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THEORY

MEAN-SQUARE ESTIMATION

1 The basic setting
Throughout, p and k are arbitrary positive integers. Let the random parameter ϑ
be modelled as an Rp-valued rv, while the observation rv Y is an Rk-valued rv.
Here the family of distributions {Fθ, θ ∈ Θ} on Rk is interpreted as conditional
distributions in the sense that

P [Y ≤ y|ϑ = θ] = Fθ(y),
y ∈ Rk

θ ∈ Θ.

We assume that the rv ϑ is a second-order rv, namely,

E
[
|ϑi|2

]
<∞, i = 1, . . . , p.

We shall use B(k; p) to denote the collection of all Borel mappings Rk → Rp.
With r ≥ 1, let Gr(p;Y ) denote the collection of all estimators for ϑ on the basis
of Y with finite rth moment. Formally,

Gr(p;Y ) = {g ∈ B(k; p) : E [|gi(Y )|r] <∞, i = 1, . . . , p} .

We shall also introduce L(k; p) as the collection of affine estimators for ϑ on
the basis of Y . Thus, the estimator g in B(k; p) is an affine estimator in L(k; p) if
it takes the form

g(y) = Ay + b, y ∈ Rk

for some p× k matrix A and a vector b in Rp.
The following easy fact will be found handy in a number of places.

Fact 1.1 With scalars a and b, if

at+ bt2 ≥ 0, t ∈ R,

then necessarily a = 0.



2 MINIMUM MEAN SQUARE ERROR (MMSE) ESTIMATION 2

Proof. It is plain that
a+ bt ≥ 0, t > 0

and
−a+ b|t| ≥ 0, t < 0.

Letting t go to zero in both sets of inequalities we find that a ≥ 0 and a ≤ 0 both
hold, hence a = 0.

2 Minimum Mean Square Error (MMSE) Estima-
tion

The MMSE problem can be formulated as follows: Find g? in G2(k;Y ) such that

E
[
‖ϑ− g?(Y )‖2

]
≤ E

[
‖ϑ− g(Y )‖2

]
, g ∈ G2(k;Y ).(1)

Any estimator g? in G2(k;Y ) which satisfies (1) is known as a MMSE estimator
of ϑ on the basis of Y .

Theorem 2.1 The estimator g? in G2(p;Y ) satisfies

E
[
‖ϑ− g?(Y )‖2

]
≤ E

[
‖ϑ− g(Y )‖2

]
, g ∈ G2(p;Y )

if and only if the Orthogonality Principle

E
[
(ϑ− g?(Y ))′ h(Y )

]
= 0, h ∈ G2(p;Y )(2)

holds.

This characterization is geometric in nature, and points to g? as the projection
of ϑ on the subspace of second-order rvs

{g(Y ) : g ∈ G2(p;Y )} .

This is a subspace of L2((Ω,F ,P);Rp), the space of all second-order Rp-valued
rvs. Orthogonality in L2((Ω,F ,P);Rp) is defined by

E [ξ′η] = 0, ξ,η ∈ L2((Ω,F ,P);Rp).



2 MINIMUM MEAN SQUARE ERROR (MMSE) ESTIMATION 3

The Orthogonality Principle (2) can be restated as saying that the error ϑ− g?(Y )
is orthogonal to the subspace {g(Y ) : g ∈ G2(p;Y )}.

As an immediate consequence of Theorem 2.1 we have the following unique-
ness result.

Corollary 2.1 If g?1 and g?2 are estimators in G2(p;Y ) such that

E
[
‖ϑ− g?i (Y )‖2

]
≤ E

[
‖ϑ− g(Y )‖2

]
, g ∈ G2(p;Y )

for each i = 1, 2, then we have

P [g?1(Y ) = g?2(Y )] = 1.

Proof. Use the Orthogonality Principle (2) with h = g?1 − g?2 for both g?1 and g?2 .

