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DETECTION AND ESTIMATION
THEORY

THE PARAMETER ESTIMATION PROBLEM

1 The basic setting
Throughout, p, q and k are positive integers.

The setup
With Θ being a Borel subset of Rp, consider a parametrized family {Fθ, θ ∈ Θ}
of probability distributions on Rk. The problem considered here is that of esti-
mating θ on the basis of some Rk-valued observation whose statistical description
depends on θ.

The setting is alway understood as follows: Given (Ω,F) some measurable
space, consider a rv Y : Ω → Rk defined on it. With {Fθ, θ ∈ Θ}, we associate
a collection of probability measures {Pθ, θ ∈ Θ} defined on F such that

Pθ [Y ∈ B] =

∫
B

dFθ(y),
B ∈ B(Rk),
θ ∈ Θ.

Sufficient statistics
It is customary to refer to any Borel mapping T : Rk → Rq as a statistic.

A statistic T : Rk → Rq is said to be sufficient for {Fθ, θ ∈ Θ}, or al-
ternatively, for estimating θ on the basis of Y , if there exists a mapping γ :
Rq × B(Rk)→ [0, 1] which satisfies the following conditions:

(i) For every B in B(Rk), the mapping Rq → [0, 1] : t → γ(B; t) is Borel
measurable;

(ii) For every t in Rq, the mapping B(Rk) → [0, 1] : B → γ(B; t) is a
probability measure on B(Rk); and

(iii) For every θ in Θ, the property

Pθ [Y ∈ B|T (Y ) = t] = γ(B; t) Pθ − a.s.
B ∈ B(Rk)
t ∈ Rq

holds.
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In other words, the statistic T : Rk → Rq is sufficient for {Fθ, θ ∈ Θ} if the
conditional distribution of Y under Pθ given T (Y ) is independent of θ.

Completeness
The family {Fθ, θ ∈ Θ} is complete if whenever we consider a Borel mapping
ψ : Rk → R such that

Eθ [|ψ(Y )|] <∞, θ ∈ Θ

the condition
Eθ [ψ(Y )] = 0, θ ∈ Θ

implies
Pθ [ψ(Y ) = 0] = 1, θ ∈ Θ.

Lemma 1.1 If the family {Fθ, θ ∈ Θ} is complete, then there exists no non-
trivial sufficient statistic for estimating θ on the basis of Y .

2 Finite variance estimators
An estimator for θ on the basis of Y is any Borel mapping g : Rk → Rp. We
define the estimation error at θ (in Θ) associated with the estimator g : Rk → Rp

as the rv εg(θ;Y ) given by

εg(θ;Y ) = g(Y )− θ.

Finite mean estimators
An estimator g : Rk → Rp is said to be a finite mean estimator if

Eθ [|gi(Y )|] <∞, i = 1, . . . , p
θ ∈ Θ.

The bias of the finite mean estimator g : Rk → Rp at θ is well defined and given
by

bθ(g) = Eθ [εg(θ;Y )] = Eθ [g(Y )]− θ.

The finite mean estimator g : Rk → Rp is said to be unbiased at θ if bθ(g) = 0.
Furthermore, the finite mean estimator g : Rk → Rp is said to be unbiased if

Eθ [g(Y )] = θ, θ ∈ Θ.
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Finite variance estimators
An estimator g : Rk → Rp is a finite variance estimator if

Eθ
[
|gi(Y )|2

]
<∞, i = 1, . . . , p

θ ∈ Θ.

Obviously, a finite variance estimator is also a finite mean estimator. The error
covariance of the finite variance estimator g : Rk → Rp at θ is the p × p matrix
Σθ(g) given by

Σθ(g) = Eθ [εg(θ;Y )εg(θ;Y )′] .

In general, the matrix Σθ(g) is not the covariance matrix of the error g(Y ); in fact
we have

Σθ(g) = Covθ [g(Y )] + bθ(g)bθ(g)′, θ ∈ Θ.

