
ENEE 621: ESTIMATION AND DETECTION THEORY

Problem Set 5: Solutions Spring 2007

Narayan

1. Note that Y1 is independent of {Xn}∞n=1. Now, observe that H0 is a composite hy-

pothesis, and we are in a Bayesian situation with the rv θ (= the rv P0) taking values

in Θ0 = {1/4, 3/4} with P0[θ = 1
4 ] = 1

4 = 1 − P0[θ = 3
4 ], where P0 denotes the

conditional pmf of θ given H = H0. H1 is a simple hypothesis.

Under H0: For each t ∈ Θ0 = { 1
4 , 3

4}, {Yn}∞n=1 is a 1st order Markov process with

transition probabilities:

Pt [Yn+1 = 0|Yn = 0] = Pt [Xn = 0|Yn = 0]

= Pt[Xn = 0] (why?)

= t

Similarly,

Pt [Yn+1 = 0|Yn = 0] = Pt [Yn+1 = 0|Yn = 1] = 1− t,

and

Pt [Yn+1 = 1|Yn = 1] = t.

Let Y = (Y1, . . . , Yn). Given a sequence of observations y = (y1, . . . , yN ) where

P0[Y1 = 0] = 1, we have for each t ∈ {1/4, 3/4}: ft(y) = Pt[Y = y] = (1− t)Ñ tN−1−Ñ ,

where Ñ is a rv with values in {0, 1, . . . , N − 1} denoting the number of transitions

from “0” to “1” and from “1” to “0” in y = (y1, . . . , yN ) (with y1 = 0). Then:

f̃0(y) = f 1
4
(y)P0[θ = 1/4] + f 3

4
(y)P0[θ = 3/4]

=
(

3
4

)Ñ (
1
4

)N−1−Ñ (
1
4

)
+

(
1
4

)Ñ (
3
4

)N−1−Ñ (
3
4

)

=
(

1
4

)N [
3Ñ + 3N−Ñ

]
.

Under H1: {Yn}∞n=1 is a 1st order Markov process with transition probabilities

P1[Yn+1 = 0|Yn = 0] = P1[Yn+1 = 0|Yn = 1] = 1/2
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Then, for P1[Y1 = 0] = 1, we have

f1(y) = P1[Y = y] =
(

1
2

)Ñ (
1
2

)N−1−Ñ

=
(

1
2

)N−1

.

Then:

(`rt)η : L̃(y) =
f1(y)
f̃0(y)

H0
<
>
H1

η

i.e.,
(

1
2

)N−1

(
1
4

)N
[
3Ñ + 3N−Ñ

]
H0
<
>
H1

η

i.e.,

3Ñ + 3N−Ñ
H0
>
<
H1

2N+1

η

The LHS is the test statistic, and the RHS is the threshold.

(b) gMAP (y) = arg maxθ∈{1/4,3/4} gy(θ). Since gy(θ) = fθ(y)g(θ)
f(y) , it suffices to maxi-

mize the numerator as a function of θ.

For θ = 1
4 , fθ(y)g(θ) = (1− 1

4 )Ñ
(

1
4

)N−1−Ñ · 1
4 = 3Ñ4−N .

For θ = 3
4 , fθ(y)g(θ) =

(
1− 3

4

)Ñ (
3
4

)N−1−Ñ · 3
4 = 3N−Ñ4−N .

⇒ gMAP (y) =
{

1
4 , if Ñ ≥ N − Ñ i.e. if Ñ ≥ N/2
3
4 , if Ñ ≤ N

2 .

2. Given c(0, 0) = c(1, 1) = 0, and ν0 = c(0, 1) = 2c(1, 0) = 2ν1. For the Bayes’ decision

rule d∗ : Y∗ = {y ∈ IR : d∗(y) = 0} = {y ∈ IR : h(y) < 0}, where h(y) = ν1pf1(y) −
2ν1(1 − p)f0(y). Clearly for |y| ≥ 1, h(y) = ν1pf1(y) ≥ 0 ⇒ d∗(y) = 1 for |y| ≥ 1.

Next observe that f1(y) = 0 ⇒ f0(y) = 0, so that

`rt :
f0(y)
f1(y)

H0
>
<
H1

ν1p

2ν1(1− p)
=

p

1− p
.
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We are only concerned with |y| < 1 now, in which case

`rt :
1− |y|
2− |y|

H0
>
<
H1

1
8
· p

1− p
,

which simplifies to |y|(9p− 8)
H0
>
<

H1

(10p− 8). so that for |y| < 1:

|y|
H0
>
<
H1

10p− 8
9p− 8

, if p ∈
(

8
9
, 1

)

|y|
H1
>
<
H0

10p− 8
9p− 8

, if p ∈
(

0,
8
10

)

and always say H1 if p ∈ [
8
10 , 8

9

]
.

