ENEE 621

SPRING 2016

DETECTION AND ESTIMATION THEORY

MEAN-SQUARE ESTIMATION

1 The basic setting

Throughout, p and k are arbitrary positive integers. Let the random parameter ϑ be modelled as an \mathbb{R}^{p}-valued rv, while the observation rv \boldsymbol{Y} is an \mathbb{R}^{k}-valued rv. Here the family of distributions $\left\{F_{\theta}, \theta \in \Theta\right\}$ on \mathbb{R}^{k} is interpreted as conditional distributions in the sense that

$$
\mathbb{P}[\boldsymbol{Y} \leq \boldsymbol{y} \mid \vartheta=\theta]=F_{\theta}(\boldsymbol{y}), \quad \begin{aligned}
& \boldsymbol{y} \in \mathbb{R}^{k} \\
& \\
& \theta \in \Theta
\end{aligned}
$$

We assume that the rv ϑ is a second-order rv, namely,

$$
\mathbb{E}\left[\left|\vartheta_{i}\right|^{2}\right]<\infty, \quad i=1, \ldots, p
$$

We shall use $\mathcal{B}(k ; p)$ to denote the collection of all Borel mappings $\mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$. With $r \geq 1$, let $\mathcal{G}_{r}(p ; \boldsymbol{Y})$ denote the collection of all estimators for ϑ on the basis of \boldsymbol{Y} with finite $r^{\text {th }}$ moment. Formally,

$$
\mathcal{G}_{r}(p ; \boldsymbol{Y})=\left\{g \in \mathcal{B}(k ; p): \mathbb{E}\left[\left|g_{i}(\boldsymbol{Y})\right|^{r}\right]<\infty, \quad i=1, \ldots, p\right\} .
$$

We shall also introduce $\mathcal{L}(k ; p)$ as the collection of affine estimators for ϑ on the basis of \boldsymbol{Y}. Thus, the estimator g in $\mathcal{B}(k ; p)$ is an affine estimator in $\mathcal{L}(k ; p)$ if it takes the form

$$
g(\boldsymbol{y})=A \boldsymbol{y}+\boldsymbol{b}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

for some $p \times k$ matrix A and a vector \boldsymbol{b} in \mathbb{R}^{p}.
The following easy fact will be found handy in a number of places.
Fact 1.1 With scalars a and b, if

$$
a t+b t^{2} \geq 0, \quad t \in \mathbb{R}
$$

then necessarily $a=0$.

Proof. It is plain that

$$
a+b t \geq 0, \quad t>0
$$

and

$$
-a+b|t| \geq 0, \quad t<0
$$

Letting t go to zero in both sets of inequalities we find that $a \geq 0$ and $a \leq 0$ both hold, hence $a=0$.

2 Minimum Mean Square Error (MMSE) Estimation

The MMSE problem can be formulated as follows: Find g^{\star} in $\mathcal{G}_{2}(k ; \boldsymbol{Y})$ such that

$$
\begin{equation*}
\mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right], \quad g \in \mathcal{G}_{2}(k ; \boldsymbol{Y}) . \tag{1}
\end{equation*}
$$

Any estimator g^{\star} in $\mathcal{G}_{2}(k ; \boldsymbol{Y})$ which satisfies (1) is known as a MMSE estimator of ϑ on the basis of \boldsymbol{Y}.

Theorem 2.1 The estimator g^{\star} in $\mathcal{G}_{2}(p ; \boldsymbol{Y})$ satisfies

$$
\mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right], \quad g \in \mathcal{G}_{2}(p ; \boldsymbol{Y})
$$

if and only if the Orthogonality Principle

$$
\begin{equation*}
\mathbb{E}\left[\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)^{\prime} h(\boldsymbol{Y})\right]=0, \quad h \in \mathcal{G}_{2}(p ; \boldsymbol{Y}) \tag{2}
\end{equation*}
$$

holds.
This characterization is geometric in nature, and points to g^{\star} as the projection of ϑ on the subspace of second-order rvs

$$
\left\{g(\boldsymbol{Y}): g \in \mathcal{G}_{2}(p ; \boldsymbol{Y})\right\}
$$

This is a subspace of $L_{2}\left((\Omega, \mathcal{F}, \mathbb{P}) ; \mathbb{R}^{p}\right)$, the space of all second-order \mathbb{R}^{p}-valued rvs. Orthogonality in $L_{2}\left((\Omega, \mathcal{F}, \mathbb{P}) ; \mathbb{R}^{p}\right)$ is defined by

$$
\mathbb{E}\left[\boldsymbol{\xi}^{\prime} \boldsymbol{\eta}\right]=0, \quad \boldsymbol{\xi}, \boldsymbol{\eta} \in L_{2}\left((\Omega, \mathcal{F}, \mathbb{P}) ; \mathbb{R}^{p}\right)
$$

The Orthogonality Principle (2) can be restated as saying that the error $\vartheta-g^{\star}(\boldsymbol{Y})$ is orthogonal to the subspace $\left\{g(\boldsymbol{Y}): g \in \mathcal{G}_{2}(p ; \boldsymbol{Y})\right\}$.

As an immediate consequence of Theorem 2.1 we have the following uniqueness result.

Corollary 2.1 If g_{1}^{\star} and g_{2}^{\star} are estimators in $\mathcal{G}_{2}(p ; \boldsymbol{Y})$ such that

$$
\mathbb{E}\left[\left\|\vartheta-g_{i}^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right], \quad g \in \mathcal{G}_{2}(p ; \boldsymbol{Y})
$$

for each $i=1,2$, then we have

$$
\mathbb{P}\left[g_{1}^{\star}(\boldsymbol{Y})=g_{2}^{\star}(\boldsymbol{Y})\right]=1 .
$$

Proof. Use the Orthogonality Principle (2) with $h=g_{1}^{\star}-g_{2}^{\star}$ for both g_{1}^{\star} and g_{2}^{\star}.

