y)$ is a r.v. with values in $\{0, \ldots, N\}$ and represents the number of heads (note: $\tilde{N}(Y)=\sum_{i=1}^{N} Y_{i}$). Simplifying and using the fact that $p \in\left(\frac{1}{2}, 1\right)$, we have

$$
\ell r t_{\eta}: \tilde{N} \underset{H_{0}}{\stackrel{H_{1}}{<}} \frac{\log \eta-N \log (2(1-p))}{\log \left(\frac{p}{1-p}\right)} .
$$

Clearly $S_{N}=\tilde{N}$. Under each hypothesis, \tilde{N} is binomial so that

$$
\begin{gathered}
P(\tilde{N}=k \mid H=0)=\binom{N}{k}\left(\frac{1}{2}\right)^{N}, k=0, \ldots, N, \\
P(\tilde{N}=k \mid H=1)=\binom{N}{k} p^{k}(1-p)^{N-k}, k=0, \ldots, N . \\
p_{F}\left(d^{N P(\alpha)}\right)=\alpha \Leftrightarrow P(N \geq \nu \mid H=0)=\alpha,
\end{gathered}
$$

where ν solves

$$
\sum_{k=\lceil\nu\rceil}^{N} P(\tilde{N}=k \mid H=0)=\alpha
$$

assuming α is such that soln. exists

$$
\begin{gathered}
\Rightarrow\left(\frac{1}{2}\right)^{N} \sum_{k=\lceil\nu\rceil}^{N}\binom{N}{k}=\alpha \Rightarrow\lceil\nu\rceil=\lceil\nu\rceil(\alpha), \text { a fn of } \alpha, \\
\Rightarrow d^{N P(\alpha)}: \tilde{N} \underset{H_{0}}{\stackrel{H_{1}}{<}\lceil\nu\rceil .}
\end{gathered}
$$

6.

$$
\begin{aligned}
& H_{0}: Y_{t}=N_{t} \\
& H_{1}: Y_{t}=s_{t}+N_{t}
\end{aligned} \quad t=1, \ldots, K .
$$

The $K \times K$-covariance matrix R_{K} for the noise process $\left\{N_{t}, t=1, \ldots, k\right\}$ has entries $R_{K}(t, \tau)=t \wedge \tau, 1 \leq t, \tau \leq K$. Observe that

$$
R_{K}=\left[\begin{array}{cccccc}
1 & 1 & \ldots & & & 1 \\
1 & 2 & 2 & \ldots & & 2 \\
1 & 2 & 3 & \ldots & & 3 \\
\vdots & \vdots & & \vdots & \vdots & \\
1 & 2 & 3 & 4 & \ldots & K
\end{array}\right]
$$

It can be shown by induction that $\operatorname{det} R_{K}=1$ (clearly $\operatorname{det} R_{1}=\operatorname{det} R_{2}=1$).
(a) From class notes:

$$
d^{N P(\alpha)}: y^{T} R_{K}^{-1} s \underset{\substack{H_{1}} \underset{H_{0}}{<}}{\stackrel{H_{1}}{<}} \nu(\alpha)
$$

where $y^{T}=\left(y_{1}, \ldots, y_{k}\right), s=\left[\begin{array}{c}1 \\ 1 \\ \ldots \\ 1\end{array}\right]$ with K elements. Now, $R_{K}^{-1} R_{K}=I_{K \times K} ; s=$

$$
\Rightarrow y^{T} R_{K}^{-1} s=y_{1} \quad \Rightarrow \quad d^{N P(\alpha)}: y_{1} \underset{\substack{H_{1} \\ H_{0}}}{\stackrel{H_{0}}{\gtrless}} \nu(\alpha)
$$

where $\nu=\nu(\alpha)$ solves: $P\left(Y_{1}>\nu \mid H=0\right)=\alpha$ i.e., $1-\Phi(\nu)=\alpha$, or $\Phi(\nu)=$ $1-\alpha \Rightarrow \nu=x_{1-\alpha}$ (a function only of α; see example of composite hypothesis testing in class notes for notation : $\left.x_{\alpha}=\Phi^{-1}(\alpha)\right)$. Then,

$$
\begin{aligned}
p_{D}\left(d^{N P(\alpha)}\right) & =P\left(Y_{1} \geq \nu \mid H=1\right) \\
& =P\left(Y_{1}-1 \geq \nu-1 \mid H=1\right), \text { where } Y_{1}-1 \sim \mathcal{N}(0,1) \\
& =1-\Phi(\nu-1)=1-\Phi\left(x_{1-\alpha}-1\right)
\end{aligned}
$$