MVUEs
A finite variance estimator g? : Rk → Rp is said to be a Minimum Variance
Unbiased Estimator (MVUE) if it is unbiased and

Σθ(g
?) ≤ Σθ(g), θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp. Alternatively, a
finite variance estimator g? : Rk → Rp is said to be an MVUE if it is an unbiased
estimator and

Covθ [g?(Y )] ≤ Covθ [g(Y )] , θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp.

Under the completeness of the family {Fθ, θ ∈ Θ}, unbiased estimators for θ on
the basis of Y are essentially unique in the following sense.

Lemma 2.1 Assume the family {Fθ, θ ∈ Θ} to be complete. If the finite mean
estimators g1, g2 : Rk → Rp are unbiased, then

Pθ [g1(Y ) = g2(Y )] = 1, θ ∈ Θ.
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3 The Rao-Blackwell Theorem
A basic step in the search for MVUEs is provided by the Rao-Blackwell Theorem.

Complete sufficient statistic
A statistic T : Rk → Rq is said to be a complete sufficient statistic for {Fθ, θ ∈ Θ}
if it is a sufficient statistic for θ on the basis ofY such that the family {Hθ, θ ∈ Θ}
of probability distributions on Rq is complete where

Hθ(t) = Pθ [T (Y ) ≤ t ] ,
t ∈ Rq

θ ∈ Θ.

Rao-Blackwell Theorem

Theorem 3.1 Let T : Rk → Rq be a sufficient statistic for {Fθ, θ ∈ Θ}. With
any finite variance estimator g : Rk → Rp, define the mapping ĝ : Rk → Rq given
by

ĝ(t) =

∫
Rk

g(y)dγ(y, t), t ∈ Rq

where the mapping γ : Rq × B(Rk) → [0, 1] appears in the definition of the
sufficiency of the statistic T : Rk → Rq.

The mapping ĝ ◦ T : Rk → Rp is a finite variance estimator for θ on the basis
of Y such that

bθ(ĝ ◦ T ) = bθ(g)

and
Σθ(ĝ ◦ T ) ≤ Σθ(g)

for every θ in Θ. Moreover,

Σθ(ĝ ◦ T ) = Σθ(g)

at some θ in Θ iff
Pθ [g(Y ) = ĝ(T (Y ))] = 1.

The “algorithm” that takes the estimator g into the estimator ĝ ◦ T does not
change the bias but reduces “variance.” These properties are simple consequences
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of Jensen’s inequality (for conditional expectations) and of the law of iterated
conditioning applied to the fact that

ĝ(T (Y )) = Eθ [g(Y )|T (Y )] , Pθ − a.s.

for every θ in Θ.
The Rao-Blackwell Theorem has the following consequence.

Corollary 3.1 Let T : Rk → Rq be a sufficient statistic for {Fθ, θ ∈ Θ}. Assume
that there exists a Borel mapping g̃ : Rq → Rp such that g̃ ◦ T : Rk → Rp is a
finite variance unbiased estimator for θ on the basis of Y .

Then, the estimator g̃ ◦ T : Rk → Rp is an MVUE for θ on the basis of Y
whenever the Borel mapping g̃ : Rq → Rp is essentially unique in the following
sense: If Borel mappings g̃1, g̃2 : Rq → Rp have the property that for each i = 1, 2,
the estimator g̃i ◦ T : Rk → Rp is a finite variance unbiased estimator for θ on the
basis of Y , then

Pθ [g̃1(T (Y ) = g̃2(T (Y )] = 1, θ ∈ Θ.

Finding MVUEs

The needed uniqueness condition in Corollary 3.1 can be guaranteed by asking
for a stronger form of sufficiency for the sufficient statistic T : Rk → Rq.