3. H0 is a simple hypothesis whereas H1 is composite. Fix p1 6= p0 and consider the

simple hypothesis testing problem that results. Consider the Neyman-Pearson test of

size α. In a manner similar to Prob. 1, we get:

αNP (α;p1) :
(1− p1)ÑpN−1−Ñ

1

(1− p0)ÑpN−1−Ñ
0

H1
>
<
H0

η(α; p1)

where Ñ ∈ {0, . . . , N − 1} is a r.v. representing the # of transitions from “0” to “1”

and from “1” to “0”, and η(α; p1) is the corresponding threshold. Upon simplification

dNP (α;p1) : Ñ log
(1− p1)p0

(1− p0)p1

H1
>
<
H0

log η(α; p1) + (N − 1) log
(

p0

p1

)

If p0 > p1: Then by (1−p1)p0
(1−p0)p1

> 0.

dNP (α;p1) : Ñ
H1
>
<
H0

log η(α; p1) + (N − 1) log
(

p0
p1

)

log(1− p1)p0 − log(1− p0)p1

with η(α; p1) such that

P


Ñ ≥

log η(α; p1) + (N − 1) log
(

p0
p1

)

log(1− p1)p0 − log(1− p0)p1
| H = 0


 = α
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and let ν =
log η(α; p1) + (N − 1) log

(
p0
p1

)

log(1− p1)p0 − log(1− p0)p1

(assuming α is such that solution ∃).
Under H0, the statistics of Ñ depend on p0 so that ν = ν(α; p0), i.e., ν does not

depend on p1. Then

YNP (α;p1)
d = {y ∈ {0, 1}N : Ñ(y) < ν(α; p0)}.

If p0 < p1: Can show since log (1−p)p0
(1−p0)p1

< 0 that dNP (α;p1) : Ñ
H0
>
<

H1

ν′(α; p0), where ν′

does not depend on p1

⇒ YNP (α;p1)
d = {y ∈ {0, 1}N : Ñ(y) > ν′(α; p0)}.

If p0 = p1:

YNP (α;p1)
d =

{
{y ∈ {0, 1}N : Ñ(y) < ν(α, p0)} if p0 > p1

{y ∈ {0, 1}N : Ñ(y) > ν′(α, p0)} if p0 < p1.

Clearly, if Θ0 = {p0}, Θ1 = {p1 ∈ (0, 1) = p1 > p0}, a UMP test of size α exists.

If Θ0 = {p0}, Θ1 = {p1 ∈ (0, 1); p1 < p0}, ∃ UMP test of size α. If Θ0 = {p0}, Θ1 =

(0, p0)
⋃

(p0, 1), clearly we must know if p1 > p0 or p1 < p0 to execute dNP (α;p1);

hence, no UMP exists. When the UMP test does exist, the test statistic = Ñ .

4. Fix σ2
1 6= σ2

0 . Consider the corresponding simple hypothesis testing problem with the

Neyman-Pearson test of size α. Recalling that fh(y) = y
σ2

h

e−y2/σ2
h , y ≥ 0, h = 0, 1.

dNP (α;σ2
1) =

σ2
0

σ2
1

e
−y2( 1

σ2
1
− 1

σ2
0
)

H1
>
<
H0

η(α; σ2
1),

where the threshold η depends on the size α and on σ2
1 . Upon simplification,

dNP (α;σ2
1) = y2(σ2

1 − σ2
0)

H1
>
<
H0

[
log η(α; σ2

1) + log
(

σ2
1

σ2
0

)]
σ2

0σ2
1 .
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As in problem 3:

(*) If σ2
1 > σ2

0 : Y
d

NP (α;σ2
1
) = {y ∈ [0,∞), y2 < ν(α, σ2

0)} where ν(α, σ2
0) is the soln of

P (Y 2 ≥ ν|H = 0) = α, and does not depend on σ2
1 .

(**) If σ2
0 > σ2

1 : Y
d

NP (α;σ2
1
) = {y ∈ [0,∞) : y2 > ν′(α, σ2

0)} where ν′(α, σ2
0) (not

depending on σ2
1) solves P (Y 2 ≤ ν′|H = 0) = α.

(***) If σ2
0 6= σ2

1 : Y
d

NP (α;σ2
1
) =

{ {y ∈ [0,∞) : y2 < ν(α, σ2
0)} if σ2

1 > σ2
0

{y ∈ [0,∞) : y2 > ν′(α, σ2
0)} if σ2

0 > σ2
1 .