Basic ideas behind the proof of Theorem 2.1

With estimator g in $\mathcal{G}_{2}(p ; \boldsymbol{Y})$, note that

$$
\begin{aligned}
\mathbb{E}[& {\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right] } \\
= & \mathbb{E}\left[(\vartheta-g(\boldsymbol{Y}))^{\prime}(\vartheta-g(\boldsymbol{Y}))\right] \\
= & \mathbb{E}\left[\left(\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)+\left(g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right)\right)^{\prime}\left(\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)+\left(g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right)\right)\right] \\
= & \mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)^{\prime}\left(g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right)\right] \\
& \quad+\mathbb{E}\left[\left\|g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right\|^{2}\right]
\end{aligned}
$$

so that

$$
\begin{align*}
& \mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right] \\
= & \mathbb{E}\left[\left\|g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)^{\prime}\left(g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right)\right] . \tag{3}
\end{align*}
$$

If g^{\star} in $\mathcal{G}_{2}(p ; \boldsymbol{Y})$ satisfies the Optimality Principle (2), then the equality (3) implies

$$
\mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right]=\mathbb{E}\left[\left\|g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right\|^{2}\right]
$$

since $g-g^{\star}$ is an element of $\mathcal{G}_{2}(p ; \boldsymbol{Y})$ as both g^{\star} and g are. It follows that

$$
\mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\left\|\vartheta-g^{\star}(\boldsymbol{Y})\right\|^{2}\right] \geq 0, \quad g \in \mathcal{G}_{2}(p ; \boldsymbol{Y})
$$

and g^{\star} is an MMSE estimator.
Conversely, if g^{\star} is an MMSE estimator, then (3) implies

$$
\mathbb{E}\left[\left\|g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)^{\prime}\left(g^{\star}(\boldsymbol{Y})-g(\boldsymbol{Y})\right)\right] \geq 0
$$

for every g element of $\mathcal{G}_{2}(p ; \boldsymbol{Y})$. Thus, with h an arbitrary element of $\mathcal{G}_{2}(p ; \boldsymbol{Y})$ and t in \mathbb{R}, consider the estimator $g_{t}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ given by

$$
g_{t}(\boldsymbol{y})=g^{\star}(\boldsymbol{t})+t h(\boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

If is plain that g_{t} is also an element of $\mathcal{G}_{2}(p ; \boldsymbol{Y})$. Applying the last inequality with $g=g_{t}$ we conclude that

$$
t^{2} \mathbb{E}\left[\|g(\boldsymbol{Y})\|^{2}\right]+2 t \mathbb{E}\left[\left(\vartheta-g^{\star}(\boldsymbol{Y})\right)^{\prime} h(\boldsymbol{Y})\right] \geq 0, \quad t \in \mathbb{R}
$$

and Fact 1.1 immediately leads to the Optimality Principle (2).

To identify the MMSE estimator we focus on the following problem: With $\boldsymbol{\xi}$ be a second-order \mathbb{R}^{p}-valued rv, we seek \boldsymbol{a}^{\star} in \mathbb{R}^{p} such that

$$
\mathbb{E}\left[\left\|\boldsymbol{\xi}-\boldsymbol{a}^{\star}\right\|^{2}\right] \leq \mathbb{E}\left[\|\boldsymbol{\xi}-\boldsymbol{a}\|^{2}\right], \quad \boldsymbol{a} \in \mathbb{R}^{p}
$$

The solution to this problem is well known to be unique, and is given by

$$
\boldsymbol{a}^{\star}=\mathbb{E}[\boldsymbol{\xi}] .
$$

Returning to the MMSE problem, we recall that

$$
\mathbb{E}\left[\|\vartheta-g(\boldsymbol{Y})\|^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\|\vartheta-\boldsymbol{a}\|^{2} \mid \boldsymbol{Y}=\boldsymbol{y}\right]_{\boldsymbol{y}=\boldsymbol{Y}, \boldsymbol{a}=g(\boldsymbol{Y})}\right]
$$

for every estimator g in $\mathcal{G}_{2}(p ; \boldsymbol{Y})$. This fact readily leads to concluding

$$
g^{\star}(\boldsymbol{y})=\mathbb{E}[\vartheta \mid \boldsymbol{Y}=\boldsymbol{y}], \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

It is customary to write

$$
g^{\star}(\boldsymbol{Y})=\mathbb{E}[\vartheta \mid \boldsymbol{Y}]
$$

where the right handside is understood as the conditional expectation of the rv ϑ given the σ-field generated by the $\mathrm{rv} \boldsymbol{Y}$. The reason to proceed via the Orthogonality Principle is to show the parallel with the next problem where only affine estimators are considered.

3 Linear Mean Square Error (LMSE) Estimation

Assume that the observation rv \boldsymbol{Y} is also a second-order rv, i.e.,

$$
\mathbb{E}\left[\left|Y_{j}\right|^{2}\right]<\infty, \quad j=1, \ldots, k
$$

The LMSE problem can be formulated as follows: Find ℓ^{\star} in $\mathcal{L}(k ; p)$ such that

$$
\mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k ; p) .
$$

We refer to this affine estimator ℓ^{\star} in $\mathcal{L}(k ; p)$ as the Linear Mean Square Error (LMSE) estimator of ϑ on the basis of \boldsymbol{Y}. It is characterized by the following version of the Orthogonality Principle.

