ENEE 621 SPRING 2016 DETECTION AND ESTIMATION THEORY

THE PARAMETER ESTIMATION PROBLEM

1 The basic setting

Throughout, p, q and k are positive integers.

The setup

With Θ being a Borel subset of \mathbb{R}^p , consider a parametrized family $\{F_{\theta}, \theta \in \Theta\}$ of probability distributions on \mathbb{R}^k . The problem considered here is that of estimating θ on the basis of some \mathbb{R}^k -valued observation whose statistical description depends on θ .

The setting is alway understood as follows: Given (Ω, \mathcal{F}) some measurable space, consider a rv $\mathbf{Y} : \Omega \to \mathbb{R}^k$ defined on it. With $\{F_{\theta}, \theta \in \Theta\}$, we associate a collection of probability measures $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ defined on \mathcal{F} such that

$$\mathbb{P}_{\theta}\left[\boldsymbol{Y}\in B\right] = \int_{B} dF_{\theta}(\boldsymbol{y}), \qquad \begin{array}{c} B\in\mathcal{B}(\mathbb{R}^{k}),\\ \theta\in\Theta. \end{array}$$

Sufficient statistics ____

It is customary to refer to any Borel mapping $T : \mathbb{R}^k \to \mathbb{R}^q$ as a *statistic*.

A statistic $T : \mathbb{R}^k \to \mathbb{R}^q$ is said to be *sufficient* for $\{F_\theta, \theta \in \Theta\}$, or alternatively, for estimating θ on the basis of Y, if there exists a mapping $\gamma : \mathbb{R}^q \times \mathcal{B}(\mathbb{R}^k) \to [0, 1]$ which satisfies the following conditions:

(i) For every B in $\mathcal{B}(\mathbb{R}^k)$, the mapping $\mathbb{R}^q \to [0,1] : \mathbf{t} \to \gamma(B; \mathbf{t})$ is Borel measurable;

(ii) For every t in \mathbb{R}^q , the mapping $\mathcal{B}(\mathbb{R}^k) \to [0,1] : B \to \gamma(B; t)$ is a probability measure on $\mathcal{B}(\mathbb{R}^k)$; and

(iii) For every θ in Θ , the property

$$\mathbb{P}_{\theta}\left[\boldsymbol{Y} \in B | T(\boldsymbol{Y}) = \boldsymbol{t}\right] = \gamma(B; \boldsymbol{t}) \quad \mathbb{P}_{\theta} - \text{a.s.} \quad \begin{array}{c} B \in \mathcal{B}(\mathbb{R}^k) \\ \boldsymbol{t} \in \mathbb{R}^q \end{array}$$

holds.

2 FINITE VARIANCE ESTIMATORS

In other words, the statistic $T : \mathbb{R}^k \to \mathbb{R}^q$ is sufficient for $\{F_\theta, \theta \in \Theta\}$ if the conditional distribution of Y under \mathbb{P}_θ given T(Y) is *independent* of θ .

Completeness _

The family $\{F_{\theta}, \theta \in \Theta\}$ is *complete* if whenever we consider a Borel mapping $\psi : \mathbb{R}^k \to \mathbb{R}$ such that

$$\mathbb{E}_{\theta}\left[\left|\psi(\boldsymbol{Y})\right|\right] < \infty, \quad \theta \in \Theta$$

the condition

$$\mathbb{E}_{\theta}\left[\psi(\boldsymbol{Y})\right] = 0, \quad \theta \in \Theta$$

implies

$$\mathbb{P}_{\theta}\left[\psi(\boldsymbol{Y})=0\right]=1, \quad \theta \in \Theta.$$

Lemma 1.1 If the family $\{F_{\theta}, \theta \in \Theta\}$ is complete, then there exists no nontrivial sufficient statistic for estimating θ on the basis of Y.

2 Finite variance estimators

An estimator for θ on the basis of \mathbf{Y} is any Borel mapping $g : \mathbb{R}^k \to \mathbb{R}^p$. We define the estimation error at θ (in Θ) associated with the estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ as the rv $\varepsilon_q(\theta; \mathbf{Y})$ given by

$$\varepsilon_g(\theta; \mathbf{Y}) = g(\mathbf{Y}) - \theta.$$

Finite mean estimators ____

An estimator $g: \mathbb{R}^k \to \mathbb{R}^p$ is said to be a *finite mean* estimator if

$$\mathbb{E}_{\theta}\left[|g_i(\boldsymbol{Y})|\right] < \infty, \qquad \begin{array}{c} i = 1, \dots, p\\ \theta \in \Theta. \end{array}$$

The *bias* of the finite mean estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ at θ is well defined and given by

$$b_{\theta}(g) = \mathbb{E}_{\theta} \left[\varepsilon_g(\theta; \boldsymbol{Y}) \right] = \mathbb{E}_{\theta} \left[g(\boldsymbol{Y}) \right] - \theta.$$