(a) Θ0 = {σ2
0}, Θ1 = (σ2

0 ,∞) ⇒ ∃ UMP by (*)

(b) Θ0 = {σ2
0}, Θ1 = (0, σ2

0)
⋃

(σ2
0 ,∞) ⇒ no UMP by (***)

(c) Θ0 = {σ2
0}, Θ1 = (0, σ2

0) ⇒ ∃ UMP by (**).

5. Let (Y1, . . . , YN ) represent N independent coin tosses with Yi = 1 if head, 0 if tail,

1 ≤ i ≤ N . The LRT is: `rtη : f1(y1,...,yN )
f0(y1,...,yN )

H1
>
<

H0

η

⇒ pÑ (1− p)N−Ñ

(
1
2

)N

H1
>
<
H0

η ,

where Ñ = Ñ(Y ) is a r.v. with values in {0, . . . , N} and represents the number of

heads (note: Ñ(Y ) =
∑N

i=1 Yi). Simplifying and using the fact that p ∈ (
1
2 , 1

)
, we

have

`rtη : Ñ
H1
>
<
H0

log η −N log(2(1− p))

log
(

p
1−p

) .

Clearly SN = Ñ . Under each hypothesis, Ñ is binomial so that

P (Ñ = k|H = 0) =
(

N
k

)(
1
2

)N

, k = 0, . . . , N,

P
(
Ñ = k|H = 1

)
=

(
N
k

)
pk(1− p)N−k, k = 0, . . . , N.

pF

(
dNP (α)

)
= α ⇔ P (N ≥ ν|H = 0) = α,
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where ν solves

N∑

k=dνe
P (Ñ = k|H = 0) = α

assuming α is such that soln. exists

⇒
(

1
2

)N N∑

k=dνe

(
N
k

)
= α ⇒ dνe = dνe(α), a fn of α,

⇒ dNP (α) : Ñ
H1
>
<
H0

dνe.

6.

H0 : Yt = Nt

H1 : Yt = st + Nt

t = 1, . . . , K.

The K ×K-covariance matrix RK for the noise process {Nt, t = 1, . . . , k} has entries

RK(t, τ) = t ∧ τ, 1 ≤ t, τ ≤ K. Observe that

RK =




1 1 . . . 1
1 2 2 . . . 2
1 2 3 . . . 3
...

...
...

...
1 2 3 4 . . . K




It can be shown by induction that detRK = 1 (clearly detR1 = detR2 = 1).

(a) From class notes:

dNP (α) : yT R−1
K s

H1
>
<
H0

ν(α)

where yT = (y1, . . . , yk), s =




1
1

. . .
1


 with K elements. Now, R−1

K RK = IK×K ; s =
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


1
1

. . .
1


 is the 1st column of RK so that R−1

K s = 1st column of IK×K .

⇒ yT R−1
K s = y1 ⇒ dNP (α) : y1

H1
>
<
H0

ν(α)

where ν = ν(α) solves: P (Y1 > ν|H = 0) = α i.e., 1 − Φ(ν) = α, or Φ(ν) =

1 − α ⇒ ν = x1−α (a function only of α; see example of composite hypothesis

testing in class notes for notation : xα = Φ−1(α)). Then,

pD

(
dNP (α)

)
= P (Y1 ≥ ν|H = 1)

= P (Y1 − 1 ≥ ν − 1|H = 1), where Y1 − 1 ∼ N (0, 1)

= 1− Φ(ν − 1) = 1− Φ(x1−α − 1)

(b) dNP (α) : yT R−1
K s

H1
>
<

H0

ν(α), where s =




1
2

. . .
k


 is also the last column of RK so

that R−1
K s = last column of IK×K ⇒ yT R−1

K s = yK . Then proceed in a manner

similar to part (a). (Note: E[N2
K ] = K.)

7. (a) Let a “head” be the event 1, and a “tail” the event 0. Fix θ in (0, 1), θ 6= 1/2,

and consider the following simply hypothesis testing problem. (The original problem

is one of composite hypothesis testing which we shall get to shortly.)

H0 : {Xi}N
1 i.i.d., P (Xi = 1|H = 0) =

1
2
; {Yi}N

1 i.i.d., P (Yi = 1|H = 0) = θ

H1 : {Xi}N
1 i.i.d., P (Xi = 1|H = 0) = θ; {Yi}N

1 i.i.d., P (Yi = 1|H = 0) = 1/2.