Lemma 3.1 Let T : Rk → Rq be a complete sufficient statistic for {Fθ, θ ∈ Θ}.
If there exists a Borel mapping g̃ : Rq → Rp such that g̃ ◦ T : Rk → Rp is a finite
variance unbiased estimator for θ on the basis of Y , then the following holds:

(i) The Borel mapping g̃ : Rq → Rp is essentially unique in the following
sense: If the Borel mappings g̃1, g̃2 : Rq → Rp have the property that for each
i = 1, 2, the estimator g̃i ◦T : Rk → Rp is a finite variance unbiased estimator for
θ on the basis of Y , then

Pθ [g̃1(T (Y ) = g̃2(T (Y )] = 1, θ ∈ Θ.

(ii) The estimator g̃ ◦ T : Rk → Rp is MVUE.
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Part (i) is a consequence of the fact that T : Rk → Rq is a complete sufficient
statistic for {Fθ, θ ∈ Θ}, and Part (ii) follows then by Corollary 3.1. Taken
together, these results lead to the following strategy for finding MVUEs:

(i) Find a complete sufficient statistic T : Rk → Rq for {Fθ, θ ∈ Θ};

(ii) Find a finite variance unbiased estimator g : Rk → Rp for θ on the basis of
Y – This step is often implemented by guessing g = g̃ ◦ T for some Borel
mapping g̃ : Rq → Rp;

(iii) Absent such a guess, generate from g the Borel mapping ĝ : Rq → Rp as
per the Rao-Blackwell Theorem. The estimator ĝ ◦ T is MVUE.

4 Exponential families
Recall that the family {Fθ, θ ∈ Θ} is an exponential family (with respect to
F ) if its absolutely continuous with respect to F , and the corresponding density
functions {fθ, θ ∈ Θ} are of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q : Rk → R+,
and K : Rk → Rq. The requirement∫

Rk

fθ(y)dF (y) = 1, θ ∈ Θ

reads
C(θ)

∫
Rk

q(y)eQ(θ)′K(y)dF (y) = 1, θ ∈ Θ.

This is equivalent to
C(θ) > 0, θ ∈ Θ

and
0 <

∫
Rk

q(y)eQ(θ)′K(y)dF (y) <∞, θ ∈ Θ.

Exponential families and sufficient statistics
An exponential family always admits at least one sufficient statistic.
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Theorem 4.1 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect to
F ). Then, the mapping K : Rk → Rq is a sufficient statistic for {Fθ, θ ∈ Θ}.

The sufficient statistic K : Rk → Rq admits a simple characterization as a
complete sufficient statistic.

Theorem 4.2 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ). Then, the mapping K : Rk → Rq is a complete sufficient statistic for
{Fθ, θ ∈ Θ} if the set

Q(Θ) = {Q(θ) : θ ∈ Θ} .

contains a q-dimensional rectangle.

A proof

Consider a Borel mapping ψ : Rq → R such that

Eθ [|ψ(K(Y ))|] <∞, θ ∈ Θ.

We need to show that if

Eθ [ψ(K(Y ))] = 0, θ ∈ Θ

then
Pθ[ψ(K(Y )) = 0] = 1, θ ∈ Θ.

The integrability conditions are equivalent to∫
Rk

|ψ(K(y))|q(y)eQ(θ)′K(y)dF (y) <∞, θ ∈ Θ.

With u = (u1, . . . , uq)
′ in Cq, we note that∫
Rk

|ψ(K(y))q(y)eu
′K(y)|dF (y) <∞

as soon as <(u) = ((<(u1), . . . ,<(uq))
′ lies in Q(Θ). This is a consequence of

the fact that

|ψ(K(y))q(y)eu
′K(y)| = q(y)|ψ(K(y))| · |eu′K(y)|
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where

|eu′K(y)| = |
q∏
i=1

euiKi(y)|

= |
q∏
i=1

e(<(ui)+j=(ui))Ki(y)|

= |
q∏
i=1

e<(ui)Ki(y)|

=

q∏
i=1

e<(ui)Ki(y)(1)

so that∫
Rk

|ψ(K(y))q(y)eu
′K(y)|dF (y) =

∫
Rk

|ψ(K(y))|q(y)e<(u)′K(y)dF (y).

Let R denotes a q-dimensional rectangle contained in Q(Θ), i.e.,

R =

q∏
i=1

[ai, bi] ⊆ Q(Θ).

