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DETECTION AND ESTIMATION
THEORY

MEAN-SQUARE ESTIMATION

1 The basic setting

Throughout, p and £ are arbitrary positive integers. Let the random parameter v/
be modelled as an RP-valued rv, while the observation rv Y is an R*-valued rv.
Here the family of distributions {F}, 6 € ©} on R” is interpreted as conditional
distributions in the sense that

y € R¥

We assume that the rv ¢ is a second-order rv, namely,
2 .
E[Wi|]<oo, i=1,...,p.

We shall use B(k; p) to denote the collection of all Borel mappings R* — RP.
With r > 1, let G,.(p; Y') denote the collection of all estimators for ¥ on the basis
of Y with finite 7' moment. Formally,

G(»Y)={9€Bk;p): Ellgs(Y)["] <00, i=1,...,p}.

We shall also introduce L£(k; p) as the collection of affine estimators for ¥ on
the basis of Y. Thus, the estimator g in B(k; p) is an affine estimator in £(k; p) if
it takes the form

9(y) = Ay +b, yecR

for some p x k matrix A and a vector b in RP.
The following easy fact will be found handy in a number of places.

Fact 1.1 With scalars a and b, if
at+bt> >0, teR,

then necessarily a = 0.
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Proof. It is plain that
a+bt>0, t>0

and
—a+Dbt| >0, t<O0.

Letting ¢ go to zero in both sets of inequalities we find that a > 0 and a < 0 both
hold, hence a = 0. [ ]

2 Minimum Mean Square Error (MMSE) Estima-
tion

The MMSE problem can be formulated as follows: Find ¢g* in Go(k; Y') such that

M E[-g ™I <E[l0-g@)IY, g€ hkY).

Any estimator g* in Go(k; Y') which satisfies (1) is known as a MMSE estimator
of ¥ on the basis of Y.

Theorem 2.1 The estimator g* in Go(p; Y') satisfies
Efll0—gW)IF] <E[IIW-g(Y)IF], g€ GmY)

if and only if the Orthogonality Principle

2 E[(0-g"(Y)MY)] =0, heGpY)

holds.

This characterization is geometric in nature, and points to g* as the projection
of 1) on the subspace of second-order rvs

{9(Y): g€ Ga(p;Y)}.

This is a subspace of Ly((€2,
rvs. Orthogonality in Lo ((2,

F,P); RP), the space of all second-order RP-valued
F,P); RP) is defined by

E[gn] =0, &mn e Ly((QF,P)R?).
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The Orthogonality Principle (2) can be restated as saying that the error ¥ — g*(Y")
is orthogonal to the subspace {g(Y') : g € Ga2(p; Y)}.

As an immediate consequence of Theorem 2.1 we have the following unique-
ness result.

Corollary 2.1 If gt and g; are estimators in Go(p; Y') such that
Efll0—g(WIP] <E[IIW-gM)I’], g9€GmY)
foreachi = 1,2, then we have

Plgi(Y) =g3(Y)] = 1.

Proof. Use the Orthogonality Principle (2) with h = g7 — g5 for both g} and g3.
]

Basic ideas behind the proof of Theorem 2.1
With estimator g in Go(p; Y'), note that

so that

E (|0 —g(Y)I*] = E[[|V - g*(YV)I]
3 = Elllg(Y)—g(Y)IF] +2E[(¥ - g"(¥)) (¢"(¥) — g(Y))] -

If g* in Go(p; Y') satisfies the Optimality Principle (2), then the equality (3)
implies

E ([0 —g)I*] —E[llV—g"I*] =E [llg"(¥) — g(Y)|I]
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since g — ¢* is an element of Gy(p; Y') as both g* and g are. It follows that
E[lW—g¥)IP] —E[[IV-g"X)I?] 20, g€ G(niY)

and g* is an MMSE estimator.
Conversely, if g* is an MMSE estimator, then (3) implies

E[lg"(Y) = g(Y)|?] + 2B [(¢ — g*(Y)) (¢"(Y) — g(Y¥))] > 0

for every g element of Go(p; Y'). Thus, with h an arbitrary element of Go(p; Y)
and t in R, consider the estimator g, : R* — RP given by

g/(y) = g*(t) + th(y), yeR~

If is plain that g, is also an element of Go(p; Y'). Applying the last inequality with
g = g we conclude that

CE [lgY)|?] + 2¢E [(¥ — g*(Y))' h(Y)] >0, teR

and Fact 1.1 immediately leads to the Optimality Principle (2).