The finite mean estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ is said to be *unbiased* at θ if $b_{\theta}(g) = 0$. Furthermore, the finite mean estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ is said to be *unbiased* if

$$\mathbb{E}_{\theta}\left[g(\boldsymbol{Y})\right] = \theta, \quad \theta \in \Theta.$$

2 FINITE VARIANCE ESTIMATORS

Finite variance estimators _____

An estimator $g: \mathbb{R}^k \to \mathbb{R}^p$ is a *finite variance* estimator if

$$\mathbb{E}_{\theta}\left[|g_i(\boldsymbol{Y})|^2\right] < \infty, \qquad \begin{array}{c} i = 1, \dots, p\\ \theta \in \Theta. \end{array}$$

Obviously, a finite variance estimator is also a finite mean estimator. The *error* covariance of the finite variance estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ at θ is the $p \times p$ matrix $\Sigma_{\theta}(g)$ given by

$$\Sigma_{\theta}(g) = \mathbb{E}_{\theta} \left[\varepsilon_g(\theta; \boldsymbol{Y}) \varepsilon_g(\theta; \boldsymbol{Y})' \right]$$

In general, the matrix $\Sigma_{\theta}(g)$ is *not* the covariance matrix of the error $g(\mathbf{Y})$; in fact we have

$$\Sigma_{\theta}(g) = \operatorname{Cov}_{\theta}[g(\boldsymbol{Y})] + b_{\theta}(g)b_{\theta}(g)', \quad \theta \in \Theta.$$

MVUEs __

A finite variance estimator $g^* : \mathbb{R}^k \to \mathbb{R}^p$ is said to be a *Minimum Variance* Unbiased Estimator (MVUE) if it is unbiased and

$$\Sigma_{\theta}(g^{\star}) \leq \Sigma_{\theta}(g), \quad \theta \in \Theta$$

for any other finite variance *unbiased* estimator $g : \mathbb{R}^k \to \mathbb{R}^p$. Alternatively, a finite variance estimator $g^* : \mathbb{R}^k \to \mathbb{R}^p$ is said to be an MVUE if it is an unbiased estimator and

$$\operatorname{Cov}_{\theta}\left[g^{\star}(\boldsymbol{Y})\right] \leq \operatorname{Cov}_{\theta}\left[g(\boldsymbol{Y})\right], \quad \theta \in \Theta$$

for any other finite variance unbiased estimator $g : \mathbb{R}^k \to \mathbb{R}^p$.

Under the completeness of the family $\{F_{\theta}, \theta \in \Theta\}$, unbiased estimators for θ on the basis of Y are essentially unique in the following sense.

Lemma 2.1 Assume the family $\{F_{\theta}, \theta \in \Theta\}$ to be complete. If the finite mean estimators $g_1, g_2 : \mathbb{R}^k \to \mathbb{R}^p$ are unbiased, then

$$\mathbb{P}_{\theta}\left[g_1(\boldsymbol{Y}) = g_2(\boldsymbol{Y})\right] = 1, \quad \theta \in \Theta.$$

3 The Rao-Blackwell Theorem

A basic step in the search for MVUEs is provided by the Rao-Blackwell Theorem.

Complete sufficient statistic _

A statistic $T : \mathbb{R}^k \to \mathbb{R}^q$ is said to be a *complete sufficient* statistic for $\{F_\theta, \theta \in \Theta\}$ if it is a sufficient statistic for θ on the basis of Y such that the family $\{H_\theta, \theta \in \Theta\}$ of probability distributions on \mathbb{R}^q is complete where

$$H_{\theta}(\boldsymbol{t}) = \mathbb{P}_{\theta}\left[T(\boldsymbol{Y}) \leq \boldsymbol{t}\right], \quad \begin{array}{l} \boldsymbol{t} \in \mathbb{R}^{q} \\ \theta \in \Theta. \end{array}$$

Rao-Blackwell Theorem _____

Theorem 3.1 Let $T : \mathbb{R}^k \to \mathbb{R}^q$ be a sufficient statistic for $\{F_\theta, \theta \in \Theta\}$. With any finite variance estimator $g : \mathbb{R}^k \to \mathbb{R}^p$, define the mapping $\hat{g} : \mathbb{R}^k \to \mathbb{R}^q$ given by

$$\hat{g}(oldsymbol{t}) = \int_{\mathbb{R}^k} g(oldsymbol{y}) d\gamma(oldsymbol{y},oldsymbol{t}), \quad oldsymbol{t} \in \mathbb{R}^q$$

where the mapping $\gamma : \mathbb{R}^q \times \mathcal{B}(\mathbb{R}^k) \to [0,1]$ appears in the definition of the sufficiency of the statistic $T : \mathbb{R}^k \to \mathbb{R}^q$.