Theorem 3.1 The estimator ℓ^{\star} in $\mathcal{L}(k ; p)$ satisfies

$$
\mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k ; p)
$$

if and only if the Orthogonality Principle

$$
\begin{equation*}
\mathbb{E}\left[\left(\vartheta-\ell^{\star}(\boldsymbol{Y})\right)^{\prime} h(\boldsymbol{Y})\right]=0, \quad h \in \mathcal{L}(k ; p) \tag{4}
\end{equation*}
$$

holds.
This characterization is also geometric in nature, pointing to the LMSE estimator to ℓ^{\star} as the projection of ϑ on the subspace of second-order rvs

$$
\{\ell(\boldsymbol{Y}): \ell \in \mathcal{L}(k ; p))\}
$$

This is a also subspace of $L_{2}\left((\Omega, \mathcal{F}, \mathbb{P}) ; \mathbb{R}^{p}\right)$, with the Orthogonality Principle (4) stating that the error $\vartheta-g^{\star}(\boldsymbol{Y})$ is orthogonal to the subspace $\left.\{\ell(\boldsymbol{Y}): \ell \in \mathcal{L}(k ; p))\right\}$.

Basic ideas behind the proof of Theorem 3.1

With affine estimator ℓ in $\mathcal{L}(k ; p)$, this time we note that

$$
\begin{aligned}
& \mathbb{E}[{\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right] } \\
&=\mathbb{E}\left[(\vartheta-\ell(\boldsymbol{Y}))^{\prime}(\vartheta-\ell(\boldsymbol{Y}))\right] \\
&= \mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-\ell^{\star}(\boldsymbol{Y})\right)^{\prime}\left(\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right)\right] \\
&+\mathbb{E}\left[\left\|\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right\|^{2}\right]
\end{aligned}
$$

so that

$$
\begin{align*}
& \mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right] \\
= & \mathbb{E}\left[\left\|\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-\ell^{\star}(\boldsymbol{Y})\right)^{\prime}\left(\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right)\right] . \tag{5}
\end{align*}
$$

If ℓ^{\star} in $\mathcal{L}_{2}(k ; p)$ satisfies the Optimality Principle (4), then the equality (5) implies

$$
\mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right]=\mathbb{E}\left[\left\|\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right\|^{2}\right]
$$

since $\ell-\ell^{\star}$ is an element of $\mathcal{L}(k ; p)$ as both ℓ^{\star} and ℓ are. It follows that

$$
\mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right]-\mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right] \geq 0, \quad \ell \in \mathcal{L}(k ; p)
$$

and ℓ^{\star} is an LMSE estimator.
Conversely, if ℓ^{\star} is an LMSE estimator, then (5) implies

$$
\mathbb{E}\left[\left\|\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right\|^{2}\right]+2 \mathbb{E}\left[\left(\vartheta-\ell^{\star}(\boldsymbol{Y})\right)^{\prime}\left(\ell^{\star}(\boldsymbol{Y})-\ell(\boldsymbol{Y})\right)\right] \geq 0
$$

for every ℓ element of $\mathcal{L}(k ; p)$. Thus, with h an arbitrary element of $\mathcal{L}(k ; p)$ and t in \mathbb{R}, consider the estimator $\ell_{t}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ given by

$$
\ell_{t}(\boldsymbol{y})=\ell^{\star}(\boldsymbol{t})+t h(\boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

If is plain that g_{t} is also an element of $\mathcal{L}(k ; p)$. Applying the last inequality with $\ell=\ell_{t}$ we conclude that

$$
t^{2} \mathbb{E}\left[\|h(\boldsymbol{Y})\|^{2}\right]+2 t \mathbb{E}\left[\left(\vartheta-\ell^{\star}(\boldsymbol{Y})\right)^{\prime} h(\boldsymbol{Y})\right] \geq 0, \quad t \in \mathbb{R}
$$

and Fact 1.1 immediately leads to the Optimality Principle (4).

4 Algebraic characterization of the LMSE estimators

The main results concerning the existence and algebraic characterization of the LMSE estimators are given next. First some notation:We shall write

$$
\boldsymbol{\mu}_{Y}=\mathbb{E}[\boldsymbol{Y}] \quad \text { and } \quad \boldsymbol{\mu}_{\vartheta}=\mathbb{E}[\vartheta] .
$$

Next, the appropriate covariance matrices are given by

$$
\Sigma_{\vartheta Y}=\operatorname{Cov}[\vartheta, \boldsymbol{Y}]=\mathbb{E}\left[\left(\vartheta-\boldsymbol{\mu}_{\vartheta}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)^{\prime}\right]
$$

and

$$
\Sigma_{Y}=\operatorname{Cov}[\boldsymbol{Y}]=\mathbb{E}\left[\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)^{\prime}\right]
$$

The matrices $\Sigma_{\vartheta Y}$ and Σ_{Y} are $p \times k$ and $k \times k$ matrices, respectively.
Theorem 4.1 There always exists an affine estimator ℓ^{\star} in $\mathcal{L}(k ; p)$ which satisfies

$$
\mathbb{E}\left[\left\|\vartheta-\ell^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k ; p) .
$$

With such an estimator $\ell^{\star}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ being given by

$$
\ell^{\star}(\boldsymbol{y})=A^{\star} \boldsymbol{y}+\boldsymbol{b}^{\star}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

for some $p \times k$ matrix A^{\star} and a vector \boldsymbol{b}^{\star} in \mathbb{R}^{p}, then A^{\star} and \boldsymbol{b}^{\star} satisfy the normal equations

$$
\begin{equation*}
A^{\star} \Sigma_{Y}=\Sigma_{\vartheta Y} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{b}^{\star}=\boldsymbol{\mu}_{\vartheta}-A^{\star} \boldsymbol{\mu}_{Y} . \tag{7}
\end{equation*}
$$

The normal equations (6)-(7) have a unique solution when Σ_{Y} is invertible.
Corollary 4.1 If Σ_{Y} is invertible, then the LMSE estimator ℓ^{\star} is uniquely determined by

$$
\ell^{\star}(\boldsymbol{y})=\boldsymbol{\mu}_{\vartheta}+\Sigma_{\vartheta Y} \Sigma_{Y}^{-1}\left(\boldsymbol{y}-\boldsymbol{\mu}_{Y}\right), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

If Σ_{Y} is not invertible, there is is still uniqueness in the following sense; see analogy with Corollary 2.1.