The arguments given above then show that on the subset R? given by

R? =

q∏
i=1

([ai, bi] + jR) ,

the C-valued integral

Ψ̂(u) ≡
∫
Rk

ψ(K(y))q(y)eu
′K(y)dF (y)

is well defined as soon as u = (u1, . . . , uq)
′ lies in R? (hence in R).

Under the enforced assumptions on the mapping Ψ : Rq → R, we have

Ψ̂(u) = 0, u ∈ R.

Standard properties of functions of complex variables imply that

Ψ̂(u) = 0, u ∈ R?.
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In particular, given the form of R?, we also have

Ψ̂(a+ ju) = 0, u ∈ Rq

where a = (a1, . . . , aq). It now follows the theory of Fourier transforms that

ψ(K(y))q(y)ea
′K(y) = 0 F − aa.e.

and the desired conclusion is readily obtained.

5 The Cràmer-Rao bounds
The Cràmer-Rao bound requires certain technical conditions to be satisfied by the
family {Fθ, θ ∈ Θ}.

The assumptions

CR1 The parameter set Θ is an open set in Rp;

CR2a The probability distributions {Fθ, θ ∈ Θ} are all absolutely continuous
with respect to the same distribution F : Rk → R+. Thus, for each θ in Θ,
there exists a Borel mapping fθ : Rk → R+ such that

Fθ(y) =

∫ y
∞

fθ(η)dF (η), y ∈ Rk;

CR2b Moreover, the density functions {fθ, θ ∈ Θ} all have the same support in
the sense that the set {y ∈ Rk : fθ(y) > 0} is the same for all θ in Θ. Let
S denote this common support;

CR3 For each θ in Θ, the gradient∇θfθ(y) exists and is finite on S;

CR4 For each θ in Θ, the square integrability condition

Eθ

[∣∣∣∣ ∂∂θi log fθ(Y )

∣∣∣∣2
]
<∞, i = 1, . . . , p

holds;
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CR5 The regularity condition

∂

∂θi

∫
S

fθ(y)dF (y) =

∫
S

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p.

holds for each θ in Θ. This is equivalent to asking∫
S

(
∂

∂θi
fθ(y)

)
dF (y) = 0. i = 1, . . . , p

since ∫
S

fθ(y)dF (y) = 1.

The Fisher information matrix

Under Conditions (CR1)–(CR4), define the Fisher information matrix M(θ)
t parameter θ as the p× p matrix given entrywise by

Mij(θ) = Eθ
[
∂

∂θi
log fθ(Y ) · ∂

∂θj
log fθ(Y )

]
, i, j = 1, . . . , p,

or equivalently,

M(θ) = Eθ
[
(∇θ log fθ(Y )) (∇θ log fθ(Y ))′

]
.

Regular estimators
A finite variance estimator g : Rk → Rp is a regular estimator (with respect to the
family {Fθ, θ ∈ Θ}) if the regularity conditions

∂

∂θi

(∫
S

g(y)fθ(y)dF (y)

)
=

∫
S

g(y)

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p

hold for all θ in Θ.
The regularity of an estimator g : Rk → Rp amounts to

∂

∂θi
(Eθ [g(Y )]) = Eθ

[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
, i = 1, . . . , p.

The bounds

The generalized Cràmer-Rao bound is given first
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Theorem 5.1 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every regular estimator g : Rk → Rp

(with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥ bθ(g)bθ(g)′ + (Ip +∇θbθ(g))M(θ)−1 (Ip +∇θbθ(g))′ .

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(Y )− θ = bθ(g) +K(θ)∇θ log fθ(Y ) F − a.e.

with
K(θ) = (Ip +∇θbθ(g))M(θ)−1.

The classical Cràmer-Rao bound holds for unbiased estimators, and is now a
simple corollary of Theorem 5.1.

Theorem 5.2 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every unbiased regular estimator
g : Rk → Rp (with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥M(θ)−1.