To identify the MMSE estimator we focus on the following problem: With £ be a
second-order RP-valued rv, we seek a* in RP such that

Ef§—a*] <E[l¢—al’], acR"
The solution to this problem is well known to be unique, and is given by
a*=E].

Returning to the MMSE problem, we recall that

B0 - gV =E[E 19— al’lY =y]y_y q_yy,
for every estimator g in Go(p; Y'). This fact readily leads to concluding
g (y) =EW|Y =y], yeR"
It is customary to write
9" (Y) =E Y]

where the right handside is understood as the conditional expectation of the rv v
given the o-field generated by the rv Y. The reason to proceed via the Orthog-
onality Principle is to show the parallel with the next problem where only affine
estimators are considered.
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3 Linear Mean Square Error (LMSE) Estimation
Assume that the observation rv Y is also a second-order rv, i.e.,
E[|Y;]’] <oo, j=1,....k
The LMSE problem can be formulated as follows: Find ¢* in L(k; p) such that
E (9 —(¥)2] <E[l9— Y7, ¢ Liksp).

We refer to this affine estimator ¢* in L£(k;p) as the Linear Mean Square Error
(LMSE) estimator of ¢} on the basis of Y. It is characterized by the following
version of the Orthogonality Principle.

Theorem 3.1 The estimator (* in L(k; p) satisfies

E ([0 -] <E[lW -], £eLkp)
if and only if the Orthogonality Principle
4) E[W—(Y))h(Y) =0, heL(kp)
holds.

This characterization is also geometric in nature, pointing to the LMSE esti-
mator to £* as the projection of ¥/ on the subspace of second-order rvs

{UY): teLk;p))}-

This is a also subspace of Ly((€2, F,P); R?), with the Orthogonality Principle (4)
stating that the error —g¢*(Y") is orthogonal to the subspace {((Y") : ¢ € L(k;p))}.

Basic ideas behind the proof of Theorem 3.1
With affine estimator ¢ in £(k; p), this time we note that

E (|9 — (%))

- B[~ f(Y))’w (y))
E [0 - (V)]*] + 2B [0 - (Y)) ((¥) = ()]
FE[6(Y) - (Y]]
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so that

E [0 — ¢(Y)|*] — E [J9 - ¢Y)]]
) = E[Ie() (Y|P +2E [0 - ¢ (¥)) (1Y) — ()]

If * in Lo(k;p) satisfies the Optimality Principle (4), then the equality (5)
implies

E[[[9 = )] = E [l - (X)IP] =E[|°(Y) — ¢(Y)|’]
since ¢ — (* is an element of L(k; p) as both ¢* and ¢ are. It follows that
E (|9 — YV)IP] —E[l9 - (¥)I*] =0, €€ L(k;p)

and ¢* is an LMSE estimator.
Conversely, if ¢* is an LMSE estimator, then (5) implies

E [[|(Y) = €¥) ] + 2E [(0 — ¢(¥)) (¢*(¥) = £(Y))] 20

for every ¢ element of L(k; p). Thus, with h an arbitrary element of L(k;p) and ¢
in R, consider the estimator ¢, : R¥ — R? given by

Li(y) = £*(t) + th(y), yeR"

If is plain that ¢, is also an element of L(k; p). Applying the last inequality with
¢ = ¢, we conclude that

£2E [||h(Y)||2] + 2E [0 — (V) h(Y)] >0, teR

and Fact 1.1 immediately leads to the Optimality Principle (4).

4 Algebraic characterization of the LMSE estima-
tors

The main results concerning the existence and algebraic characterization of the
LMSE estimators are given next. First some notation: We shall write

py =E[Y] and p, =E[J].
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Next, the appropriate covariance matrices are given by
Soy = Cov [0, Y] =E [( — py) (Y — py)']

and
Yy =Cov[Y]=E [(Y —py) (Y — NY)/] :

The matrices gy and Xy are p X k and k x k matrices, respectively.
Theorem 4.1 There always exists an affine estimator (* in L(k; p) which satisfies
E[J9— (V)P <E[I9 (V). €€ Likp).
With such an estimator (* : R* — RP being given by
*(y) = A"y +b*, yecR"

for some p X k matrix A* and a vector b* in R?, then A* and b* satisfy the normal

equations

(6) A*By = Yoy
and

(7 b" = py — Ay

The normal equations (6)-(7) have a unique solution when >y is invertible.