Corollary 4.2 Let ℓ_{1}^{\star} and ℓ_{2}^{\star} be affine estimators in $\mathcal{L}(k ; p)$ such that

$$
\mathbb{E}\left[\left\|\vartheta-\ell_{i}^{\star}(\boldsymbol{Y})\right\|^{2}\right] \leq \mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right], \quad \ell \in \mathcal{L}(k ; p)
$$

for each $i=1,2$, then we have

$$
\mathbb{P}\left[\ell_{1}^{\star}(\boldsymbol{Y})=\ell_{2}^{\star}(\boldsymbol{Y})\right]=1
$$

In analogy with the notation used for MMSE estimators, we shall write

$$
\ell^{\star}(\boldsymbol{y})=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}=\boldsymbol{y}], \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

and

$$
\ell^{\star}(\boldsymbol{Y})=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}] .
$$

This last rv is unambiguously defined (in the a.s. sense) in view of Corollary 4.2.

5 A proof of Theorem 4.1

The proof has three parts:

Part 1: Given the $p \times k$ matrix A, there is always a best vector $\boldsymbol{b}=\boldsymbol{b}(A)$ in $\mathbb{R}^{p} \quad$ For any $p \times k$ matrix A and vector \boldsymbol{b} in \mathbb{R}^{p}, note that

$$
\begin{align*}
& \mathbb{E}\left[\|\vartheta-(A \boldsymbol{Y}+\boldsymbol{b})\|^{2}\right] \\
& \quad=\mathbb{E}\left[\left\|\left(\vartheta-\boldsymbol{\mu}_{\vartheta}\right)-A\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)+\left(\boldsymbol{\mu}_{\vartheta}-\left(A \boldsymbol{\mu}_{Y}+\boldsymbol{b}\right)\right)\right\|^{2}\right] \\
& \quad=\mathbb{E}\left[\left\|\left(\vartheta-\boldsymbol{\mu}_{\vartheta}\right)-A\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right\|^{2}\right]+\left\|\boldsymbol{\mu}_{\vartheta}-\left(A \boldsymbol{\mu}_{Y}+\boldsymbol{b}\right)\right\|^{2} \\
& \quad \geq \mathbb{E}\left[\left\|\left(\vartheta-\boldsymbol{\mu}_{\vartheta}\right)-A\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right\|^{2}\right] \tag{8}
\end{align*}
$$

if we select $\boldsymbol{b}=\boldsymbol{b}(A)$ with

$$
\boldsymbol{b}(A)=\boldsymbol{\mu}_{\vartheta}-A \boldsymbol{\mu}_{Y}
$$

so that (7) holds.
Part 2: The optimal $p \times k$ matrix A is characterized by the normal equations (6)-(7) Part 1 shows that any LMSE estimator $\ell^{\star}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ is of the form

$$
\ell^{\star}(\boldsymbol{y})=A^{\star} \boldsymbol{y}+\boldsymbol{b}^{\star}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

with \boldsymbol{b}^{\star} necessarily given by

$$
\boldsymbol{b}^{\star}=\boldsymbol{\mu}_{\vartheta}-A^{\star} \boldsymbol{\mu}_{Y} .
$$

The Orthogonality Principle states that A^{\star} and \boldsymbol{b}^{\star} are completely characterized by

$$
\mathbb{E}\left[\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)^{\prime}(C \boldsymbol{Y}+\boldsymbol{c})\right]=0
$$

for every $p \times k$ matrix C and and every \boldsymbol{c} in \mathbb{R}^{p}. This last relation is equivalent to

$$
\mathbb{E}\left[\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)^{\prime} C \boldsymbol{Y}\right]=0
$$

since $\mathbb{E}\left[\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right]=\mathbf{0}_{p}$ - This fact is just the fact, established later (in Section 6) that the LMSE estimator is unbiased in the sense that

$$
\mathbb{E}[\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]]=\mathbb{E}[\vartheta] .
$$

But, by elementary properties of the trace operator, we get

$$
\begin{align*}
\mathbb{E}\left[\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)^{\prime} C \boldsymbol{Y}\right] & =\mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)^{\prime} C \boldsymbol{Y}\right)\right] \\
& =\mathbb{E}\left[\operatorname{Tr}\left(C \boldsymbol{Y}\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)^{\prime}\right)\right] \\
& =\mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right)(C \boldsymbol{Y})^{\prime}\right)\right] \\
& =\mathbb{E}\left[\operatorname{Tr}\left(\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right) \boldsymbol{Y}^{\prime} C^{\prime}\right)\right] \\
& =\operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right) \boldsymbol{Y}^{\prime} C^{\prime}\right]\right) \\
& =\operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta-\left(A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}\right)\right) \boldsymbol{Y}^{\prime}\right] C^{\prime}\right) \\
& =\operatorname{Tr}\left(\mathbb{E}\left[\left(\vartheta-\boldsymbol{\mu}_{\vartheta}-A^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right) \boldsymbol{Y}^{\prime}\right] C^{\prime}\right) \\
& =\operatorname{Tr}\left(\left(\Sigma_{\vartheta Y}-A^{\star} \Sigma_{Y}\right) C^{\prime}\right) \tag{9}
\end{align*}
$$

$$
\operatorname{Tr}\left(\left(\Sigma_{\vartheta Y}-A^{\star} \Sigma_{Y}\right) C^{\prime}\right)=0
$$

Since the $p \times k$ matrix C is arbitrary, we conclude that

$$
\Sigma_{\vartheta Y}-A^{\star} \Sigma_{Y}=\boldsymbol{O}_{p \times k}
$$

and the normal equations (6) are now established.