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(Y )− θ = K(θ)∇θ log fθ(Y ) F − a.e.

with
K(θ) = M(θ)−1.

Facts and arguments
Two key facts flow from the assumptions: Fix θ in Θ. From (CR3) and (CR5),
we get

Eθ [∇θ log fθ(Y )] = 0p.

Recall that
Eθ [g(Y )] = θ + bθ(g), θ ∈ Θ.
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Differentiating and using (CR3), we conclude that

Ip +∇θbθ(g) = Eθ
[
g(Y ) (∇θ log fθ(Y ))′

]
provided the estimator g : Rk → Rp is regular. Therefore,

Ip +∇θbθ(g)

= Eθ
[
(g(Y )− Eθ [g(Y )]) · (∇θ log fθ(Y ))′

]
= Eθ

[
(g(Y )− θ − bθ(g)) · (∇θ log fθ(Y ))′

]
.

When p = 1, this relation forms the basis for a proof via the Cauchy-Schwarz
inequality.

An alternate proof, valid for arbitrary p, can be obtained as follows: Introduce
the Rp-valued rv U(θ,Y ) given by

U(θ,Y ) = g(Y )− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y ), θ ∈ Θ.

The Cràmer-Rao bound is equivalent to the statement that the covariance matrix
Covθ[U(θ,Y )] is positive semi-definite! Indeed, note that the rv U(θ,Y ) has zero
mean since

Eθ [U(θ,Y )]

= Eθ
[
g(Y )− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y )

]
= Eθ [g(Y )]− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1Eθ [∇θ log fθ(Y )]

= 0p.(2)

Moreover, with

W (θ,Y ) = (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y )

we have
U(θ,Y ) = g(Y )− θ − bθ(g)−W (θ,Y )

so that

Covθ [U(θ,Y )]

= Eθ [U(θ,Y )U(θ,Y )′]

= Eθ
[
(g(Y )− θ − bθ(g)−W (θ,Y )) (g(Y )− θ − bθ(g)−W (θ,Y ))′

]
= Eθ

[
(g(Y )− θ − bθ(g)) (g(Y )− θ − bθ(g))′

]
−Eθ [(g(Y )− θ − bθ(g))W (θ,Y )′]

−Eθ
[
W (θ,Y ) (g(Y )− θ − bθ(g))′

]
+Eθ [W (θ,Y )W (θ,Y )′](3)
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Efficient estimators

A finite variance unbiased estimator g : Rk → Rp is an efficient estimator if it
achieves the Cràmer-Rao bound, namely

Σθ(g) = M(θ)−1, θ ∈ Θ.

Lemma 5.1 Assume that the assumptions of Theorem 5.1 hold. A regular esti-
mator that is also efficient satisfies the relations

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S

for each θ on Θ. Conversely, any estimator g : Rk → Rp which satisfies

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S

on Θ is an efficient regular estimator.

6 The i.i.d. case
In many situations the data to be used for estimating the parameter θ is obtained by
collecting i.i.d. samples from the underlying distribution. Formally, let {Fθ, θ ∈
Θ} denote the usual collection of probability distributions on Rk. With positive
integer n, let Y 1, . . . ,Y n be i.i.d. Rk-valued rvs, each distributed according to Fθ
under Pθ. Thus, for each θ in Θ we have

Pθ[Y 1 ∈ B1, . . . ,Y n ∈ Bn] =
n∏
i=1

Pθ[Y i ∈ Bi], B1, . . . , Bn ∈ B(Rk)

Let F (n)
θ denote the corresponding probability distributions on Rnk, namely

F
(n)
θ (y1, . . . ,yn) = Pθ[Y 1 ≤ y1, . . . ,Y n ≤ yn]

= =
n∏
i=1

Pθ[Y i ≤ yi]

= =
n∏
i=1

Fθ(yi),
yi ∈ Rk

i = 1, . . . , n
(4)

Hereditary properties

The following facts are easily shown.
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1. The family {F (n)
θ , θ ∈ Θ} is never complete when n ≥ 2 even if the family