Basic ideas behind the proof of Theorem 2.1
With estimator g in G2(p;Y ), note that

E
[
‖ϑ− g(Y )‖2

]
= E

[
(ϑ− g(Y ))′ (ϑ− g(Y ))

]
= E

[
((ϑ− g?(Y )) + (g?(Y )− g(Y )))′ ((ϑ− g?(Y )) + (g?(Y )− g(Y )))

]
= E

[
‖ϑ− g?(Y )‖2

]
+ 2E

[
(ϑ− g?(Y ))′ (g?(Y )− g(Y ))

]
+E

[
‖g?(Y )− g(Y )‖2

]
so that

E
[
‖ϑ− g(Y )‖2

]
− E

[
‖ϑ− g?(Y )‖2

]
= E

[
‖g?(Y )− g(Y )‖2

]
+ 2E

[
(ϑ− g?(Y ))′ (g?(Y )− g(Y ))

]
.(3)

If g? in G2(p;Y ) satisfies the Optimality Principle (2), then the equality (3)
implies

E
[
‖ϑ− g(Y )‖2

]
− E

[
‖ϑ− g?(Y )‖2

]
= E

[
‖g?(Y )− g(Y )‖2

]
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since g − g? is an element of G2(p;Y ) as both g? and g are. It follows that

E
[
‖ϑ− g(Y )‖2

]
− E

[
‖ϑ− g?(Y )‖2

]
≥ 0, g ∈ G2(p;Y )

and g? is an MMSE estimator.
Conversely, if g? is an MMSE estimator, then (3) implies

E
[
‖g?(Y )− g(Y )‖2

]
+ 2E

[
(ϑ− g?(Y ))′ (g?(Y )− g(Y ))

]
≥ 0

for every g element of G2(p;Y ). Thus, with h an arbitrary element of G2(p;Y )
and t in R, consider the estimator gt : Rk → Rp given by

gt(y) = g?(t) + th(y), y ∈ Rk.

If is plain that gt is also an element of G2(p;Y ). Applying the last inequality with
g = gt we conclude that

t2E
[
‖g(Y )‖2

]
+ 2tE

[
(ϑ− g?(Y ))′ h(Y )

]
≥ 0, t ∈ R

and Fact 1.1 immediately leads to the Optimality Principle (2).

To identify the MMSE estimator we focus on the following problem: With ξ be a
second-order Rp-valued rv, we seek a? in Rp such that

E
[
‖ξ − a?‖2

]
≤ E

[
‖ξ − a‖2

]
, a ∈ Rp.

The solution to this problem is well known to be unique, and is given by

a? = E [ξ] .

Returning to the MMSE problem, we recall that

E
[
‖ϑ− g(Y )‖2

]
= E

[
E
[
‖ϑ− a‖2|Y = y

]
y=Y ,a=g(Y )

]
for every estimator g in G2(p;Y ). This fact readily leads to concluding

g?(y) = E [ϑ|Y = y] , y ∈ Rk.

It is customary to write
g?(Y ) = E [ϑ|Y ]

where the right handside is understood as the conditional expectation of the rv ϑ
given the σ-field generated by the rv Y . The reason to proceed via the Orthog-
onality Principle is to show the parallel with the next problem where only affine
estimators are considered.
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3 Linear Mean Square Error (LMSE) Estimation
Assume that the observation rv Y is also a second-order rv, i.e.,

E
[
|Yj|2

]
<∞, j = 1, . . . , k.

The LMSE problem can be formulated as follows: Find `? in L(k; p) such that

E
[
‖ϑ− `?(Y )‖2

]
≤ E

[
‖ϑ− `(Y )‖2

]
, ` ∈ L(k; p).

We refer to this affine estimator `? in L(k; p) as the Linear Mean Square Error
(LMSE) estimator of ϑ on the basis of Y . It is characterized by the following
version of the Orthogonality Principle.