Part 3: The existence of the optimal $p \times k$ matrix $A^{\star} \quad$ If Σ_{Y} is invertible, then the normal equations can be solved. Just take

$$
A^{\star}=\Sigma_{\vartheta Y}\left(\Sigma_{Y}\right)^{-1}
$$

If Σ_{Y} is not invertible, then proceed as follows: Since Σ_{Y} is a covariance matrix, it is symmetric and positive semi-definite, hence it can always be diagonalized: There exists a $k \times k$ matrix H such that

$$
H^{\prime} \Sigma_{Y} H=D
$$

where

$$
H^{\prime} H=\boldsymbol{I}_{k} \quad\left(\text { hence } H^{\prime}=H^{-1}\right)
$$

and D is a $k \times k$ diagonal matrix. Therefore, $\Sigma_{Y}=H D H^{-1}$, and the normal equations can now be rewritten as

$$
A^{\star} \Sigma_{Y}=A^{\star}\left(H D H^{-1}\right)=\Sigma_{\vartheta Y},
$$

or equivalently,

$$
A^{\star} H D=\Sigma_{\vartheta Y} H
$$

Thus, with arbitrary $i=1, \ldots, p$ and $j=1, \ldots, k$, entrywise we have

$$
\left(\left(A^{\star} H\right) D\right)_{i j}=\left(\Sigma_{\vartheta Y} H\right)_{i j},
$$

whence

$$
\sum_{\ell=1}^{k}\left(A^{\star} H\right)_{i \ell} D_{\ell \ell} \delta_{\ell j}=\left(\Sigma_{\vartheta Y} H\right)_{i j}
$$

Thus,

$$
\begin{equation*}
\left(A^{\star} H\right)_{i j} D_{j j}=\left(\Sigma_{\vartheta Y} H\right)_{i j} . \tag{10}
\end{equation*}
$$

If $D_{j j} \neq 0$, it follows that

$$
\left(\boldsymbol{a}_{i}^{\star}\right)^{\prime} \boldsymbol{h}_{j}=\frac{1}{D_{j j}}\left(\Sigma_{\vartheta Y} H\right)_{i j} .
$$

6 Properties of LMSE estimators

These properties are easy consequences of the Orthogonality Principle.
Property A (LMSE estimators are unbiased) \qquad
We have

$$
\mathbb{E}[\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]]=\mathbb{E}[\vartheta]
$$

With \boldsymbol{v} arbitrary in \mathbb{R}^{p}, apply the Orthogonality Principle with the (degenerate) affine estimator $h_{\boldsymbol{v}}$ in $\mathcal{L}(k ; p)$ given by

$$
h \boldsymbol{v}(\boldsymbol{y})=\boldsymbol{v}, \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

This yields

$$
\begin{equation*}
0=\mathbb{E}\left[(\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}])^{\prime} \boldsymbol{v}\right]=(\mathbb{E}[\vartheta]-\mathbb{E}[\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]])^{\prime} \boldsymbol{v} \tag{11}
\end{equation*}
$$

The result follows since v is arbitrary.
Property B (Marginalization)

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]_{i}=\widehat{\mathbb{E}}\left[\vartheta_{i} \mid \boldsymbol{Y}\right], \quad i=1, \ldots, p .
$$

For each affine estimator ℓ in $\mathcal{L}(k ; p)$, we have the decomposition

$$
\mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right]=\sum_{i=1}^{p} \mathbb{E}\left[\left|\vartheta_{i}-\ell_{i}(\boldsymbol{Y})\right|^{2}\right] .
$$

We have

$$
\ell(\boldsymbol{y})=A \boldsymbol{y}+\boldsymbol{b}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

where A is a $p \times k$ matrix and \boldsymbol{b} an element of \mathbb{R}^{p}. Therefore, writing

$$
A=\left[\begin{array}{c}
\boldsymbol{a}_{1}^{\prime} \\
\vdots \\
\boldsymbol{a}_{p}^{\prime}
\end{array}\right]
$$

with $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{p}$ elements of \mathbb{R}^{k}, we note that

$$
\ell_{i}(\boldsymbol{y})=(A \boldsymbol{y})_{i}+b_{i}=\boldsymbol{a}_{i}^{\prime} \boldsymbol{y}+b_{i}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

It follows

$$
\begin{align*}
\mathbb{E}\left[\|\vartheta-\ell(\boldsymbol{Y})\|^{2}\right] & =\sum_{i=1}^{p} \mathbb{E}\left[\left|\vartheta_{i}-\boldsymbol{a}_{i}^{\prime} \boldsymbol{Y}-b_{i}\right|^{2}\right] \\
& \geq \sum_{i=1}^{p} \mathbb{E}\left[\left|\vartheta_{i}-\widehat{\mathbb{E}}\left[\vartheta_{i} \mid \boldsymbol{Y}\right]\right|^{2}\right] \tag{12}
\end{align*}
$$

and the desired result is straightforward by uniqueness.