(b) $d^{N P(\alpha)}: y^{T} R_{K}^{-1} s \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \nu(\alpha)$, where $s=\left[\begin{array}{c}1 \\ 2 \\ \ldots \\ k\end{array}\right]$ is also the last column of R_{K} so that $R_{K}^{-1} s=$ last column of $I_{K \times K} \Rightarrow y^{T} R_{K}^{-1} s=y_{K}$. Then proceed in a manner similar to part (a). (Note: $E\left[N_{K}^{2}\right]=K$.)
7. (a) Let a "head" be the event 1 , and a "tail" the event 0 . Fix θ in $(0,1), \theta \neq 1 / 2$, and consider the following simply hypothesis testing problem. (The original problem is one of composite hypothesis testing which we shall get to shortly.)

$$
\begin{aligned}
& H_{0}:\left\{X_{i}\right\}_{1}^{N} i . i . d ., P\left(X_{i}=1 \mid H=0\right)=\frac{1}{2} ;\left\{Y_{i}\right\}_{1}^{N} i . i . d ., P\left(Y_{i}=1 \mid H=0\right)=\theta \\
& H_{1}:\left\{X_{i}\right\}_{1}^{N} i . i . d ., P\left(X_{i}=1 \mid H=0\right)=\theta ;\left\{Y_{i}\right\}_{1}^{N} i . i . d ., P\left(Y_{i}=1 \mid H=0\right)=1 / 2
\end{aligned}
$$

(Thus, H_{0} says the X-coin is fair, the Y-coin is biased with bias $=$ fixed prob. $\theta \neq 1 / 2$; H_{1} says that the Y-coin is fair, the X-coin is bias " θ ".) Let $N_{X}=a$ r.v. in $\{0 ; \ldots, N\}$ denoting the $\#$ of heads of the X-coin, and $N_{Y}=$ a r.v. in $\{0, \ldots, N\}$ denoting the
number of heads of the Y-coin. Observe that since $\left\{X_{i}\right\}_{1}^{N}$ is independent of $\left\{Y_{i}\right\}_{1}^{N}$, we have N_{X} independent of N_{Y}.

$$
\ell r t_{\eta}: L(x, y) \underset{H_{0}}{\stackrel{H_{1}}{<}} \eta, \quad \begin{aligned}
& x=\left(x_{1}, \ldots, x_{N}\right) \\
& y=\left(y_{1}, \ldots, y_{N}\right) .
\end{aligned}
$$

where

$$
\begin{aligned}
& L(x, y)=\frac{\theta^{N_{x}}(1-\theta)^{N-N_{x}}\left(\frac{1}{2}\right)^{N}}{\left(\frac{1}{2}\right)^{N} \theta^{N_{Y}}(1-\theta)^{N-N_{Y}}} \\
& \Rightarrow \text { lrt } \eta: \frac{\theta^{N_{X}}(1-\theta)^{N-N_{x}}}{\theta^{N_{Y}}(1-\theta)^{N-N_{Y}}} \underset{H_{0}}{<H_{1}} \eta .
\end{aligned}
$$

Now consider the composite hypothesis testing problem with a view to setting up the generalized $\ell r t$. Observe that

$$
\Theta_{0}=\{1 / 2\} \times\{1 / 2\}^{c} \text { where }\{1 / 2\}^{c} \triangleq(0,1 / 2) \bigcup(1 / 2,1)
$$

(so that $\theta_{0}=(1 / 2, \theta)$ a pair of parameters, where $\theta \in,\left\{\frac{1}{2}\right\}^{c}$). Likewise $\Theta_{1}=\{1 / 2\}^{c} \times$ $\{1 / 2\}$, so that $\theta_{1}=(\theta, 1 / 2)$. Then the generalized LRT is:

$$
g \ell r t_{\eta}: \hat{L}(x, y)=\frac{\max _{\theta \in\{1 / 2\}^{c}} \theta^{N_{X}}(1-\theta)^{N_{X}}}{\max _{\theta \in\{1 / 2\}^{c}} \theta^{N_{Y}}(1-\theta)^{N_{Y}}} .
$$

It is easily verified that the maximizing values of θ are:

$$
\begin{gathered}
\hat{\theta}\left(N_{X}\right)=N_{X} / N \text { in the numerator } \\
\hat{\theta}\left(N_{Y}\right)=N_{Y} / N \text { in the denominator }
\end{gathered}
$$

both should differ from $1 / 2$ for $g \ell r t_{\eta}$ to exist.

$$
\Rightarrow g \ell r t_{\eta}: \hat{L}(x, y)=\frac{\left(\frac{N_{X}}{N}\right)^{N_{X}}\left(\frac{N-N_{X}}{N}\right)^{N-N_{X}}}{\left(\frac{N_{Y}}{N}\right)^{N_{Y}}\left(\frac{N-N_{Y}}{N}\right)^{N-N_{Y}}} \underset{H_{0}}{\stackrel{H_{1}}{<}} \eta
$$

which simplifies to:

$$
\frac{N_{X}^{N_{X}}\left(N-N_{X}\right)^{N-N_{X}}}{N_{Y}^{N_{Y}}\left(N-N_{Y}\right)^{N-N^{Y}}} \stackrel{H_{1}}{\stackrel{H_{1}}{<}} \eta
$$