Theorem 3.1 The estimator `? in L(k; p) satisfies

E
[
‖ϑ− `?(Y )‖2

]
≤ E

[
‖ϑ− `(Y )‖2

]
, ` ∈ L(k; p)

if and only if the Orthogonality Principle

E
[
(ϑ− `?(Y ))′ h(Y )

]
= 0, h ∈ L(k; p)(4)

holds.

This characterization is also geometric in nature, pointing to the LMSE esti-
mator to `? as the projection of ϑ on the subspace of second-order rvs

{`(Y ) : ` ∈ L(k; p))} .

This is a also subspace of L2((Ω,F ,P);Rp), with the Orthogonality Principle (4)
stating that the error ϑ−g?(Y ) is orthogonal to the subspace {`(Y ) : ` ∈ L(k; p))}.

Basic ideas behind the proof of Theorem 3.1
With affine estimator ` in L(k; p), this time we note that

E
[
‖ϑ− `(Y )‖2

]
= E

[
(ϑ− `(Y ))′ (ϑ− `(Y ))

]
= E

[
‖ϑ− `?(Y )‖2

]
+ 2E

[
(ϑ− `?(Y ))′ (`?(Y )− `(Y ))

]
+E

[
‖`?(Y )− `(Y )‖2

]
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so that

E
[
‖ϑ− `(Y )‖2

]
− E

[
‖ϑ− `(Y )‖2

]
= E

[
‖`?(Y )− `(Y )‖2

]
+ 2E

[
(ϑ− `?(Y ))′ (`?(Y )− `(Y ))

]
.(5)

If `? in L2(k; p) satisfies the Optimality Principle (4), then the equality (5)
implies

E
[
‖ϑ− `(Y )‖2

]
− E

[
‖ϑ− `?(Y )‖2

]
= E

[
‖`?(Y )− `(Y )‖2

]
since `− `? is an element of L(k; p) as both `? and ` are. It follows that

E
[
‖ϑ− `(Y )‖2

]
− E

[
‖ϑ− `?(Y )‖2

]
≥ 0, ` ∈ L(k; p)

and `? is an LMSE estimator.
Conversely, if `? is an LMSE estimator, then (5) implies

E
[
‖`?(Y )− `(Y )‖2

]
+ 2E

[
(ϑ− `?(Y ))′ (`?(Y )− `(Y ))

]
≥ 0

for every ` element of L(k; p). Thus, with h an arbitrary element of L(k; p) and t
in R, consider the estimator `t : Rk → Rp given by

`t(y) = `?(t) + th(y), y ∈ Rk.

If is plain that gt is also an element of L(k; p). Applying the last inequality with
` = `t we conclude that

t2E
[
‖h(Y )‖2

]
+ 2tE

[
(ϑ− `?(Y ))′ h(Y )

]
≥ 0, t ∈ R

and Fact 1.1 immediately leads to the Optimality Principle (4).

4 Algebraic characterization of the LMSE estima-
tors

The main results concerning the existence and algebraic characterization of the
LMSE estimators are given next. First some notation:We shall write

µY = E [Y ] and µϑ = E [ϑ] .
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Next, the appropriate covariance matrices are given by

ΣϑY = Cov [ϑ,Y ] = E
[
(ϑ− µϑ) (Y − µY )′

]
and

ΣY = Cov [Y ] = E
[
(Y − µY ) (Y − µY )′

]
.

The matrices ΣϑY and ΣY are p× k and k × k matrices, respectively.

Theorem 4.1 There always exists an affine estimator `? in L(k; p) which satisfies

E
[
‖ϑ− `?(Y )‖2

]
≤ E

[
‖ϑ− `(Y )‖2

]
, ` ∈ L(k; p).

With such an estimator `? : Rk → Rp being given by

`?(y) = A?y + b?, y ∈ Rk

for some p× k matrix A? and a vector b? in Rp, then A? and b? satisfy the normal
equations

A?ΣY = ΣϑY(6)

and
b? = µϑ − A?µY .(7)

The normal equations (6)-(7) have a unique solution when ΣY is invertible.