Property C (Matrix version of the Orthogonality Principle)

\qquad
With q a positive integer, it holds that

$$
\mathbb{E}\left[(\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]) \ell(\boldsymbol{Y})^{\prime}\right]=\boldsymbol{O}_{p \times q}, \quad \ell \in \mathcal{L}(k ; q)
$$

Any ℓ in $\mathcal{L}(k ; q)$ can be written as

$$
\ell(\boldsymbol{y})=B \boldsymbol{y}+\boldsymbol{c}, \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

with $q \times k$ matrix B and vector \boldsymbol{c} in \mathbb{R}^{q}

Property D

If ϑ is a.s. constant, then

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]=\vartheta \quad \mathbb{P}-\text { a.s. }
$$

An easy consequence of the Orthogonality Principle as we note that

$$
\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]=\ell(\boldsymbol{Y}) \quad \mathbb{P}-\text { a.s. }
$$

for some ℓ in $\mathcal{L}(k ; p)$.
Property E (Linearity)
With positive integer q, we have

$$
\widehat{\mathbb{E}}[M \vartheta+\boldsymbol{m} \mid \boldsymbol{Y}]=M \widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\boldsymbol{m} \quad \mathbb{P}-\text { a.s. }
$$

where M is a $q \times p$ matrix and \boldsymbol{m} is an element of \mathbb{R}^{q}.

Property F

If the rvs ϑ and \boldsymbol{Y} are related through

$$
\vartheta=C \boldsymbol{Y}+\boldsymbol{c} \quad \mathbb{P}-\text { a.s. }
$$

where C is a $p \times k$ matrix and \boldsymbol{C} is an element of \mathbb{R}^{p}, then

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]=\vartheta \quad \mathbb{P} \text {-a.s. }
$$

Property G

For every \boldsymbol{d} in \mathbb{R}^{k}, we have

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}+\boldsymbol{d}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}] \quad \mathbb{P}-\text { a.s. }
$$

This property is an immediate consequence of the Orthogonality Principle upon noting the following equivalence: For every ℓ in $\mathcal{L}(k ; p)$, there exists a unique $\tilde{\ell}$ in $\mathcal{L}(k ; p)$ such that

$$
\ell(\boldsymbol{y}+\boldsymbol{d})=\tilde{\ell}(\boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

Conversely, for every $\tilde{\ell}$ in $\mathcal{L}(k ; p)$, there exists a unique ℓ in $\mathcal{L}(k ; p)$ such that

$$
\tilde{\ell}(\boldsymbol{y})=\ell(\boldsymbol{y}+\boldsymbol{d}), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

Just take

$$
\ell(\boldsymbol{y})=\tilde{\ell}(\boldsymbol{y}-\boldsymbol{d}), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

Property H

With D an invertible $k \times k$ matrix, we have

$$
\widehat{\mathbb{E}}[\vartheta \mid D \boldsymbol{Y}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}] \quad \mathbb{P}-\text { a.s. }
$$

It follows from Properties G and H that

$$
\widehat{\mathbb{E}}[\vartheta \mid D \boldsymbol{Y}+\boldsymbol{d}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}] \quad \mathbb{P} \text { - a.s. }
$$

for any invertible $k \times k$ matrix D and every \boldsymbol{d} in \mathbb{R}^{k}.
Property H is an immediate consequence of the following equivalence: For every ℓ in $\mathcal{L}(k ; p)$, the estimator $\tilde{\ell}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ given by

$$
\tilde{\ell}(\boldsymbol{y})=\ell(D \boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^{k}
$$

is an affine estimator in $\mathcal{L}(k ; p)$. Conversely, for every $\tilde{\ell}$ in $\mathcal{L}(k ; p)$, there exists a unique affine estimator ℓ in $\mathcal{L}(k ; p)$ such that

$$
\tilde{\ell}(\boldsymbol{y})=\ell(D \boldsymbol{y}), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

Just take

$$
\ell(\boldsymbol{y})=\tilde{\ell}\left(D^{-1} \boldsymbol{y}\right), \quad \boldsymbol{y} \in \mathbb{R}^{k} .
$$

Property I

\qquad
If the rvs ϑ and \boldsymbol{Y} are uncorrelated, i.e.,

$$
\Sigma_{\vartheta Y}=\boldsymbol{O}_{p \times k}
$$

then

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]=\mathbb{E}[\vartheta] \quad \mathbb{P}-\text { a.s. }
$$

The Orthogonality Principle states that

$$
\mathbb{E}\left[(\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}])^{\prime} \ell(\boldsymbol{Y})\right]=0, \quad \ell \in \mathcal{L}(k ; p) .
$$

We note that

$$
\begin{align*}
\mathbb{E}\left[\vartheta^{\prime} \ell(\boldsymbol{Y})\right] & =\mathbb{E}\left[(\vartheta-\mathbb{E}[\vartheta])^{\prime} \ell(\boldsymbol{Y})\right]+\mathbb{E}\left[\mathbb{E}[\vartheta]^{\prime} \ell(\boldsymbol{Y})\right] \\
& =\mathbb{E}\left[\mathbb{E}[\vartheta]^{\prime} \ell(\boldsymbol{Y})\right] \tag{13}
\end{align*}
$$

because the the rvs ϑ and \boldsymbol{Y} are uncorrelated. The Orthogonality Principle now takes the form

$$
\mathbb{E}\left[(\mathbb{E}[\vartheta]-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}])^{\prime} \ell(\boldsymbol{Y})\right]=0, \quad \ell \in \mathcal{L}(k ; p)
$$

and the conclusion follows.
The next three properties involve the \mathbb{R}^{k}-valued rv \boldsymbol{Y} and the \mathbb{R}^{m}-valued rv \boldsymbol{Z} with k and m arbitrary positive integers. Both rvs are second-order rvs.