The mapping $\hat{g} \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is a finite variance estimator for θ on the basis of Y such that

$$b_{\theta}(\hat{g} \circ T) = b_{\theta}(g)$$

and

$$\Sigma_{\theta}(\hat{g} \circ T) \le \Sigma_{\theta}(g)$$

for every θ in Θ . Moreover,

$$\Sigma_{\theta}(\hat{g} \circ T) = \Sigma_{\theta}(g)$$

at some θ in Θ iff

$$\mathbb{P}_{\theta}\left[g(\boldsymbol{Y}) = \hat{g}(T(\boldsymbol{Y}))\right] = 1$$

The "algorithm" that takes the estimator g into the estimator $\hat{g} \circ T$ does not change the bias but reduces "variance." These properties are simple consequences

3 THE RAO-BLACKWELL THEOREM

of Jensen's inequality (for conditional expectations) and of the law of iterated conditioning applied to the fact that

$$\hat{g}(T(\mathbf{Y})) = \mathbb{E}_{\theta} \left[g(\mathbf{Y}) | T(\mathbf{Y}) \right], \quad \mathbb{P}_{\theta} - a.s.$$

for every θ in Θ .

The Rao-Blackwell Theorem has the following consequence.

Corollary 3.1 Let $T : \mathbb{R}^k \to \mathbb{R}^q$ be a sufficient statistic for $\{F_\theta, \theta \in \Theta\}$. Assume that there exists a Borel mapping $\tilde{g} : \mathbb{R}^q \to \mathbb{R}^p$ such that $\tilde{g} \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is a finite variance unbiased estimator for θ on the basis of Y.

Then, the estimator $\tilde{g} \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is an MVUE for θ on the basis of Ywhenever the Borel mapping $\tilde{g} : \mathbb{R}^q \to \mathbb{R}^p$ is essentially unique in the following sense: If Borel mappings $\tilde{g}_1, \tilde{g}_2 : \mathbb{R}^q \to \mathbb{R}^p$ have the property that for each i = 1, 2, the estimator $\tilde{g}_i \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is a finite variance unbiased estimator for θ on the basis of Y, then

$$\mathbb{P}_{\theta}\left[\tilde{g}_1(T(\boldsymbol{Y}) = \tilde{g}_2(T(\boldsymbol{Y}))\right] = 1, \quad \theta \in \Theta.$$

Finding MVUEs

The needed uniqueness condition in Corollary 3.1 can be guaranteed by asking for a stronger form of sufficiency for the sufficient statistic $T : \mathbb{R}^k \to \mathbb{R}^q$.

Lemma 3.1 Let $T : \mathbb{R}^k \to \mathbb{R}^q$ be a complete sufficient statistic for $\{F_\theta, \theta \in \Theta\}$. If there exists a Borel mapping $\tilde{g} : \mathbb{R}^q \to \mathbb{R}^p$ such that $\tilde{g} \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is a finite variance unbiased estimator for θ on the basis of Y, then the following holds:

(i) The Borel mapping $\tilde{g} : \mathbb{R}^q \to \mathbb{R}^p$ is essentially unique in the following sense: If the Borel mappings $\tilde{g}_1, \tilde{g}_2 : \mathbb{R}^q \to \mathbb{R}^p$ have the property that for each i = 1, 2, the estimator $\tilde{g}_i \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is a finite variance unbiased estimator for θ on the basis of Y, then

$$\mathbb{P}_{\theta}\left[\tilde{g}_1(T(\boldsymbol{Y}) = \tilde{g}_2(T(\boldsymbol{Y}))\right] = 1, \quad \theta \in \Theta.$$

(ii) The estimator $\tilde{g} \circ T : \mathbb{R}^k \to \mathbb{R}^p$ is MVUE.

4 EXPONENTIAL FAMILIES

Part (i) is a consequence of the fact that $T : \mathbb{R}^k \to \mathbb{R}^q$ is a complete sufficient statistic for $\{F_\theta, \theta \in \Theta\}$, and Part (ii) follows then by Corollary 3.1. Taken together, these results lead to the following strategy for finding MVUEs:

- (i) Find a complete sufficient statistic $T : \mathbb{R}^k \to \mathbb{R}^q$ for $\{F_\theta, \theta \in \Theta\}$;
- (ii) Find a finite variance *unbiased* estimator g : ℝ^k → ℝ^p for θ on the basis of Y This step is often implemented by guessing g = ğ ∘ T for some Borel mapping ğ : ℝ^q → ℝ^p;
- (iii) Absent such a guess, generate from g the Borel mapping $\hat{g} : \mathbb{R}^q \to \mathbb{R}^p$ as per the Rao-Blackwell Theorem. The estimator $\hat{g} \circ T$ is MVUE.

