ENEE 621: ESTIMATION AND DETECTION THEORY
Problem Set 5: Solutions Spring 2007

Narayan

1. Note that Y7 is independent of {X,}22 ;. Now, observe that Hy is a composite hy-

pothesis, and we are in a Bayesian situation with the rv 6 (= the rv P) taking values

in Oy = {1/4,3/4} with Py[0 = 1] = 2 = 1 — P[0 = 3], where P, denotes the
conditional pmf of 6§ given H = Hy. H; is a simple hypothesis.

Under Hy: For each t € ©g = {1,3}, {V,,}52, is a 1st order Markov process with

transition probabilities:
Pt [Yn+1 - OIYn - O] - Pt [Xn - O‘Yn - 0]

= P[X,, =0] (why?)

=1t
Similarly,
P Y11 =0]Y,=0=PFP[Y,41 =0V, =1 =1-1¢,
and
P Y, =1Y, =1] =t
Let Y = (Y1,...,Y,). Given a sequence of observations y = (y1,...,yn) where

PylYy = 0] = 1, we have for each t € {1/4,3/4}: fi(y) = B[Y =y] = (1—t)N¢N -1V
where N is a rv with values in {0,1,..., N — 1} denoting the number of transitions

from “0” to “1” and from “1” to “0” in y = (y1,...,yn) (with y1 = 0). Then:

fo(y) = f1(y)Fol0 = 1/4] + fs (y) Pol0 = 3/4]

_3N1N—1—N1+11\73N—1—N3
- \4 4 4 4 4 4
N\ 15 g
=(5) [p¥+3¥N].
(1) b7
Under Hy: {Y,}52, is a 1st order Markov process with transition probabilities

Pi[Y, 11 =0]Y,, =0] = P[Yp41 = 0]V, = 1] = 1/2
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Then, for P1[Y; = 0] = 1, we have

== (3)' ()¢

Then:
z f1(y) o
(brt), : L(y) = = Sy
fo(y) 1;1
ie.,
" o
2 <
(1) 3% +3V-F]
ie.,
N N—-N Ho 2N+l
3V 4377 2
o

The LHS is the test statistic, and the RHS is the threshold.

(b) grmap(y) = argmaxgc(i/4,3/43 9y(0). Since g,(0) = %, it suffices to maxi-

mize the numerator as a function of 6.
, fow)g(0) =(1— DV (3

For 0 = )
owa0) = (1= ()T g =Ry

AN

For 0 =

NN

if N>N-—N ie. if N> N/2

1
= gmap(y) = { %’ e N
1) lfNS 5 -

. Given ¢(0,0) = ¢(1,1) = 0, and vy = ¢(0,1) = 2¢(1,0) = 2v4. For the Bayes’ decision
rule d* : Y* ={y € R: d"(y) = 0} = {y € R : h(y) < 0}, where h(y) = vipfi(y) —
2v1(1 = p)fo(y). Clearly for [y| > 1, h(y) = vipfi(y) = 0 = d*(y) = 1 for [y| = 1.
Next observe that fi(y) =0 = fo(y) =0, so that

o

fo(y) Ii _
fily) 5 2ni(l—p) 1-p

1

mp b

ort
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We are only concerned with |y| < 1 now, in which case

Ort -

which simplifies to |y|(9p — 8) (10p 8). so that for |y| < 1:
H

10 8 8
N UL T (—,1)
H1 -8’ 9

10p 8 8
lyl 2 ,ifpe (0,—>
S o9p-8 10

and always say H; if p € [% %].

. Hp is a simple hypothesis whereas H; is composite. Fix p; # pg and consider the
simple hypothesis testing problem that results. Consider the Neyman-Pearson test of

size a. In a manner similar to Prob. 1, we get:

aNP(a;pl) . (1 —P1

where N € {0,...,N — 1} is a r.v. representing the # of transitions from “0” to “1”

and from “1” to “0”, and n(«; p1) is the corresponding threshold. Upon simplification

H;y
, N 1 -
dNFP@p) o Nog (=pipo > logn(a;p1) + (N — 1) log <p0>

(1 = po)p1 ;0 D1

If pg > p1: Then by % > 0.

. Po
1 logn(e; p1) + (N — 1) log (;1’)

1, Jog(1 = p1)po — log(1 — po)py

aNP(ap) . N

with n(a; p1) such that

< logn(aspn) + (N - Dlog (32)
~ log(1 — p1)po — log(1 — po)p1

|H=0] =«



log (i pr) + (N = 1) log (£2)
log(1 — p1)po — log(1 — po)p1

and let v =

(assuming « is such that solution ).