Property J

If the \mathbb{R}^{k}-valued rv \boldsymbol{Y} and the \mathbb{R}^{m}-valued rv \boldsymbol{Z} are uncorrelated, then

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}] \quad \mathbb{P}-\text { a.s. }
$$

whenever

$$
\mathbb{E}[\vartheta]=\mathbf{0}_{p} .
$$

Any affine estimator ℓ in $\mathcal{L}(k+m ; p)$ is of the form

$$
\ell(\boldsymbol{y}, \boldsymbol{z})=A_{y} \boldsymbol{y}+A_{z} \boldsymbol{z}+\boldsymbol{b}, \quad \begin{aligned}
& \boldsymbol{y} \in \mathbb{R}^{k} \\
& \boldsymbol{z} \in \mathbb{R}^{m}
\end{aligned}
$$

where A_{y} and A_{z} are $p \times k$ and $p \times m$ matrices, and \boldsymbol{b} an element in \mathbb{R}^{p}. In particular,

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]=\ell^{\star}(\boldsymbol{Y}, \boldsymbol{Z}) \quad \mathbb{P} \text { - a.s. }
$$

with affine estimator ℓ^{\star} in $\mathcal{L}(k+m ; p)$ of the form

$$
\ell^{\star}(\boldsymbol{y}, \boldsymbol{z})=A_{y}^{\star} \boldsymbol{y}+A_{z}^{\star} \boldsymbol{z}+\boldsymbol{b}^{\star}, \quad \begin{aligned}
& \boldsymbol{y} \in \mathbb{R}^{k} \\
& \boldsymbol{z} \in \mathbb{R}^{m}
\end{aligned}
$$

where A_{y}^{\star} and A_{z}^{\star} are $p \times k$ and $p \times m$ matrices, and \boldsymbol{b}^{\star} an element in \mathbb{R}^{p}. Since $\boldsymbol{\mu}_{\vartheta}$ we recall that \boldsymbol{b}^{\star} is given by

$$
\boldsymbol{b}^{\star}=-A_{y}^{\star} \boldsymbol{\mu}_{Y}-A_{z}^{\star} \boldsymbol{\mu}_{Z}
$$

so that

$$
\ell^{\star}(\boldsymbol{y}, \boldsymbol{z})=A_{y}^{\star}\left(\boldsymbol{y}-\boldsymbol{\mu}_{Y}\right)+A_{z}^{\star}\left(\boldsymbol{z}-\boldsymbol{\mu}_{Z}\right), \quad \begin{array}{r}
\boldsymbol{y} \in \mathbb{R}^{k} \\
\boldsymbol{z} \in \mathbb{R}^{m}
\end{array}
$$

The Orthogonality Principle will read

$$
\begin{equation*}
\mathbb{E}\left[(\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}])^{\prime} \ell(\boldsymbol{Y}, \boldsymbol{Z})\right]=0, \quad \ell \in \mathcal{L}(k+m ; p) \tag{14}
\end{equation*}
$$

With the notation introduced earlier we see that

$$
\begin{align*}
& (\vartheta-\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}])^{\prime} \ell(\boldsymbol{Y}, \boldsymbol{Z}) \\
= & \left(\vartheta-A_{y}^{\star} \boldsymbol{Y}-A_{z}^{\star} \boldsymbol{Z}-\boldsymbol{b}^{\star}\right)^{\prime}\left(A_{y} \boldsymbol{Y}+A_{z} \boldsymbol{Z}+\boldsymbol{b}\right) \\
= & \left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+A_{z} \boldsymbol{Z}+\boldsymbol{b}\right) \\
= & \left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+\boldsymbol{b}\right) \\
& +\left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime} A_{z} \boldsymbol{Z} \tag{15}
\end{align*}
$$

Next, upon taking $A_{z}=\boldsymbol{O}_{p \times m}$ in (15) and using the resulting (14), we conclude that

$$
0=\mathbb{E}\left[\left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+\boldsymbol{b}\right)\right]
$$

$$
\begin{align*}
&= \mathbb{E}\left[\left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+\boldsymbol{b}\right)\right] \\
&-\mathbb{E}\left[\left(A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+\boldsymbol{b}\right)\right] \\
&=\mathbb{E}\left[\left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right)^{\prime}\left(A_{y} \boldsymbol{Y}+\boldsymbol{b}\right)\right] \tag{16}
\end{align*}
$$

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]=A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right) \quad \mathbb{P}-\text { a.s. }
$$

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the basis of \boldsymbol{Y}.

To proceed, take $A_{y}=\boldsymbol{O}_{p \times k}$ and $\boldsymbol{b}=\mathbf{0}_{p}$ in (15) and use the resulting (14). This gives

$$
\begin{align*}
0 & =\mathbb{E}\left[\left(\vartheta-A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime} A_{z} \boldsymbol{Z}\right] \\
& =\mathbb{E}\left[\left(\vartheta-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime} A_{z} \boldsymbol{Z}\right]-\mathbb{E}\left[\left(A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)\right)^{\prime} A_{z} \boldsymbol{Z}\right] \\
& =\mathbb{E}\left[\left(\vartheta-A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right)\right)^{\prime} A_{z} \boldsymbol{Z}\right] \tag{17}
\end{align*}
$$

as we make use of the fact that the rvs \boldsymbol{Y} and \boldsymbol{Z} are uncorrelated. It follows that

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}]=A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right) \quad \mathbb{P}-\text { a.s. }
$$

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the basis of \boldsymbol{Z}.