Corollary 4.1 If ΣY is invertible, then the LMSE estimator `? is uniquely deter-
mined by

`?(y) = µϑ + ΣϑY Σ−1Y (y − µY ) , y ∈ Rk.

If ΣY is not invertible, there is is still uniqueness in the following sense; see
analogy with Corollary 2.1.

Corollary 4.2 Let `?1 and `?2 be affine estimators in L(k; p) such that

E
[
‖ϑ− `?i (Y )‖2

]
≤ E

[
‖ϑ− `(Y )‖2

]
, ` ∈ L(k; p)

for each i = 1, 2, then we have

P [`?1(Y ) = `?2(Y )] = 1.
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In analogy with the notation used for MMSE estimators, we shall write

`?(y) = Ê [ϑ|Y = y] , y ∈ Rk

and
`?(Y ) = Ê [ϑ|Y ] .

This last rv is unambiguously defined (in the a.s. sense) in view of Corollary 4.2.

5 A proof of Theorem 4.1
The proof has three parts:

Part 1: Given the p × k matrix A, there is always a best vector b = b(A) in
Rp For any p× k matrix A and vector b in Rp, note that

E
[
‖ϑ− (AY + b) ‖2

]
= E

[
‖ (ϑ− µϑ)− A(Y − µY ) + (µϑ − (AµY + b)) ‖2

]
= E

[
‖ (ϑ− µϑ)− A(Y − µY )‖2

]
+ ‖µϑ − (AµY + b) ‖2

≥ E
[
‖ (ϑ− µϑ)− A(Y − µY )‖2

]
(8)

if we select b = b(A) with

b(A) = µϑ − AµY ,

so that (7) holds.

Part 2: The optimal p× k matrix A is characterized by the normal equations
(6)-(7) Part 1 shows that any LMSE estimator `? : Rk → Rp is of the form

`?(y) = A?y + b?, y ∈ Rk

with b? necessarily given by

b? = µϑ − A?µY .

The Orthogonality Principle states thatA? and b? are completely characterized
by

E
[
(ϑ− (A?Y + b?))′ (CY + c)

]
= 0
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for every p× k matrix C and and every c in Rp. This last relation is equivalent to

E
[
(ϑ− (A?Y + b?))′CY

]
= 0

since E [ϑ− (A?Y + b?)] = 0p – This fact is just the fact, established later (in
Section 6) that the LMSE estimator is unbiased in the sense that

E
[
Ê [ϑ|Y ]

]
= E [ϑ] .

But, by elementary properties of the trace operator, we get

E
[
(ϑ− (A?Y + b?))′CY

]
= E

[
Tr
(
(ϑ− (A?Y + b?))′CY

)]
= E

[
Tr
(
CY (ϑ− (A?Y + b?))′

)]
= E

[
Tr
(
(ϑ− (A?Y + b?)) (CY )′

)]
= E [Tr ((ϑ− (A?Y + b?))Y ′C ′)]

= Tr (E [(ϑ− (A?Y + b?))Y ′C ′])

= Tr (E [(ϑ− (A?Y + b?))Y ′]C ′)

= Tr (E [(ϑ− µϑ − A? (Y − µY ))Y ′]C ′)

= Tr ((ΣϑY − A?ΣY )C ′)(9)

whence
Tr ((ΣϑY − A?ΣY )C ′) = 0.

Since the p× k matrix C is arbitrary, we conclude that

ΣϑY − A?ΣY = Op×k

and the normal equations (6) are now established.

Part 3: The existence of the optimal p× k matrix A? If ΣY is invertible, then
the normal equations can be solved. Just take

A? = ΣϑY (ΣY )−1 .