4 Exponential families

Recall that the family $\{F_{\theta}, \theta \in \Theta\}$ is an *exponential* family (with respect to F) if its absolutely continuous with respect to F, and the corresponding density functions $\{f_{\theta}, \theta \in \Theta\}$ are of the form

$$f_{\theta}(\boldsymbol{y}) = C(\theta)q(\boldsymbol{y})e^{Q(\theta)'K(\boldsymbol{y})}$$
 F - a.e.

for every θ in Θ with Borel mappings $C : \Theta \to \mathbb{R}_+, Q : \Theta \to \mathbb{R}^q, q : \mathbb{R}^k \to \mathbb{R}_+,$ and $K : \mathbb{R}^k \to \mathbb{R}^q$. The requirement

$$\int_{\mathbb{R}^k} f_{\theta}(\boldsymbol{y}) dF(\boldsymbol{y}) = 1, \quad \theta \in \Theta$$

reads

$$C(\theta) \int_{\mathbb{R}^k} q(\boldsymbol{y}) e^{Q(\theta)' K(\boldsymbol{y})} dF(\boldsymbol{y}) = 1, \quad \theta \in \Theta.$$

This is equivalent to

$$C(\theta) > 0, \quad \theta \in \Theta$$

and

$$0 < \int_{\mathbb{R}^k} q(\boldsymbol{y}) e^{Q(\theta)' K(\boldsymbol{y})} dF(\boldsymbol{y}) < \infty, \quad \theta \in \Theta.$$

Exponential families and sufficient statistics ____

An exponential family always admits at least one sufficient statistic.

4 EXPONENTIAL FAMILIES

Theorem 4.1 Assume $\{F_{\theta}, \theta \in \Theta\}$ to be an exponential family (with respect to *F*). Then, the mapping $K : \mathbb{R}^k \to \mathbb{R}^q$ is a sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$.

The sufficient statistic $K : \mathbb{R}^k \to \mathbb{R}^q$ admits a simple characterization as a complete sufficient statistic.

Theorem 4.2 Assume $\{F_{\theta}, \theta \in \Theta\}$ to be an exponential family (with respect to *F*). Then, the mapping $K : \mathbb{R}^k \to \mathbb{R}^q$ is a complete sufficient statistic for $\{F_{\theta}, \theta \in \Theta\}$ if the set

$$Q(\Theta) = \{Q(\theta): \ \theta \in \Theta\}.$$

contains a q-dimensional rectangle.

A proof _

Consider a Borel mapping $\psi : \mathbb{R}^q \to \mathbb{R}$ such that

 $\mathbb{E}_{\theta}\left[\left|\psi(K(\boldsymbol{Y}))\right|\right] < \infty, \quad \theta \in \Theta.$

We need to show that if

$$\mathbb{E}_{\theta}\left[\psi(K(\boldsymbol{Y}))\right] = 0, \quad \theta \in \Theta$$

then

$$\mathbb{P}_{\theta}[\psi(K(\boldsymbol{Y})) = 0] = 1, \quad \theta \in \Theta.$$

The integrability conditions are equivalent to

$$\int_{\mathbb{R}^k} |\psi(K(\boldsymbol{y}))| q(\boldsymbol{y}) e^{Q(\theta)' K(\boldsymbol{y})} dF(\boldsymbol{y}) < \infty, \quad \theta \in \Theta$$

With $\boldsymbol{u} = (u_1, \ldots, u_q)'$ in \mathbb{C}^q , we note that

$$\int_{\mathbb{R}^k} |\psi(K(\boldsymbol{y}))q(\boldsymbol{y})e^{\boldsymbol{u}'K(\boldsymbol{y})}|dF(\boldsymbol{y}) < \infty$$

as soon as $\Re(\boldsymbol{u}) = ((\Re(u_1), \ldots, \Re(u_q))'$ lies in $Q(\Theta)$. This is a consequence of the fact that

$$|\psi(K(\boldsymbol{y}))q(\boldsymbol{y})e^{\boldsymbol{u}'K(\boldsymbol{y})}| = q(\boldsymbol{y})|\psi(K(\boldsymbol{y}))| \cdot |e^{\boldsymbol{u}'K(\boldsymbol{y})}|$$

where

$$|e^{\boldsymbol{u}'K(\boldsymbol{y})}| = |\prod_{i=1}^{q} e^{u_i K_i(\boldsymbol{y})}|$$
$$= |\prod_{i=1}^{q} e^{(\Re(u_i)+j\Im(u_i))K_i(\boldsymbol{y})}|$$
$$= |\prod_{i=1}^{q} e^{\Re(u_i)K_i(\boldsymbol{y})}|$$
$$= \prod_{i=1}^{q} e^{\Re(u_i)K_i(\boldsymbol{y})}$$

so that

(1)

$$\int_{\mathbb{R}^k} |\psi(K(\boldsymbol{y}))q(\boldsymbol{y})e^{\boldsymbol{u}'K(\boldsymbol{y})}|dF(\boldsymbol{y}) = \int_{\mathbb{R}^k} |\psi(K(\boldsymbol{y}))|q(\boldsymbol{y})e^{\Re(\boldsymbol{u})'K(\boldsymbol{y})}dF(\boldsymbol{y})$$