{Fθ, θ ∈ Θ} is complete;

2. If the family {Fθ, θ ∈ Θ} is absolutely continuous with respect to the
distribution F on Rk with density functions {fθ, θ ∈ Θ}, then family
{F (n)

θ , θ ∈ Θ} is also absolutely continuous but with respect to the dis-
tribution F (n) on Rnk given by

F (n)(y1, . . . ,yn) =
n∏
i=1

F (yi),
yi ∈ Rk

i = 1, . . . , n

For each θ in Θ, he corresponding density function f (n)
θ : Rnk → R+ is

given by

f (n)(y1, . . . ,yn) =
n∏
i=1

f(yi),
yi ∈ Rk

i = 1, . . . , n.

3. Assume the family {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with density functions of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q :

Rk → R+, and K : Rk → Rq. Then, the family {F (n)
θ , θ ∈ Θ} is also an

exponential family (with respect to F (n)) with density functions of the form

f
(n)
θ (y1, . . . ,yn) = C(θ)nq(n)(y1, . . . ,yn)eQ(θ)′K(n)(y1,...,yn) F (n) − a.e.

for each θ in Θ, where

q(n)(y1, . . . ,yn) =
n∏
i=1

q(yi),
yi ∈ Rk

i = 1, . . . , n

and

K(n)(y1, . . . ,yn) =
n∑
i=1

K(yi),
yi ∈ Rk

i = 1, . . . , n.

4. Assuming (CR1), if the family {Fθ, θ ∈ Θ} satisfies Conditions (CR2)–
(CR5) (with respect to F ), then the family {F (n)

θ , θ ∈ Θ} also satisfies
Conditions (CR2)–(CR5) (with respect to F (n)), and the Fisher information
matrices are related through the relation

M (n)(θ) = nM(θ), θ ∈ Θ.
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7 Asymptotic theory – Types of estimators
We are often interested in situations where the parameter θ is estimated on the
basis of multiple Rk-valued samples, say Y 1, . . . ,Y n for n large. The most com-
mon situation is that where the incoming observations form a sequence {Y n, n =
1, 2, . . .} of i.i.d. Rk-valued rvs (as described earlier). However, in some applica-
tions the variates {Y n, n = 1, 2, . . .} may be correlated, e.g., the rvs {Y n, n =
1, 2, . . .} form a Markov chain.

In general, for each n = 1, 2, . . ., let gn : Rnk → Rk be an estimator for θ on
the basis of the Rk-valued observations Y 1, . . . ,Y n. We shall write

Y (n) =

 Y 1
...
Y n

 , n = 1, 2, . . .

The estimators {gn, n = 1, 2, . . .} are (weakly) consistent at θ (in Θ) if the
rvs {gn(Y (n)), n = 1, 2, . . .} converge in probability to θ under Pθ, i.e., for every
ε > 0,

lim
n→∞

Pθ
[
‖gn(Y (n))− θ‖ > ε

]
= 0

The estimators {gn, n = 1, 2, . . .} are (strongly) consistent at θ (in Θ) if the
rvs {gn(Y (n)), n = 1, 2, . . .} converge a.s. to θ under Pθ, i.e.,

lim
n→∞

gn(Y (n)) = θ Pθ − a.s.

As expected, strong consistency implies (weak) consistency.
The estimators {gn, n = 1, 2, . . .} are asymptotically normal at θ (in Θ) if

there exists a p× p positive semi-definite matrix Σ(θ) with the property that

√
n
(
gn(Y (n))− θ

)
=⇒n N(0p,Σ(θ))

The estimators {gn, n = 1, 2, . . .} are asymptotically unbiased at θ (in Θ) if
for each n = 1, 2, . . ., the estimator is a finite mean estimator and

lim
n→∞

Eθ
[
gn(Y (n))

]
= θ.

This is equivalent to
lim
n→∞

bθ(gn) = θ.

The estimators {gn, n = 1, 2, . . .} are asymptotically efficient at θ (in Θ) if
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8 Maximum likelihood estimation methods