If ΣY is not invertible, then proceed as follows: Since ΣY is a covariance
matrix, it is symmetric and positive semi-definite, hence it can always be diago-
nalized: There exists a k × k matrix H such that

H ′ΣYH = D
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where
H ′H = Ik (hence H ′ = H−1)

and D is a k × k diagonal matrix. Therefore, ΣY = HDH−1, and the normal
equations can now be rewritten as

A?ΣY = A?
(
HDH−1

)
= ΣϑY ,

or equivalently,
A?HD = ΣϑYH.

Thus, with arbitrary i = 1, . . . , p and j = 1, . . . , k, entrywise we have

((A?H)D)ij = (ΣϑYH)ij ,

whence
k∑
`=1

(A?H)i`D``δ`j = (ΣϑYH)ij.

Thus,
(A?H)ijDjj = (ΣϑYH)ij.(10)

If Djj 6= 0, it follows that

(a?i )
′hj =

1

Djj

(ΣϑYH)ij.

6 Properties of LMSE estimators
These properties are easy consequences of the Orthogonality Principle.

Property A (LMSE estimators are unbiased)
We have

E
[
Ê [ϑ|Y ]

]
= E [ϑ] .

With v arbitrary in Rp, apply the Orthogonality Principle with the (degenerate)
affine estimator hv in L(k; p) given by

hv(y) = v, y ∈ Rk.
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This yields

0 = E
[(
ϑ− Ê [ϑ|Y ]

)′
v

]
=
(
E [ϑ]− E

[
Ê [ϑ|Y ]

])′
v.(11)

The result follows since v is arbitrary.

Property B (Marginalization)

Ê [ϑ|Y ]i = Ê [ϑi|Y ] , i = 1, . . . , p.

For each affine estimator ` in L(k; p), we have the decomposition

E
[
‖ϑ− `(Y )‖2

]
=

p∑
i=1

E
[
|ϑi − `i(Y )|2

]
.

We have
`(y) = Ay + b, y ∈ Rk

where A is a p× k matrix and b an element of Rp. Therefore, writing

A =

 a
′
1
...
a′p


with a1, . . . ,ap elements of Rk, we note that

`i(y) = (Ay)i + bi = a′iy + bi, y ∈ Rk.

It follows

E
[
‖ϑ− `(Y )‖2

]
=

p∑
i=1

E
[
|ϑi − a′iY − bi|2

]
≥

p∑
i=1

E
[
|ϑi − Ê [ϑi|Y ] |2

]
(12)

and the desired result is straightforward by uniqueness.
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Property C (Matrix version of the Orthogonality Principle)
With q a positive integer, it holds that

E
[(
ϑ− Ê [ϑ|Y ]

)
`(Y )′

]
= Op×q, ` ∈ L(k; q)

Any ` in L(k; q) can be written as

`(y) = By + c, y ∈ Rk

with q × k matrix B and vector c in Rq

Property D
If ϑ is a.s. constant, then

Ê [ϑ|Y ] = ϑ P− a.s.

An easy consequence of the Orthogonality Principle as we note that

ϑ− Ê [ϑ|Y ] = `(Y ) P− a.s.

for some ` in L(k; p).

Property E (Linearity)
With positive integer q, we have

Ê [Mϑ+m|Y ] = M Ê [ϑ|Y ] +m P− a.s.

where M is a q × p matrix andm is an element of Rq.

Property F
If the rvs ϑ and Y are related through

ϑ = CY + c P− a.s.

where C is a p× k matrix and C is an element of Rp, then

Ê [ϑ|Y ] = ϑ P− a.s.
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Property G
For every d in Rk, we have

Ê [ϑ|Y + d] = Ê [ϑ|Y ] P− a.s.

This property is an immediate consequence of the Orthogonality Principle upon
noting the following equivalence: For every ` in L(k; p), there exists a unique ˜̀ in
L(k; p) such that

`(y + d) = ˜̀(y), y ∈ Rk.

Conversely, for every ˜̀ in L(k; p), there exists a unique ` in L(k; p) such that

˜̀(y) = `(y + d), y ∈ Rk.