Corollary 4.1 If Xy is invertible, then the LMSE estimator ¢* is uniquely deter-
mined by

C(y) = py +Zoy Syt (Y — py), y R

If >y is not invertible, there is is still uniqueness in the following sense; see
analogy with Corollary 2.1.

Corollary 4.2 Let ¢} and 0} be affine estimators in L(k; p) such that
E (|9 -] <E[lV— eI, €€ Lk;p)
foreachi = 1,2, then we have

PIA(Y) = 6(Y)] = L.
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In analogy with the notation used for MMSE estimators, we shall write
Cly) =EP)Y =y], yeR*

and
*(Y) =Ep|Y].

This last rv is unambiguously defined (in the a.s. sense) in view of Corollary 4.2.

S A proof of Theorem 4.1

The proof has three parts:

Part 1: Given the p x k matrix A, there is always a best vector b = b(A) in
R?  For any p X k matrix A and vector b in R?, note that

E [V — (AY +b) ||?]
= E[]| (0 —pg) =AY — py) + (g — (Apy + b)) |I?]
= E[|| (0= pg) =AY — py)|”] + g — (Apy + b) |

®) > E || (90— pg) — ALY — py)|]

if we select b = b(A) with

so that (7) holds.

Part 2: The optimal p x k£ matrix A is characterized by the normal equations
(6)-(7) Part 1 shows that any LMSE estimator ¢* : R* — RP? is of the form

F(y) = Ay +b", yecR"
with b* necessarily given by
b" = py — A"y
The Orthogonality Principle states that A* and b* are completely characterized

by
E[(¥—(AY +b")) (CY +¢)] =0
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for every p x k matrix C and and every c in R?. This last relation is equivalent to
E[(¥—(AY +b")) CY]| =

since E [ — (A*Y 4 b")] = 0, — This fact is just the fact, established later (in
Section 6) that the LMSE estimator is unbiased in the sense that

E [E [19|Y]] —E[J].
But, by elementary properties of the trace operator, we get

E[(¥—(AY +b")CY] = E[Tr(( NY+H 'CY)
)

|
1

E|

= E[Tr (CY mY+UW

— E[Tc (- A*Y +57) (CYY)]

= E[Tr((¢ — (AY + b)) Y'C)]

= Tr(E[(¥— (AY + b)) Y'C']

= Tr(E[(Y— (AY +b"))Y'|C")

= Tr(E[(Y—py— A (Y —py))Y']C)
(9) = TI' ((Eﬁy — A*Zy) Cl)
whence

Tr ((zgy - A*Zy) C/) =0.
Since the p x k matrix C'is arbitrary, we conclude that
Yoy — A8y = Opxi,

and the normal equations (6) are now established.

Part 3: The existence of the optimal p x k£ matrix A* If Xy is invertible, then
the normal equations can be solved. Just take

A =gy (By) 7!

If >y is not invertible, then proceed as follows: Since Yy is a covariance
matrix, it is symmetric and positive semi-definite, hence it can always be diago-
nalized: There exists a k x k& matrix H such that

H'Y>yH =D
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where
H'H =1, (hence H = H™ 1)

and D is a k x k diagonal matrix. Therefore, ¥y = HDH !, and the normal
equations can now be rewritten as

ATy = A* (HDH™') = Sy,

or equivalently,
A*HD = Yyy H.

Thus, with arbitrary : = 1,...,pand j = 1, ..., k, entrywise we have

(A"H)D);; = (Xov H)

7

whence N
Z(A*H)MDM% = (Zoy H)ij-
=1

Thus,

(10 (A"H)i;Dj; = (Zov H)ij.

If D;; # 0, it follows that

N 1

6 Properties of LMSE estimators

These properties are easy consequences of the Orthogonality Principle.