Under Hy, the statistics of N depend on p so that v = v(a;po), i.e., v does not
depend on p;. Then

NP — e 0,11V - N(y) < v(aspo)}-

. H
If pg < p1: Can show since log % < 0 that gVNP(@p1) . N 20 V' (a;po), where v/
Hy

does not depend on p;

N yC]iVP(a;pl) — {y e {07 1}N : N(y) > y’(O@pO)}.

If po = p1:

PNPlepn) _ { {y € {0,1}Y : N(y) < v(o,po)} if po > p1
4 {y € {0,1}¥ : N(y) > V'(a,po)} if po < p1.
Clearly, if ©g = {po}, 01 = {p1 € (0,1) = p1 > po}, a UMP test of size « exists.
If ©) = {po},01 = {p1 € (0,1);p1 < po},3 UMP test of size a. If Og = {pp},O01 =
(0,p0) U(po, 1), clearly we must know if p; > py or p; < po to execute d¥F(@p1).

hence, no UMP exists. When the UMP test does exist, the test statistic = N.

. Fix 0% # 02. Consider the corresponding simple hypothesis testing problem with the

Neyman-Pearson test of size a. Recalling that f5(y) = U%e_yQ/”i,y >0,h=0,1.
h

2 2,1 1y Ha
NP(a:o?) 0 ¥ (5z=32) S L2
d ( 1)_?6 1 0 < 77(0470'1),
1 Hy,

where the threshold 7 depends on the size a and on ¢?. Upon simplification,

H; 2

o2 o
aNPT) = g2 (0f — o5) 2 |logn(asat) + log (;ﬁ)] o507

Ho 0
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As in problem 3:
) If 0 > 020 Y npaw2 = 1y €10,00),9y% < v(a,02)} where v(a, 02) is the soln of
1 0° Y NPaio?) 0 0
P(Y? > v|H = 0) = , and does not depend on o?.
(**) If 02 > o Y npa?) = {y € [0,00) : y?> > V'(«,02)} where V/(a,02) (not
depending on ¢?) solves P(Y?2 < V/|H =0) = a.

0,00) :y? <v(a,08)} if oF > o}
KKK Tf 2 2, L= {y €10, 00 1 0
(%) I og 7 o7 deP(“’”1> { {y €[0,00) : y?> > V' (,08)} if 03 > of.

(a) © = {03},01 = (03,00) = 3 UMP by (¥)
(b) ©g ={03},01 = (0,02)J(c3,0) = no UMP by (***)
(c) © = {o§},01 = (0,07) = I UMP by (**).
5. Let (Y7,...,Yy) represent N independent coin tosses with Y; = 1 if head, 0 if tail,

; fee . filys,-yn) 1
1 <i¢<N. The LRT is: frt,, : o) EO n

N N-N Hi
p (1 —p) >
= 1 N < 77 )
(5) Ho

where N = N(Y) is a r.v. with values in {0,..., N} and represents the number of

heads (note: N(Y) = Zivzl Y;). Simplifying and using the fact that p € (3,1), we

have
H,
ol — Nlog(2(1 —
trt, > 1081 og(2(1 - p))
Ho log (—ﬁp)

Clearly Sy = N. Under each hypothesis, N is binomial so that

PF (dNP(a)) —a s P(N>v/H=0)=a,
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where v solves

assuming « is such that soln. exists

;»@)N i (f):a = W] = [V](a), afnofa,

k=[v]
H,y
NP(a) . nT >
=d ().N< [V]
Hy
Hy: Y, =N,
t=1,..., K.
Hlln:St—f—Nt
The K x K-covariance matrix Rg for the noise process {N¢,t = 1,...,k} has entries
Ri(t,7) =tANT7,1<t,7 < K. Observe that
1 1 ... 1
1 2 2 2
Re=11 2 3 ... 3
1 2 3 4 K

It can be shown by induction that detRy =1 (clearly detRy = detRy = 1).

(a) From class notes:

H,
dNP(@) . y'Ry's Z v(a)
Hog
1
where y©' = (y1,...,y%), 5 = 1 with K elements. Now, R;RK =IgxK; S=
1



is the 1st column of Ry so that Rl_(ls = 1st column of Ix« k.