Let R denotes a q-dimensional rectangle contained in $Q(\Theta)$, i.e.,

$$R = \prod_{i=1}^{q} [a_i, b_i] \subseteq Q(\Theta).$$

The arguments given above then show that on the subset R^* given by

$$R^{\star} = \prod_{i=1}^{q} \left(\left[a_i, b_i \right] + j \mathbb{R} \right),$$

the \mathbb{C} -valued integral

$$\widehat{\Psi}(\boldsymbol{u}) \equiv \int_{\mathbb{R}^k} \psi(K(\boldsymbol{y})) q(\boldsymbol{y}) e^{\boldsymbol{u}' K(\boldsymbol{y})} dF(\boldsymbol{y})$$

is well defined as soon as $\boldsymbol{u} = (u_1, \dots, u_q)'$ lies in R^* (hence in R). Under the enforced assumptions on the mapping $\Psi : \mathbb{R}^q \to \mathbb{R}$, we have

$$\widehat{\Psi}(\boldsymbol{u}) = 0, \quad \boldsymbol{u} \in R.$$

Standard properties of functions of complex variables imply that

$$\widehat{\Psi}(\boldsymbol{u}) = 0, \quad \boldsymbol{u} \in R^{\star}.$$

In particular, given the form of R^* , we also have

$$\Psi(\boldsymbol{a}+j\boldsymbol{u})=0, \quad \boldsymbol{u}\in\mathbb{R}^{q}$$

where $a = (a_1, \ldots, a_q)$. It now follows the theory of Fourier transforms that

$$\psi(K(\boldsymbol{y}))q(\boldsymbol{y})e^{\boldsymbol{a}'K(\boldsymbol{y})} = 0 \quad F - a \text{a.e.}$$

and the desired conclusion is readily obtained.

5 The Cràmer-Rao bounds

The Cràmer-Rao bound requires certain technical conditions to be satisfied by the family $\{F_{\theta}, \theta \in \Theta\}$.

The assumptions _

- **CR1** The parameter set Θ is an open set in \mathbb{R}^p ;
- **CR2a** The probability distributions $\{F_{\theta}, \theta \in \Theta\}$ are all absolutely continuous with respect to the same distribution $F : \mathbb{R}^k \to \mathbb{R}_+$. Thus, for each θ in Θ , there exists a Borel mapping $f_{\theta} : \mathbb{R}^k \to \mathbb{R}_+$ such that

$$F_{\theta}(\boldsymbol{y}) = \int_{\infty}^{\boldsymbol{y}} f_{\theta}(\boldsymbol{\eta}) dF(\boldsymbol{\eta}), \quad \boldsymbol{y} \in \mathbb{R}^{k};$$

- **CR2b** Moreover, the density functions $\{f_{\theta}, \theta \in \Theta\}$ all have the same support in the sense that the set $\{y \in \mathbb{R}^k : f_{\theta}(y) > 0\}$ is the same for all θ in Θ . Let *S* denote this common support;
 - **CR3** For each θ in Θ , the gradient $\nabla_{\theta} f_{\theta}(\boldsymbol{y})$ exists and is finite on S;
 - **CR4** For each θ in Θ , the square integrability condition

$$\mathbb{E}_{\theta}\left[\left|\frac{\partial}{\partial\theta_{i}}\log f_{\theta}(\boldsymbol{Y})\right|^{2}\right] < \infty, \quad i = 1, \dots, p$$

holds;

CR5 The regularity condition

$$\frac{\partial}{\partial \theta_i} \int_S f_{\theta}(\boldsymbol{y}) dF(\boldsymbol{y}) = \int_S \left(\frac{\partial}{\partial \theta_i} f_{\theta}(\boldsymbol{y}) \right) dF(\boldsymbol{y}), \quad i = 1, \dots, p.$$

holds for each θ in Θ . This is equivalent to asking

$$\int_{S} \left(\frac{\partial}{\partial \theta_{i}} f_{\theta}(\boldsymbol{y}) \right) dF(\boldsymbol{y}) = 0. \quad i = 1, \dots, p$$

since

$$\int_{S} f_{\theta}(\boldsymbol{y}) dF(\boldsymbol{y}) = 1.$$

The Fisher information matrix _____

Under Conditions (CR1)–(CR4), define the *Fisher information matrix* $M(\theta)$ t parameter θ as the $p \times p$ matrix given entrywise by

$$M_{ij}(\theta) = \mathbb{E}_{\theta} \left[\frac{\partial}{\partial \theta_i} \log f_{\theta}(\mathbf{Y}) \cdot \frac{\partial}{\partial \theta_j} \log f_{\theta}(\mathbf{Y}) \right], \quad i, j = 1, \dots, p,$$

or equivalently,

$$M(\theta) = \mathbb{E}_{\theta} \left[\left(\nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}) \right) \left(\nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}) \right)' \right].$$

Regular estimators _____

A finite variance estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ is a *regular* estimator (with respect to the family $\{F_{\theta}, \theta \in \Theta\}$) if the regularity conditions

$$\frac{\partial}{\partial \theta_i} \left(\int_S g(\boldsymbol{y}) f_{\theta}(\boldsymbol{y}) dF(\boldsymbol{y}) \right) = \int_S g(\boldsymbol{y}) \left(\frac{\partial}{\partial \theta_i} f_{\theta}(\boldsymbol{y}) \right) dF(\boldsymbol{y}), \quad i = 1, \dots, p$$

hold for all θ in Θ .

