ENEE 621: Estimation and Detection Theory

Problem Set 5

Spring 2007

Narayan

1. Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of i.i.d. $\{0,1\}$ -valued r.v.'s with $P(X_n = 0) = P_0 \quad \forall n$ under hypothesis H_0 , and $P(X_n = 0) = \frac{1}{2} \quad \forall n$ under hypothesis H_1 . Here, P_0 is a r.v. with values in the set $\{\frac{1}{4}, \frac{3}{4}\}$, and satisfying $P(P_0 = 1/4) = 1/4$. The observations consist of a sequence $\{Y_n\}_{n=1}^N$ of r.v.'s where $Y_1 = 0$ a.s., and

$$Y_{n+1} = Y_n \oplus X_n, n = 1, 2, \dots, N-1,$$

with \oplus denoting addition modulo 2.

- (a) Determine a likelihood ratio test (LRT) for testing H_0 vs. H_1 . What is the test statistic?
- (b) Under H₀, determine the MAP estimate of P₀ given Y₁,..., Y_n in terms of the test statistic of part (a).
- 2. Consider the following hypothesis testing problem:

$$H_0: Y \sim f_0(y) = \begin{cases} 1 - |y|, & |y| \le 1\\ 0, & |y| > 1, \end{cases}$$
$$H_1: Y \sim f_1(y) = \begin{cases} \frac{2 - |y|}{4}, & |y| \le 2\\ 0, & |y| > 2. \end{cases}$$

Given that deciding H_0 when H_1 is true costs twice as much as deciding H_1 when H_0 is true, and that correct decisions cost nothing, and further that $P(H = 1) = p, p\epsilon(0, 1)$, find the Bayes' decision rule as a function of p.

3. Let $\{Z_n\}_{n=1}^{\infty}$ be a sequence of i.i.d. $\{0,1\}$ -valued r.v.'s with $P(Z_n = 0) = p_0 \quad \forall n$ under H_0 , and $P(Z_n = 0) = p_1 \quad \forall n$ under H_1 . Assume that $0 < p_0, p_1 < 1, p_0 \neq p_1, p_0$ is known, and p_1 is an unknown constant. The observations consist of a sequence $\{Y_n\}_{n=1}^N$ of r.v.'s, where

$$Y_1 = 0$$
 a.s., $Y_{n+1} = Y_n \oplus Z_n$, $n = 1, 2, \dots, (N-1)$.

with \oplus denoting addition modulo 2.

- (a) Construct a LRT for testing H_0 vs. H_1 , and determine the test statistic.
- (b) What are the requirements for p_0 and p_1 for a UMP test to exist?
- 4. Consider the following binary hypothesis testing problem. Under $H_0, Y \sim$ Rayleigh with **known** parameter $\sigma_0^2(>0)$, whereas under $H_1, Y \sim$ Rayleigh with **unknown** (deterministic) parameter $\sigma_1^2(>0)$ lying in the set $I \subseteq (0, \infty)$.

Is there a UMP test for H_0 vs. H_1 when

- (a) $I = (\sigma_0^2, +\infty)$
- (b) $I = (0, \sigma_0^2) \bigcup (\sigma_0^2, +\infty)$
- (c) $I = (0, \sigma_0^2)$
- 5. Consider the following hypotheses:

$$H_0$$
: coin is fair, $P(\text{head}) = 1/2;$
 H_1 : coin is biased, $P(\text{head}) = p, \ p\epsilon(1/2, 1)$

A decision has to be made on the basis of N independent tosses of the coin. For $1 \leq N < \infty$, find the LRT and identify the statistic S_N . Find the probability distribution of S_N under each hypothesis. For a Neyman-Pearson test with $p_F \leq \alpha$, find the smallest number of trials (i.e., coin tosses).

6. Consider the following hypothesis testing problem:

$$H_0: Y_i = N_i, \ i = 1, \dots, K,$$

 $H_1: Y_i = s_i + N_i, \ i = 1, \dots, K$

where $\{N_i\}_{i=1}^K$ is a sequence of zero mean \mathbb{R} -valued Gaussian r.v.'s with $E[N_iN_j] = \min\{i, j\}$. For a given $p_F \leq \alpha$, find the Neyman-Pearson test for the following cases: (a) $s_i \equiv 1, \quad i = 1, \dots, K$;

(b) $s_i = i, \quad i = 1, \dots, K.$

Calculate p_D in each case.

7. It is known that one of two coins is fair and that the other has a probability θ of coming up heads when flipped – here θ is unknown and deterministic, $\theta \in (0,1), \theta \neq 1/2$. The coins are tossed simultaneously and independently to produce an independent sequence of samples $(X_1, Y_1), \ldots, (X_N, Y_N)$, where X_i and Y_i are each 0 or 1 according to whether the respective coin toss is a tail or a head. You are required to identify the fair coin.

- (a) Formulate the problem as one of binary hypothesis testing and determine the generalized likelihood ratio test. What is the test statistic?
- (b) Determine the condition under which the test is UMP. What is the test statistic now?
- (c) In part (b), assuming the MPE criterion, what is the probability of a false alarm?