(Thus, H0 says the X-coin is fair, the Y -coin is biased with bias = fixed prob. θ 6= 1/2;

H1 says that the Y -coin is fair, the X-coin is bias “θ”.) Let NX = a r.v. in {0; . . . , N}
denoting the # of heads of the X-coin, and NY = a r.v. in {0, . . . , N} denoting the
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number of heads of the Y -coin. Observe that since {Xi}N
1 is independent of {Yi}N

1 ,

we have NX independent of NY .

`rtη : L(x, y)
H1
>
<
H0

η,
x = (x1, . . . , xN )
y = (y1, . . . , yN ).

where

L(x, y) =
θNx(1− θ)N−Nx

(
1
2

)N

(
1
2

)N
θNY (1− θ)N−NY

⇒ `rtη :
θNX (1− θ)N−Nx

θNY (1− θ)N−NY

H1
>
<
H0

η.

Now consider the composite hypothesis testing problem with a view to setting up the

generalized `rt. Observe that

Θ0 = {1/2} × {1/2}c where {1/2}c ∆= (0, 1/2)
⋃

(1/2, 1)

(so that θ0 = (1/2, θ) a pair of parameters, where θ ∈, {1
2}c). Likewise Θ1 = {1/2}c×

{1/2}, so that θ1 = (θ, 1/2). Then the generalized LRT is:

g`rtη : L̂(x, y) = maxθ∈{1/2}c θNX (1−θ)NX

maxθ∈{1/2}c θNY (1−θ)NY
.

It is easily verified that the maximizing values of θ are:

θ̂(NX) = NX/N in the numerator

θ̂(NY ) = NY /N in the denominator

both should differ from 1/2 for g`rtη to exist.

⇒ g`rtη : L̂(x, y) =

(
NX

N

)NX
(

N−NX

N

)N−NX

(
NY

N

)NY
(

N−NY

N

)N−NY

H1
>
<
H0

η

which simplifies to:

NNX

X (N −NX)N−NX

NNY

Y (N −NY )N−NY

H1
>
<
H0

η
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Next, to check for conditions for a UMP to exist: for a fixed θ in {1/2}c, the Neyman-

Pearson test of size α is:

dNP (α;θ) : θNX−NY (1− θ)NY −NX

H1
>
<
H0

η(α, θ)

i.e.,
(

θ

1− θ

)NX−NY H1
>
<
H0

η(α, θ),

i.e.,

(NX −NY ) log
(

θ

1− θ

) H1
>
<
H0

log η(α, θ).

Then as in probs. 3, 4;

($) If θ ∈ ( 1
2 , 1) : dNP (α;θ) : NX −NY

H1
>
<

H0

ν(α),where ν solves:

P (NX −NY ≥ ν|H = 0) = α (assuming soln. ∃).

(*) If θ ∈ (0, 1
2 ) : dNP (α,θ) : NY −NX

H1
>
<

H0

ν′(α), where ν′ solves

P (NY −NX ≥ ν′|H = 0) = α (assuming soln ∃).

Now, if Θ0 = { 1
2} × ( 1

2 , 1), Θ1 = ( 1
2 , 1) × { 1

2}, UMP test exists as ($) obtains. If

Θ0 = { 1
2}× (0, 1

2 ), Θ1 = (0, 1
2 )×{ 1

2}×{ 1
2}, ∃ UMP since (*) obtains. As in probs 3,4,

if Θ0 = {1
2}× { 1

2}c,Θ1 = {1
2}c×{ 1

2}, 6 ∃ UMP. The test statistic in the first two cases

is NX − NY . item To compute pF , let us consider the case Θ0 = { 1
2} × ( 1

2 , 1),Θ1 =

( 1
2 , 1)× { 1

2}. For the MPE criterion, η(α, θ) = 1 so that

`rt : NX −NY

H1
>
<
H0

0

⇒ pF (d∗) ∆= supθ∈( 1
2 ,1)pF (d∗θ)
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i.e.,

pF (d∗) = sup
θ∈( 1

2 ,1)

P (NX ≥ NY |H = 0)

= sup
θ∈( 1

2 ,1)

N∑

k=0

P (NX ≥ k|NY = k, H = 0)P (NY = k|H = 0)

= sup
θ∈( 1

2 ,1)

N∑

k=0

P (NX ≥ k|H = 0)P (NY = k|H = 0)

recall : NX is independent of NY under H0 and H1).

= sup
θ∈( 1

2 ,1)

N∑

k=0

(
N∑

i=k

(
N
i

) (
1
2

)N
) ((

N
k

)
θk(1− θ)N−k

)

ENJOY IT!
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