Property A (LMSE estimators are unbiased)
We have

E [E wm] ~EJ)].

With v arbitrary in R?, apply the Orthogonality Principle with the (degenerate)
affine estimator hq in £(k; p) given by

hv(y)=v, ye€ R”.
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This yields

~ / ~ /
1) 0=E [(ﬁ—E[19|Y]> v} - (E ] — E [E [19|Y]D v,

The result follows since v is arbitrary.

Property B (Marginalization)

EWY],=E[%]Y], i=1,...,p

For each affine estimator ¢ in L(k; p), we have the decomposition

E[Il9 - 6¥)I7) = 3_E 19 - &Y.

We have
l(y)=Ay+b, yecRF

where A is a p x k matrix and b an element of R”. Therefore, writing

a;
A= :
/
aP
with aq, ..., a, elements of R*, we note that

li(y)=(Ay), +bi=ay+b, ye R”.

It follows
p
E[0—eY)°] = Y E[|;—ajy —b]
Z—pl .
(12) > Y B[ —Epilv] ]
=1

and the desired result is straightforward by uniqueness.
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Property C (Matrix version of the Orthogonality Principle)
With ¢ a positive integer, it holds that

E [(79 _® wm) e(Y)’] = Oprq, L€ L(K;q)

Any ¢ in L(k; q) can be written as
l(y)=By+c, yeR*
with ¢ X k matrix B and vector ¢ in R?

Property D
If ¥ is a.s. constant, then

EWY]=9 P-—as.

An easy consequence of the Orthogonality Principle as we note that
I—EW|Y]=0Y) P-—as.

for some ¢ in L(k; p).

Property E (Linearity)
With positive integer ¢, we have

E[MY+m|Y]=MEW|Y]+m P-—as.

where M is a ¢ X p matrix and m is an element of RY.

Property F
If the rvs ¥ and Y are related through

Y9=CY +¢c¢ P-—a.s.
where C'is a p x k matrix and C'is an element of R?, then

EPY]=0 P-—as.
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Property G
For every d in R”, we have

EWY +d =E[W|Y] P-—as.

This property is an immediate consequence of the Orthogonality Principle upon
noting the following equivalence: For every ¢ in L(k; p), there exists a unique (in
L(k; p) such that )

Uy +d)=ly), yeR"

Conversely, for every £ in £(k; p), there exists a unique ¢ in £(k; p) such that

Uy)=Lly+d), yeR"

Just take 3
Uy)=lly—d), yeRr-"

Property H
With D an invertible & x k matrix, we have

EWDY]=E[W]Y] P-as.
It follows from Properties G and H that
E[W|DY +d] =E[9|Y] P—a.s.

for any invertible & x k matrix D and every d in R”.

Property H is an immediate consequence of the following equivalence: For every
¢ in L(k;p), the estimator ¢ : R* — R given by

l(y)=((Dy), yecR*

is an affine estimator in £(k; p). Conversely, for every £ in £(k;p), there exists a
unique affine estimator ¢ in £(k; p) such that

{(y) = ((Dy), yeR"
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Just take .
((y) ={(D"'y), yeR"

Property I
If the rvs ¢ and Y are uncorrelated, i.e.,

Yoy = Opxi,

then R
EWY]=E[W] P-a.s.

The Orthogonality Principle states that
Y !
E {(19 ) wm) é(Y)} —0, (€ L(kp).

We note that

EWUY) = E[W—-EWM) UY)] +E[E[W] (Y)]
(13) = E[E[Y] (Y)]

because the the rvs ¥ and Y are uncorrelated. The Orthogonality Principle now
takes the form

E {(E W —E [19|Y]>/£(Y)} =0, (€ L(k;p)

and the conclusion follows.

The next three properties involve the R*-valued rv Y and the R™-valued rv Z
with & and m arbitrary positive integers. Both rvs are second-order rvs.