To conclude the proof we note that

$$
\begin{align*}
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}] & =\ell^{\star}(\boldsymbol{Y}, \boldsymbol{Z}) \\
& =A_{y}^{\star}\left(\boldsymbol{Y}-\boldsymbol{\mu}_{Y}\right)+A_{z}^{\star}\left(\boldsymbol{Z}-\boldsymbol{\mu}_{Z}\right) \\
& =\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}] \quad \mathbb{P}-\text { a.s. } \tag{18}
\end{align*}
$$

as desired.
Property K
If the \mathbb{R}^{k}-valued rv \boldsymbol{Y} and the \mathbb{R}^{m}-valued rv \boldsymbol{Z} are uncorrelated, then

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}]-\mathbb{E}[\vartheta] \quad \mathbb{P} \text {-a.s. }
$$

Property F applied to the zero-mean $\mathrm{rv} \vartheta-\mathbb{E}[\vartheta]$ gives

$$
\widehat{\mathbb{E}}[\vartheta-\mathbb{E}[\vartheta] \mid \boldsymbol{Y}, \boldsymbol{Z}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]-\mathbb{E}[\vartheta] \quad \mathbb{P} \text { - a.s. }
$$

while Property J applied to the zero-mean rv $\vartheta-\mathbb{E}[\vartheta]$ yields

$$
\begin{align*}
\widehat{\mathbb{E}}[\vartheta-\mathbb{E}[\vartheta] \mid \boldsymbol{Y}, \boldsymbol{Z}] & =\widehat{\mathbb{E}}[\vartheta-\mathbb{E}[\vartheta] \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta-\mathbb{E}[\vartheta] \mid \boldsymbol{Z}] \\
& =\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]-\mathbb{E}[\vartheta]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}]-\mathbb{E}[\vartheta] \\
& =\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}]-2 \mathbb{E}[\vartheta] \quad \mathbb{P}-\text { a.s. } \tag{19}
\end{align*}
$$

where the last step follows by Property F. Comparing we get the result.

Property L

More generally, with arbitrary \mathbb{R}^{k}-valued rv \boldsymbol{Y} and \mathbb{R}^{m}-valued rv \boldsymbol{Z}, we have

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}]+\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Z}-\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]]-\mathbb{E}[\vartheta] \quad \mathbb{P} \text {-a.s. }
$$

The rv $\boldsymbol{Z}-\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]$ is known as the (linear) innovations in \boldsymbol{Z} with respect to \boldsymbol{Y}. The rvs \boldsymbol{Y} and $\boldsymbol{Z}-\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]$ are always uncorrelated.

We start by noting that

$$
\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]=A^{\star} \boldsymbol{Y}+\boldsymbol{b}^{\star}
$$

for some $m \times k$ matrix A^{\star} and an element \boldsymbol{b}^{\star} of \mathbb{R}^{m}.
Thus, with

$$
\boldsymbol{V} \equiv \boldsymbol{Z}-\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]
$$

it holds that

$$
\left[\begin{array}{l}
\boldsymbol{Y} \\
\boldsymbol{V}
\end{array}\right]=D\left[\begin{array}{l}
\boldsymbol{Y} \\
\boldsymbol{Z}
\end{array}\right]+\left[\begin{array}{c}
\mathbf{0}_{k} \\
-\boldsymbol{b}^{\star}
\end{array}\right]
$$

with $(m+k) \times(m+k)$ matrix R given by

$$
D=\left[\begin{array}{ll}
\boldsymbol{I}_{k} & \boldsymbol{O}_{k \times m} \\
-A^{\star} & \boldsymbol{I}_{m}
\end{array}\right]
$$

Observe that the equation

$$
\left[\begin{array}{ll}
\boldsymbol{I}_{k} & \boldsymbol{O}_{k \times m} \\
-A^{\star} & \boldsymbol{I}_{m}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{y} \\
\boldsymbol{z}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{0}_{k} \\
\mathbf{0}_{m}
\end{array}\right]
$$

implies

$$
\boldsymbol{I}_{k} \boldsymbol{y}+\boldsymbol{O}_{k \times m} \boldsymbol{z}=\mathbf{0}_{k}
$$

and

$$
-A^{\star} \boldsymbol{y}+\boldsymbol{I}_{m} \boldsymbol{z}=\mathbf{0}_{m} .
$$

The first equation implies $\boldsymbol{y}=\mathbf{0}_{k}$; replacing this fact into the second equation we get $\boldsymbol{z}=\mathbf{0}_{m}$. In other words, $\operatorname{Ker}(D)$ is reduced to the zero vector in \mathbb{R}^{k+m}, and is therefore invertible.

As a result,

$$
\left[\begin{array}{l}
\boldsymbol{Y} \\
\boldsymbol{Z}
\end{array}\right]=D^{-1}\left[\begin{array}{l}
\boldsymbol{Y} \\
\boldsymbol{V}
\end{array}\right]+D^{-1}\left[\begin{array}{c}
\mathbf{0}_{k} \\
-\boldsymbol{b}^{\star}
\end{array}\right] .
$$

Invoking Property G and Property H we conclude that

$$
\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{Z}]=\widehat{\mathbb{E}}[\vartheta \mid \boldsymbol{Y}, \boldsymbol{V}]
$$

and the desired conclusion now follows by Property K since rvs \boldsymbol{Y} and $\boldsymbol{Z}-$ $\widehat{\mathbb{E}}[\boldsymbol{Z} \mid \boldsymbol{Y}]$ are always uncorrelated (as an immediate consequence of the Orthoganility Principle).

7 The Gaussian case