The regularity of an estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ amounts to

$$\frac{\partial}{\partial \theta_i} \left(\mathbb{E}_{\theta} \left[g(\boldsymbol{Y}) \right] \right) = \mathbb{E}_{\theta} \left[g(\boldsymbol{Y}) \left(\frac{\partial}{\partial \theta_i} \log f_{\theta}(\boldsymbol{Y}) \right) \right], \quad i = 1, \dots, p.$$

The bounds _____

The generalized Cràmer-Rao bound is given first

Theorem 5.1 Assume Conditions (CR1)–(CR5). If the Fisher information matrix $M(\theta)$ is invertible for each θ in Θ , then every regular estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ (with respect to the family $\{F_{\theta}, \theta \in \Theta\}$) obeys the lower bound

$$\Sigma_{\theta}(g) \ge b_{\theta}(g)b_{\theta}(g)' + (\boldsymbol{I}_p + \nabla_{\theta}b_{\theta}(g)) M(\theta)^{-1} (\boldsymbol{I}_p + \nabla_{\theta}b_{\theta}(g))'.$$

Equality holds at θ in Θ if and only if there exists a $p \times p$ matrix $K(\theta)$ such that

$$g(\mathbf{Y}) - \theta = b_{\theta}(g) + K(\theta) \nabla_{\theta} \log f_{\theta}(\mathbf{Y}) \quad F - \text{a.e.}$$

with

$$K(\theta) = (\boldsymbol{I}_p + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1}.$$

The classical Cràmer-Rao bound holds for unbiased estimators, and is now a simple corollary of Theorem 5.1.

Theorem 5.2 Assume Conditions (**CR1**)–(**CR5**). If the Fisher information matrix $M(\theta)$ is invertible for each θ in Θ , then every unbiased regular estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ (with respect to the family { $F_{\theta}, \theta \in \Theta$ }) obeys the lower bound

$$\Sigma_{\theta}(g) \ge M(\theta)^{-1}.$$

Equality holds at θ in Θ if and only if there exists a $p \times p$ matrix $K(\theta)$ such that

$$g(\mathbf{Y}) - \theta = K(\theta) \nabla_{\theta} \log f_{\theta}(\mathbf{Y}) \quad F - \text{a.e.}$$

with

$$K(\theta) = M(\theta)^{-1}.$$

Facts and arguments _____

Two key facts flow from the assumptions: Fix θ in Θ . From (**CR3**) and (**CR5**), we get

$$\mathbb{E}_{\theta}\left[\nabla_{\theta}\log f_{\theta}(\boldsymbol{Y})\right] = \boldsymbol{0}_{p}.$$

Recall that

$$\mathbb{E}_{\theta}\left[g(\boldsymbol{Y})\right] = \theta + b_{\theta}(g), \quad \theta \in \Theta.$$

Differentiating and using (CR3), we conclude that

$$\boldsymbol{I}_{p} + \nabla_{\theta} b_{\theta}(g) = \mathbb{E}_{\theta} \left[g(\boldsymbol{Y}) \left(\nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}) \right)' \right]$$

provided the estimator $g: \mathbb{R}^k \to \mathbb{R}^p$ is regular. Therefore,

$$\begin{split} \boldsymbol{I}_{p} + \nabla_{\theta} b_{\theta}(g) \\ &= \mathbb{E}_{\theta} \left[(g(\boldsymbol{Y}) - \mathbb{E}_{\theta} \left[g(\boldsymbol{Y}) \right]) \cdot (\nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}))' \right] \\ &= \mathbb{E}_{\theta} \left[(g(\boldsymbol{Y}) - \theta - b_{\theta}(g)) \cdot (\nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}))' \right]. \end{split}$$

When p = 1, this relation forms the basis for a proof via the Cauchy-Schwarz inequality.

An alternate proof, valid for arbitrary p, can be obtained as follows: Introduce the \mathbb{R}^p -valued rv $U(\theta, \mathbf{Y})$ given by

$$U(\theta, \mathbf{Y}) = g(\mathbf{Y}) - \theta - b_{\theta}(g) - (\mathbf{I}_{p} + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(\mathbf{Y}), \quad \theta \in \Theta.$$

The Cràmer-Rao bound is equivalent to the statement that the covariance matrix $Cov_{\theta}[U(\theta, \mathbf{Y})]$ is positive semi-definite! Indeed, note that the rv $U(\theta, \mathbf{Y})$ has zero mean since

$$\mathbb{E}_{\theta} \left[U(\theta, \mathbf{Y}) \right] = \mathbb{E}_{\theta} \left[g(\mathbf{Y}) - \theta - b_{\theta}(g) - (\mathbf{I}_{p} + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(\mathbf{Y}) \right] \\ = \mathbb{E}_{\theta} \left[g(\mathbf{Y}) \right] - \theta - b_{\theta}(g) - (\mathbf{I}_{p} + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1} \mathbb{E}_{\theta} \left[\nabla_{\theta} \log f_{\theta}(\mathbf{Y}) \right] \\ (2) = \mathbf{0}_{p}.$$