=y Rls=y1 = dVP@) gy Z v(a)

where v = v(a) solves: P(Y1 > v|H =0) = aie,, 1 — ®(v) = o, or (v) =
l—a = v =u1x1_, (a function only of a; see example of composite hypothesis

testing in class notes for notation : z, = ®"1(«)). Then,

b (dNP@) = P(Y, > v|H = 1)

=PYy—1>v—1|H =1), where Y1 — 1~ N(0,1)

=1-0(r—1)=1—-d(xr1_o — 1)

(b) aNP@) . yTR 1s 121 v(a), where s = is also the last column of Ry so
o k
that Rl}ls = last column of Iy« = yTRl}ls = yx. Then proceed in a manner
similar to part (a). (Note: E[N%] = K.)

. (a) Let a “head” be the event 1, and a “tail” the event 0. Fix 6 in (0,1),60 # 1/2,
and consider the following simply hypothesis testing problem. (The original problem
is one of composite hypothesis testing which we shall get to shortly.)

0 {X;}Wiid,P(X; =1|H=0)= {Y}lmd PY,=1H=0)=46

AXWiid., P(X; = 1|H = 0) = 6; {Y;}iid., P(Y; = 1|H = 0) = 1/2.

(Thus, Hy says the X-coin is fair, the Y-coin is biased with bias = fixed prob. 6 # 1/2;
H, says that the Y-coin is fair, the X-coin is bias “¢”.) Let Nx = ar.v. in {0;..., N}
denoting the # of heads of the X-coin, and Ny = a r.v. in {0,..., N} denoting the
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number of heads of the Y-coin. Observe that since {X;}{V is independent of {Y;}&,

we have Nx independent of Ny-.

m x=(x TN)
lrt, : L(zx, Zn, — W BN
n ( y)§0n yz(y1,--.,yN)-
where
ON=(1 — o)V N (1)
L(:Ij,y): N N ]52)1\7
(3) 0Ny (1-0) Y
‘9NX(1_9)N—NQc H,
= Irtn : o8 (1= )V zn.

Hg
Now consider the composite hypothesis testing problem with a view to setting up the

generalized ¢rt. Observe that

A

O = {1/2} x {1/2}° where {1/2}° £ (0,1/2) J(1/2.1)

(so that 0y = (1/2,0) a pair of parameters, where 6 €,{11}¢). Likewise ©; = {1/2}¢x
{1/2}, so that 6, = (0,1/2). Then the generalized LRT is:

N N
f _ maxge(i/23c 07X (1-0)7X
gf’/’tn : L(xv y) - maxge 1 /2}¢ GNY(l—G)NY .

It is easily verified that the maximizing values of 6 are:

A~

(Nx) = Nx /N in the numerator

A~

O(Ny) = Ny /N in the denominator

both should differ from 1/2 for glrt,, to exist.

A

= glrt, : L(z,y) =

which simplifies to:




Next, to check for conditions for a UMP to exist: for a fixed 6 in {1/2}¢, the Neyman-

Pearson test of size « is:

H,y

dNP(Oé;@) . eNfoy(l _Q)NnyX z n(a70)

Hoy

ie.,
§ \Nx-Nv H
(Te) Z n(a,0),

ie.,

Then as in probs. 3, 4;

H
() If 0 € (3,1): VP9 Ny — Ny zl v(a),where v solves:

Ho

P(Nx — Ny > v|H = 0) = a (assuming soln. 3).
H
(*) IO € (0,2): aVP@O : Ny — Ny 21 V' (), where v/ solves
Ho

P(Ny — Nx >V'|H = 0) = a (assuming soln 3).

Now, if @y = {3} x (5,1),01 = (3,1) x {3}, UMP test exists as ($) obtains. If
Qo = {1} x(0,2),01 =(0,1)x {3} x{1}.3 UMP since (*) obtains. As in probs 3.4,
if Og = {1} x {3}°,.01 = {3}° x {3}, A UMP. The test statistic in the first two cases
is Nx — Ny. item To compute pr, let us consider the case ©g = {%} X (%, 1),0 =

(1,1) x {3}. For the MPE criterion, n(c, 6) = 1 so that

H,y
E’I‘t:Nx—NY Z 0
Hoy

#\ A *
= pr(d*) = SUPOE(%,l)pF(dQ)
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i.e.,

pr(d*) = sup P(Nx > Ny|H =0)

6e(d,1)
N
= sup Y P(Nx >k|Ny =k, H =0)P(Ny = k|H = 0)
0e(3.1) —p
N
= sup Y P(Nx >k|H =0)P(Ny = k|H =0)
96(%,1) k=0

recall : Ny is independent of Ny under Hy and Hy).
N /N N
N 1 N _
- 232 (7) () ) ((F)ra-0)
0€(3,1) k=0 \i=k

ENJOY IT!
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