Next, to check for conditions for a UMP to exist: for a fixed θ in $\{1 / 2\}^{c}$, the NeymanPearson test of size α is:

$$
d^{N P(\alpha ; \theta)}: \theta^{N_{X}-N_{Y}}(1-\theta)^{N_{Y}-N_{X}} \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \eta(\alpha, \theta)
$$

i.e.,

$$
\left(\frac{\theta}{1-\theta}\right)^{N_{X}-N_{Y}} \underset{\substack{H_{1} \\ H_{0}}}{\stackrel{H_{1}}{\gtrless}} \eta(\alpha, \theta),
$$

i.e.,

$$
\left(N_{X}-N_{Y}\right) \log \left(\frac{\theta}{1-\theta}\right) \stackrel{\underset{H_{0}}{\gtrless}}{\stackrel{H_{1}}{<}} \log \eta(\alpha, \theta) .
$$

Then as in probs. 3, 4;
(\$) If $\theta \in\left(\frac{1}{2}, 1\right): d^{N P(\alpha ; \theta)}: N_{X}-N_{Y} \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \nu(\alpha)$, where ν solves:

$$
P\left(N_{X}-N_{Y} \geq \nu \mid H=0\right)=\alpha \text { (assuming soln. } \exists \text {). }
$$

$\left(^{*}\right)$ If $\theta \in\left(0, \frac{1}{2}\right): d^{N P(\alpha, \theta)}: N_{Y}-N_{X} \underset{H_{0}}{\stackrel{H_{1}}{\gtrless}} \nu^{\prime}(\alpha)$, where ν^{\prime} solves

$$
\left.P\left(N_{Y}-N_{X} \geq \nu^{\prime} \mid H=0\right)=\alpha \text { (assuming soln } \exists\right) .
$$

Now, if $\Theta_{0}=\left\{\frac{1}{2}\right\} \times\left(\frac{1}{2}, 1\right), \Theta_{1}=\left(\frac{1}{2}, 1\right) \times\left\{\frac{1}{2}\right\}$, UMP test exists as (\$) obtains. If $\Theta_{0}=\left\{\frac{1}{2}\right\} \times\left(0, \frac{1}{2}\right), \Theta_{1}=\left(0, \frac{1}{2}\right) \times\left\{\frac{1}{2}\right\} \times\left\{\frac{1}{2}\right\}, \exists$ UMP since $\left(^{*}\right)$ obtains. As in probs 3,4, if $\Theta_{0}=\left\{\frac{1}{2}\right\} \times\left\{\frac{1}{2}\right\}^{c}, \Theta_{1}=\left\{\frac{1}{2}\right\}^{c} \times\left\{\frac{1}{2}\right\}, \nexists$ UMP. The test statistic in the first two cases is $N_{X}-N_{Y}$. item To compute p_{F}, let us consider the case $\Theta_{0}=\left\{\frac{1}{2}\right\} \times\left(\frac{1}{2}, 1\right), \Theta_{1}=$ $\left(\frac{1}{2}, 1\right) \times\left\{\frac{1}{2}\right\}$. For the MPE criterion, $\eta(\alpha, \theta)=1$ so that

$$
\begin{gathered}
\ell r t: N_{X}-N_{Y} \stackrel{H_{1}}{\stackrel{H_{1}}{<} 0} 0 \\
\Rightarrow p_{F}\left(d^{*}\right) \triangleq \sup _{\theta \in\left(\frac{1}{2}, 1\right)} p_{F}\left(d_{\theta}^{*}\right)
\end{gathered}
$$

i.e.,

$$
\begin{aligned}
p_{F}\left(d^{*}\right) & =\sup _{\theta \in\left(\frac{1}{2}, 1\right)} P\left(N_{X} \geq N_{Y} \mid H=0\right) \\
& =\sup _{\theta \in\left(\frac{1}{2}, 1\right)} \sum_{k=0}^{N} P\left(N_{X} \geq k \mid N_{Y}=k, H=0\right) P\left(N_{Y}=k \mid H=0\right) \\
& =\sup _{\theta \in\left(\frac{1}{2}, 1\right)} \sum_{k=0}^{N} P\left(N_{X} \geq k \mid H=0\right) P\left(N_{Y}=k \mid H=0\right)
\end{aligned}
$$

recall : N_{X} is independent of N_{Y} under H_{0} and H_{1}).
$=\sup _{\theta \in\left(\frac{1}{2}, 1\right)} \sum_{k=0}^{N}\left(\sum_{i=k}^{N}\binom{N}{i}\left(\frac{1}{2}\right)^{N}\right)\left(\binom{N}{k} \theta^{k}(1-\theta)^{N-k}\right)$

ENJOY IT!