Property J
If the R¥-valued rv Y and the R™-valued rv Z are uncorrelated , then

EWY,Z=EWY]|+E[W2Z] P-as.

whenever
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Any affine estimator ¢ in L(k + m; p) is of the form

y € Rk

f(y’z) :Ayy+Azz+ba zeRm

where A, and A, are p x k and p X m matrices, and b an element in R”. In

particular, R
EWY,Z|=0(Y,Z) P-—a.s.

with affine estimator ¢* in L(k + m; p) of the form

y € R¥

(y,z) = Ay + Ajz + b7, 2 cR™

where A; and A} are p X k and p X m matrices, and b* an element in R”. Since
.y we recall that b* is given by
b = —Ajpy — Alpy.
so that RE
Cly2) = Aply—my) + AT (z -y, Y g

The Orthogonality Principle will read
(14 E {(19 Ry, Z]> oy, Z)} =0, (e L(k+mp).
With the notation introduced earlier we see that
(19 _E[|Y, Z]) Uy, z)
(v — AYY — ATZ — b*) (A)Y +A,Z +b)
= (=AY —py) — AL(Z — py) (A)Y + A.Z +b)
(0= A5 (Y — py) = AL(Z = py)) (AY +b)
(15) + (0= A (Y — py) = AL(Z — uy)) A Z

Next, upon taking A, = O,,, in (15) and using the resulting (14), we con-
clude that

0 = E[(0= 45 (Y — py) = A2(Z - ) (A4,Y +b)]
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- E [(79 —AN(Y - my) (A + b)}
~E[(43(Z - py)) (AY +b)]
(16) ~ E [(ﬁ—A; (Y_,,,,Y>)’(AyY+b)}
as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that
EWY]=A5(Y —py) P—as.

by the Orthogonality Principle characterizing the LMMSE estimator of ¢} on the
basis of Y.

To proceed, take A, = O,y and b = 0, in (15) and use the resulting (14).
This gives

0 = E [(ﬁ A5 (Y = py) = AL (Z = 1)) A.Z]
= E[(- —py) A.Z) —E [(A; (Y—uy))/AZZ]
(17) = E[(W- py)) A.Z]
(0)

as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that

E[QS‘]Z] =A(Z—py) P—as.

by the Orthogonality Principle characterizing the LMMSE estimator of ¢/ on the
basis of Z.
To conclude the proof we note that

EW|Y,Z) = (*(Y,Z)
= ALY —py) + AL(Z — py)
(18) — EP|Y]+E[W|Z] P-a.s.

as desired.

Property K
If the R*-valued rv Y and the R™-valued rv Z are uncorrelated , then

EWY,Z=EWY]|+E[WZ]-E[¥ P—as

Property F applied to the zero-mean rv ¢ — EE [J] gives
EW—-E[W|Y,Z|=EP|Y,Z]-E[¥] P—as
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while Property J applied to the zero-mean rv 9 — E [¢J] yields

[ —E[W]|Y]+E[Y—E[9]]2]
9] —E[9] +E[9| 2] - E [J]

~

(19) = EPY]|+EWZ] -2E[Y] P-—a.s.

E-E[]|Y, 2] =

y & &)

where the last step follows by Property F . Comparing we get the result.

Property L

More generally, with arbitrary R*-valued rv Y and R™-valued rv Z, we have
EWY,Z] =EW|Y]+E [19|Z ~E[Z|Y]| ~E[] P-as.

The rv Z — E [Z|Y] is known as the (linear) innovations in Z with respect to Y.
The rvs Y and Z — E [Z|Y'] are always uncorrelated.

We start by noting that R
E[Z|Y] =AY +b*

for some m X k matrix A* and an element b* of R™.
Thus, with R
V=Z-E[Z|Y],

Y | Y 0%
v ]z ]
with (m + k) x (m + k) matrix R given by

| I Oixm
b [B, O]

it holds that

Observe that the equation
I Opxm Y| _| O
—-A* I, z 0,,

Iy + Opxmz = 04

implies

and
—Ay+1,z=0,,.
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The first equation implies y = Oy; replacing this fact into the second equation we
get z = 0,,. In other words, Ker(D) is reduced to the zero vector in R**t™ and is

therefore invertible.
Y o —1 Y —1 Ok
zee v e %]

As a result,
Invoking Property G and Property H we conclude that
Eply. 2] =E[|Y,V]

and the desired conclusion now follows by Property K since rvs ¥ and Z —
E [Z|Y ] are always uncorrelated (as an immediate consequence of the Orthoganil-
ity Principle).

7 The Gaussian case