Moreover, with

$$W(\theta, \mathbf{Y}) = (\mathbf{I}_p + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(\mathbf{Y})$$

we have

$$U(\theta, \mathbf{Y}) = g(\mathbf{Y}) - \theta - b_{\theta}(g) - W(\theta, \mathbf{Y})$$

so that

$$Cov_{\theta} [U(\theta, \mathbf{Y})] = \mathbb{E}_{\theta} [U(\theta, \mathbf{Y})U(\theta, \mathbf{Y})'] = \mathbb{E}_{\theta} [(g(\mathbf{Y}) - \theta - b_{\theta}(g) - W(\theta, \mathbf{Y}))(g(\mathbf{Y}) - \theta - b_{\theta}(g) - W(\theta, \mathbf{Y}))'] = \mathbb{E}_{\theta} [(g(\mathbf{Y}) - \theta - b_{\theta}(g))(g(\mathbf{Y}) - \theta - b_{\theta}(g))'] - \mathbb{E}_{\theta} [(g(\mathbf{Y}) - \theta - b_{\theta}(g))W(\theta, \mathbf{Y})'] - \mathbb{E}_{\theta} [W(\theta, \mathbf{Y})(g(\mathbf{Y}) - \theta - b_{\theta}(g))']$$

$$(3) + \mathbb{E}_{\theta} [W(\theta, \mathbf{Y})W(\theta, \mathbf{Y})']$$

Efficient estimators

A finite variance unbiased estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ is an *efficient* estimator if it achieves the Cràmer-Rao bound, namely

$$\Sigma_{\theta}(g) = M(\theta)^{-1}, \quad \theta \in \Theta.$$

Lemma 5.1 Assume that the assumptions of Theorem 5.1 hold. A regular estimator that is also efficient satisfies the relations

$$g(y) - \theta = M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(y)$$
 F - a.e. on S

for each θ on Θ . Conversely, any estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ which satisfies

$$g(y) - \theta = M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(y)$$
 F - a.e. on S

on Θ is an efficient regular estimator.

6 The i.i.d. case

In many situations the data to be used for estimating the parameter θ is obtained by collecting i.i.d. samples from the underlying distribution. Formally, let $\{F_{\theta}, \theta \in \Theta\}$ denote the usual collection of probability distributions on \mathbb{R}^k . With positive integer n, let Y_1, \ldots, Y_n be *i.i.d.* \mathbb{R}^k -valued rvs, each distributed according to F_{θ} under \mathbb{P}_{θ} . Thus, for each θ in Θ we have

$$\mathbb{P}_{\theta}[\boldsymbol{Y}_{1} \in B_{1}, \dots, \boldsymbol{Y}_{n} \in B_{n}] = \prod_{i=1}^{n} \mathbb{P}_{\theta}[\boldsymbol{Y}_{i} \in B_{i}], \quad B_{1}, \dots, B_{n} \in \mathcal{B}(\mathbb{R}^{k})$$

Let $F_{\theta}^{(n)}$ denote the corresponding probability distributions on \mathbb{R}^{nk} , namely

(4)

$$F_{\theta}^{(n)}(\boldsymbol{y}_{1},\ldots,\boldsymbol{y}_{n}) = \mathbb{P}_{\theta}[\boldsymbol{Y}_{1} \leq \boldsymbol{y}_{1},\ldots,\boldsymbol{Y}_{n} \leq \boldsymbol{y}_{n}]$$

$$= \prod_{i=1}^{n} \mathbb{P}_{\theta}[\boldsymbol{Y}_{i} \leq \boldsymbol{y}_{i}]$$

$$= \prod_{i=1}^{n} F_{\theta}(\boldsymbol{y}_{i}), \quad \begin{array}{l} \boldsymbol{y}_{i} \in \mathbb{R}^{k} \\ i = 1,\ldots,n \end{array}$$

Hereditary properties _

The following facts are easily shown.

6 THE I.I.D. CASE

- 1. The family $\{F_{\theta}^{(n)}, \theta \in \Theta\}$ is never complete when $n \ge 2$ even if the family $\{F_{\theta}, \theta \in \Theta\}$ is complete;
- 2. If the family $\{F_{\theta}, \theta \in \Theta\}$ is absolutely continuous with respect to the distribution F on \mathbb{R}^k with density functions $\{f_{\theta}, \theta \in \Theta\}$, then family $\{F_{\theta}^{(n)}, \theta \in \Theta\}$ is also absolutely continuous but with respect to the distribution $F^{(n)}$ on \mathbb{R}^{nk} given by

$$F^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = \prod_{i=1}^n F(\boldsymbol{y}_i), \quad \begin{array}{l} \boldsymbol{y}_i \in \mathbb{R}^k\\ i=1,\ldots,n \end{array}$$

For each θ in Θ , he corresponding density function $f_{\theta}^{(n)} : \mathbb{R}^{nk} \to \mathbb{R}_+$ is given by

$$f^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = \prod_{i=1}^n f(\boldsymbol{y}_i), \quad \begin{array}{l} \boldsymbol{y}_i \in \mathbb{R}^k\\ i=1,\ldots,n \end{array}$$