Just take
`(y) = ˜̀(y − d), y ∈ Rk.

Property H
With D an invertible k × k matrix, we have

Ê [ϑ|DY ] = Ê [ϑ|Y ] P− a.s.

It follows from Properties G and H that

Ê [ϑ|DY + d] = Ê [ϑ|Y ] P− a.s.

for any invertible k × k matrix D and every d in Rk.

Property H is an immediate consequence of the following equivalence: For every
` in L(k; p), the estimator ˜̀ : Rk → Rp given by

˜̀(y) = `(Dy), y ∈ Rk

is an affine estimator in L(k; p). Conversely, for every ˜̀ in L(k; p), there exists a
unique affine estimator ` in L(k; p) such that

˜̀(y) = `(Dy), y ∈ Rk.
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Just take
`(y) = ˜̀(D−1y), y ∈ Rk.

Property I
If the rvs ϑ and Y are uncorrelated, i.e.,

ΣϑY = Op×k,

then
Ê [ϑ|Y ] = E [ϑ] P− a.s.

The Orthogonality Principle states that

E
[(
ϑ− Ê [ϑ|Y ]

)′
`(Y )

]
= 0, ` ∈ L(k; p).

We note that

E [ϑ′`(Y )] = E
[
(ϑ− E [ϑ])′ `(Y )

]
+ E

[
E [ϑ]′ `(Y )

]
= E

[
E [ϑ]′ `(Y )

]
(13)

because the the rvs ϑ and Y are uncorrelated. The Orthogonality Principle now
takes the form

E
[(

E [ϑ]− Ê [ϑ|Y ]
)′
`(Y )

]
= 0, ` ∈ L(k; p)

and the conclusion follows.

The next three properties involve the Rk-valued rv Y and the Rm-valued rv Z
with k and m arbitrary positive integers. Both rvs are second-order rvs.

Property J
If the Rk-valued rv Y and the Rm-valued rv Z are uncorrelated , then

Ê [ϑ|Y ,Z] = Ê [ϑ|Y ] + Ê [ϑ|Z] P− a.s.

whenever
E [ϑ] = 0p.
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Any affine estimator ` in L(k +m; p) is of the form

`(y, z) = Ayy + Azz + b,
y ∈ Rk

z ∈ Rm

where Ay and Az are p × k and p × m matrices, and b an element in Rp. In
particular,

Ê [ϑ|Y ,Z] = `?(Y ,Z) P− a.s.
with affine estimator `? in L(k +m; p) of the form

`?(y, z) = A?yy + A?zz + b?,
y ∈ Rk

z ∈ Rm

where A?y and A?z are p × k and p ×m matrices, and b? an element in Rp. Since
µϑ we recall that b? is given by

b? = −A?yµY − A?zµZ .

so that

`?(y, z) = A?y (y − µY ) + A?z (z − µZ) ,
y ∈ Rk

z ∈ Rm.

The Orthogonality Principle will read

E
[(
ϑ− Ê [ϑ|Y ,Z]

)′
`(Y ,Z)

]
= 0, ` ∈ L(k +m; p).(14)

With the notation introduced earlier we see that(
ϑ− Ê [ϑ|Y ,Z]

)′
`(Y ,Z)

=
(
ϑ− A?yY − A?zZ − b?

)′
(AyY + AzZ + b)

=
(
ϑ− A?y (Y − µY )− A?z (Z − µZ)

)′
(AyY + AzZ + b)

=
(
ϑ− A?y (Y − µY )− A?z (Z − µZ)

)′
(AyY + b)

+
(
ϑ− A?y (Y − µY )− A?z (Z − µZ)

)′
AzZ(15)

Next, upon taking Az = Op×m in (15) and using the resulting (14), we con-
clude that

0 = E
[(
ϑ− A?y (Y − µY )− A?z (Z − µZ)

)′
(AyY + b)

]
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= E
[(
ϑ− A?y (Y − µY )

)′
(AyY + b)

]
− E

[
(A?z (Z − µZ))′ (AyY + b)

]
= E

[(
ϑ− A?y (Y − µY )

)′
(AyY + b)

]
(16)

as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that

Ê [ϑ|Y ] = A?y (Y − µY ) P− a.s.

