ENEE 621: Estimation and Detection Theory

Problem Set 5

1. Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be a sequence of i.i.d. $\{0,1\}$-valued r.v.'s with $P\left(X_{n}=0\right)=P_{0} \quad \forall n$ under hypothesis H_{0}, and $P\left(X_{n}=0\right)=\frac{1}{2} \quad \forall n$ under hypothesis H_{1}. Here, P_{0} is a r.v. with values in the set $\left\{\frac{1}{4}, \frac{3}{4}\right\}$, and satisfying $P\left(P_{0}=1 / 4\right)=1 / 4$. The observations consist of a sequence $\left\{Y_{n}\right\}_{n=1}^{N}$ of r.v.'s where $Y_{1}=0$ a.s., and

$$
Y_{n+1}=Y_{n} \oplus X_{n}, n=1,2, \ldots, N-1
$$

with \oplus denoting addition modulo 2 .
(a) Determine a likelihood ratio test (LRT) for testing H_{0} vs. H_{1}. What is the test statistic?
(b) Under H_{0}, determine the MAP estimate of P_{0} given Y_{1}, \ldots, Y_{n} in terms of the test statistic of part (a).
2. Consider the following hypothesis testing problem:

$$
\begin{aligned}
& H_{0}: Y \sim f_{0}(y)= \begin{cases}1-|y|, & |y| \leq 1 \\
0, & |y|>1\end{cases} \\
& H_{1}: Y \sim f_{1}(y)= \begin{cases}\frac{2-|y|}{4}, & |y| \leq 2 \\
0, & |y|>2\end{cases}
\end{aligned}
$$

Given that deciding H_{0} when H_{1} is true costs twice as much as deciding H_{1} when H_{0} is true, and that correct decisions cost nothing, and further that $P(H=1)=p, p \epsilon(0,1)$, find the Bayes' decision rule as a function of p.
3. Let $\left\{Z_{n}\right\}_{n=1}^{\infty}$ be a sequence of i.i.d. $\{0,1\}$-valued r.v.'s with $P\left(Z_{n}=0\right)=p_{0} \quad \forall n$ under H_{0}, and $P\left(Z_{n}=0\right)=p_{1} \quad \forall n$ under H_{1}. Assume that $0<p_{0}, p_{1}<1, p_{0} \neq$ p_{1}, p_{0} is known, and p_{1} is an unknown constant. The observations consist of a sequence $\left\{Y_{n}\right\}_{n=1}^{N}$ of r.v.'s, where

$$
Y_{1}=0 \text { a.s., } \quad Y_{n+1}=Y_{n} \oplus Z_{n}, n=1,2, \ldots,(N-1) .
$$

with \oplus denoting addition modulo 2 .
(a) Construct a LRT for testing H_{0} vs. H_{1}, and determine the test statistic.
(b) What are the requirements for p_{0} and p_{1} for a UMP test to exist?
4. Consider the following binary hypothesis testing problem. Under $H_{0}, Y \sim$ Rayleigh with known parameter $\sigma_{0}^{2}(>0)$, whereas under $H_{1}, Y \sim$ Rayleigh with unknown (deterministic) parameter $\sigma_{1}^{2}(>0)$ lying in the set $I \subseteq(0, \infty)$.
Is there a UMP test for H_{0} vs. H_{1} when
(a) $I=\left(\sigma_{0}^{2},+\infty\right)$
(b) $I=\left(0, \sigma_{0}^{2}\right) \bigcup\left(\sigma_{0}^{2},+\infty\right)$
(c) $I=\left(0, \sigma_{0}^{2}\right)$
5. Consider the following hypotheses:

$$
\begin{aligned}
& H_{0}: \text { coin is fair, } P(\text { head })=1 / 2 \\
& H_{1}: \text { coin is biased, } P(\text { head })=p, p \epsilon(1 / 2,1)
\end{aligned}
$$

A decision has to be made on the basis of N independent tosses of the coin. For $1 \leq$ $N<\infty$, find the LRT and identify the statistic S_{N}. Find the probability distribution of S_{N} under each hypothesis. For a Neyman-Pearson test with $p_{F} \leq \alpha$, find the smallest number of trials (i.e., coin tosses).
6. Consider the following hypothesis testing problem:

$$
\begin{aligned}
& H_{0}: Y_{i}=N_{i}, i=1, \ldots, K \\
& H_{1}: Y_{i}=s_{i}+N_{i}, i=1, \ldots, K
\end{aligned}
$$

where $\left\{N_{i}\right\}_{i=1}^{K}$ is a sequence of zero mean \mathbb{R}-valued Gaussian r.v.'s with $E\left[N_{i} N_{j}\right]=$ $\min \{i, j\}$. For a given $p_{F} \leq \alpha$, find the Neyman-Pearson test for the following cases:
(a) $s_{i} \equiv 1, \quad i=1, \ldots, K$;
(b) $s_{i}=i, \quad i=1, \ldots, K$.

Calculate p_{D} in each case.
7. It is known that one of two coins is fair and that the other has a probability θ of coming up heads when flipped - here θ is unknown and deterministic, $\theta \in(0,1), \theta \neq 1 / 2$.

The coins are tossed simultaneously and independently to produce an independent sequence of samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{N}, Y_{N}\right)$, where X_{i} and Y_{i} are each 0 or 1 according to whether the respective coin toss is a tail or a head. You are required to identify the fair coin.
(a) Formulate the problem as one of binary hypothesis testing and determine the generalized likelihood ratio test. What is the test statistic?
(b) Determine the condition under which the test is UMP. What is the test statistic now?
(c) In part (b), assuming the MPE criterion, what is the probability of a false alarm?