3. Assume the family $\{F_{\theta}, \theta \in \Theta\}$ to be an exponential family (with respect to *F*) with density functions of the form

$$f_{\theta}(\boldsymbol{y}) = C(\theta)q(\boldsymbol{y})e^{Q(\theta)'K(\boldsymbol{y})}$$
 F - a.e.

for every θ in Θ with Borel mappings $C : \Theta \to \mathbb{R}_+, Q : \Theta \to \mathbb{R}^q, q : \mathbb{R}^k \to \mathbb{R}_+$, and $K : \mathbb{R}^k \to \mathbb{R}^q$. Then, the family $\{F_{\theta}^{(n)}, \theta \in \Theta\}$ is also an exponential family (with respect to $F^{(n)}$) with density functions of the form

 $f_{\theta}^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = C(\theta)^n q^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) e^{Q(\theta)'K^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n)} \quad F^{(n)} - \text{a.e.}$

for each θ in Θ , where

$$q^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = \prod_{i=1}^n q(\boldsymbol{y}_i), \quad \begin{array}{l} \boldsymbol{y}_i \in \mathbb{R}^k\\ i=1,\ldots,n \end{array}$$

and

$$K^{(n)}(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) = \sum_{i=1}^n K(\boldsymbol{y}_i), \quad \begin{array}{l} \boldsymbol{y}_i \in \mathbb{R}^k\\ i=1,\ldots,n \end{array}$$

Assuming (CR1), if the family {F_θ, θ ∈ Θ} satisfies Conditions (CR2)–(CR5) (with respect to F), then the family {F_θ⁽ⁿ⁾, θ ∈ Θ} also satisfies Conditions (CR2)–(CR5) (with respect to F⁽ⁿ⁾), and the Fisher information matrices are related through the relation

$$M^{(n)}(\theta) = nM(\theta), \quad \theta \in \Theta.$$

7 Asymptotic theory – Types of estimators

We are often interested in situations where the parameter θ is estimated on the basis of multiple \mathbb{R}^k -valued samples, say $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ for n large. The most common situation is that where the incoming observations form a sequence $\{\mathbf{Y}_n, n = 1, 2, \ldots\}$ of i.i.d. \mathbb{R}^k -valued rvs (as described earlier). However, in some applications the variates $\{\mathbf{Y}_n, n = 1, 2, \ldots\}$ may be correlated, e.g., the rvs $\{\mathbf{Y}_n, n = 1, 2, \ldots\}$ form a Markov chain.

In general, for each $n = 1, 2, ..., \text{let } g_n : \mathbb{R}^{nk} \to \mathbb{R}^k$ be an estimator for θ on the basis of the \mathbb{R}^k -valued observations $Y_1, ..., Y_n$. We shall write

$$\mathbf{Y}^{(n)} = \begin{pmatrix} \mathbf{Y}_1 \\ \vdots \\ \mathbf{Y}_n \end{pmatrix}, \quad n = 1, 2, \dots$$

The estimators $\{g_n, n = 1, 2, ...\}$ are *(weakly) consistent* at θ (in Θ) if the rvs $\{g_n(\mathbf{Y}^{(n)}), n = 1, 2, ...\}$ converge in probability to θ under \mathbb{P}_{θ} , i.e., for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}_{\theta} \left[\left\| g_n(\boldsymbol{Y}^{(n)}) - \theta \right\| > \varepsilon \right] = 0$$

The estimators $\{g_n, n = 1, 2, ...\}$ are *(strongly) consistent* at θ (in Θ) if the rvs $\{g_n(\mathbf{Y}^{(n)}), n = 1, 2, ...\}$ converge a.s. to θ under \mathbb{P}_{θ} , i.e.,

$$\lim_{n \to \infty} g_n(\boldsymbol{Y}^{(n)}) = \theta \quad \mathbb{P}_{\theta} - \text{a.s.}$$

As expected, strong consistency implies (weak) consistency.

The estimators $\{g_n, n = 1, 2, ...\}$ are asymptotically normal at θ (in Θ) if there exists a $p \times p$ positive semi-definite matrix $\Sigma(\theta)$ with the property that

$$\sqrt{n}\left(g_n(\boldsymbol{Y}^{(n)}) - \theta\right) \Longrightarrow_n \operatorname{N}(\boldsymbol{0}_p, \boldsymbol{\Sigma}(\theta))$$

The estimators $\{g_n, n = 1, 2, ...\}$ are asymptotically unbiased at θ (in Θ) if for each n = 1, 2, ..., the estimator is a finite mean estimator and

$$\lim_{n\to\infty} \mathbb{E}_{\theta}\left[g_n(\boldsymbol{Y}^{(n)})\right] = \theta.$$

This is equivalent to

$$\lim_{n \to \infty} b_{\theta}(g_n) = \theta.$$

The estimators $\{g_n, n = 1, 2, ...\}$ are asymptotically efficient at θ (in Θ) if

8 Maximum likelihood estimation methods