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the
basis of Y .

To proceed, take Ay = Op×k and b = 0p in (15) and use the resulting (14).
This gives

0 = E
[(
ϑ− A?y (Y − µY )− A?z (Z − µZ)

)′
AzZ

]
= E

[
(ϑ− A?z (Z − µZ))′AzZ

]
− E

[(
A?y (Y − µY )

)′
AzZ

]
= E

[
(ϑ− A?z (Z − µZ))′AzZ

]
(17)

as we make use of the fact that the rvs Y and Z are uncorrelated. It follows that

Ê [ϑ|Z] = A?z (Z − µZ) P− a.s.

by the Orthogonality Principle characterizing the LMMSE estimator of ϑ on the
basis of Z.

To conclude the proof we note that

Ê [ϑ|Y ,Z] = `?(Y ,Z)

= A?y (Y − µY ) + A?z (Z − µZ)

= Ê [ϑ|Y ] + Ê [ϑ|Z] P− a.s.(18)

as desired.

Property K
If the Rk-valued rv Y and the Rm-valued rv Z are uncorrelated , then

Ê [ϑ|Y ,Z] = Ê [ϑ|Y ] + Ê [ϑ|Z]− E [ϑ] P− a.s.

Property F applied to the zero-mean rv ϑ− E [ϑ] gives

Ê [ϑ− E [ϑ] |Y ,Z] = Ê [ϑ|Y ,Z]− E [ϑ] P− a.s.
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while Property J applied to the zero-mean rv ϑ− E [ϑ] yields

Ê [ϑ− E [ϑ] |Y ,Z] = Ê [ϑ− E [ϑ] |Y ] + Ê [ϑ− E [ϑ] |Z]

= Ê [ϑ|Y ]− E [ϑ] + Ê [ϑ|Z]− E [ϑ]

= Ê [ϑ|Y ] + Ê [ϑ|Z]− 2E [ϑ] P− a.s.(19)

where the last step follows by Property F . Comparing we get the result.

Property L
More generally, with arbitrary Rk-valued rv Y and Rm-valued rv Z, we have

Ê [ϑ|Y ,Z] = Ê [ϑ|Y ] + Ê
[
ϑ|Z − Ê [Z|Y ]

]
− E [ϑ] P− a.s.

The rv Z − Ê [Z|Y ] is known as the (linear) innovations in Z with respect to Y .
The rvs Y and Z − Ê [Z|Y ] are always uncorrelated.

We start by noting that
Ê [Z|Y ] = A?Y + b?

for some m× k matrix A? and an element b? of Rm.
Thus, with

V ≡ Z − Ê [Z|Y ] ,

it holds that [
Y
V

]
= D

[
Y
Z

]
+

[
0k
−b?

]
with (m+ k)× (m+ k) matrix R given by

D =

[
Ik Ok×m
−A? Im

]
.

Observe that the equation[
Ik Ok×m
−A? Im

] [
y
z

]
=

[
0k
0m

]
implies

Iky +Ok×mz = 0k

and
−A?y + Imz = 0m.
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The first equation implies y = 0k; replacing this fact into the second equation we
get z = 0m. In other words, Ker(D) is reduced to the zero vector in Rk+m, and is
therefore invertible.

As a result, [
Y
Z

]
= D−1

[
Y
V

]
+D−1

[
0k
−b?

]
.

Invoking Property G and Property H we conclude that

Ê [ϑ|Y ,Z] = Ê [ϑ|Y ,V ]

and the desired conclusion now follows by Property K since rvs Y and Z −
Ê [Z|Y ] are always uncorrelated (as an immediate consequence of the Orthoganil-
ity Principle).

7 The Gaussian case


