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DETECTION AND ESTIMATION
THEORY

THE PARAMETER ESTIMATION PROBLEM

1 The basic setting
Throughout, p, q and k are positive integers.

The setup
With Θ being a Borel subset of Rp, consider a parametrized family {Fθ, θ ∈ Θ}
of probability distributions on Rk. The problem considered here is that of esti-
mating θ on the basis of some Rk-valued observation whose statistical description
depends on θ.

The setting is alway understood as follows: Given (Ω,F) some measurable
space, consider a rv Y : Ω → Rk defined on it. With {Fθ, θ ∈ Θ}, we associate
a collection of probability measures {Pθ, θ ∈ Θ} defined on F such that

Pθ [Y ∈ B] =

∫
B

dFθ(y),
B ∈ B(Rk),
θ ∈ Θ.

Sufficient statistics
It is customary to refer to any Borel mapping T : Rk → Rq as a statistic.

A statistic T : Rk → Rq is said to be sufficient for {Fθ, θ ∈ Θ}, or al-
ternatively, for estimating θ on the basis of Y , if there exists a mapping γ :
Rq × B(Rk)→ [0, 1] which satisfies the following conditions:

(i) For every B in B(Rk), the mapping Rq → [0, 1] : t → γ(B; t) is Borel
measurable;

(ii) For every t in Rq, the mapping B(Rk) → [0, 1] : B → γ(B; t) is a
probability measure on B(Rk); and

(iii) For every θ in Θ, the property

Pθ [Y ∈ B|T (Y ) = t] = γ(B; t) Pθ − a.s.
B ∈ B(Rk)
t ∈ Rq

holds.
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In other words, the statistic T : Rk → Rq is sufficient for {Fθ, θ ∈ Θ} if the
conditional distribution of Y under Pθ given T (Y ) is independent of θ.

Completeness
The family {Fθ, θ ∈ Θ} is complete if whenever we consider a Borel mapping
ψ : Rk → R such that

Eθ [|ψ(Y )|] <∞, θ ∈ Θ

the condition
Eθ [ψ(Y )] = 0, θ ∈ Θ

implies
Pθ [ψ(Y ) = 0] = 1, θ ∈ Θ.

Lemma 1.1 If the family {Fθ, θ ∈ Θ} is complete, then there exists no non-
trivial sufficient statistic for estimating θ on the basis of Y .

2 Finite variance estimators
An estimator for θ on the basis of Y is any Borel mapping g : Rk → Rp. We
define the estimation error at θ (in Θ) associated with the estimator g : Rk → Rp

as the rv εg(θ;Y ) given by

εg(θ;Y ) = g(Y )− θ.

Finite mean estimators
An estimator g : Rk → Rp is said to be a finite mean estimator if

Eθ [|gi(Y )|] <∞, i = 1, . . . , p
θ ∈ Θ.

The bias of the finite mean estimator g : Rk → Rp at θ is well defined and given
by

bθ(g) = Eθ [εg(θ;Y )] = Eθ [g(Y )]− θ.

The finite mean estimator g : Rk → Rp is said to be unbiased at θ if bθ(g) = 0.
Furthermore, the finite mean estimator g : Rk → Rp is said to be unbiased if

Eθ [g(Y )] = θ, θ ∈ Θ.
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Finite variance estimators
An estimator g : Rk → Rp is a finite variance estimator if

Eθ
[
|gi(Y )|2

]
<∞, i = 1, . . . , p

θ ∈ Θ.

Obviously, a finite variance estimator is also a finite mean estimator. The error
covariance of the finite variance estimator g : Rk → Rp at θ is the p × p matrix
Σθ(g) given by

Σθ(g) = Eθ [εg(θ;Y )εg(θ;Y )′] .

In general, the matrix Σθ(g) is not the covariance matrix of the error g(Y ); in fact
we have

Σθ(g) = Covθ [g(Y )] + bθ(g)bθ(g)′, θ ∈ Θ.

MVUEs
A finite variance estimator g? : Rk → Rp is said to be a Minimum Variance
Unbiased Estimator (MVUE) if it is unbiased and

Σθ(g
?) ≤ Σθ(g), θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp. Alternatively, a
finite variance estimator g? : Rk → Rp is said to be an MVUE if it is an unbiased
estimator and

Covθ [g?(Y )] ≤ Covθ [g(Y )] , θ ∈ Θ

for any other finite variance unbiased estimator g : Rk → Rp.

Under the completeness of the family {Fθ, θ ∈ Θ}, unbiased estimators for θ on
the basis of Y are essentially unique in the following sense.

Lemma 2.1 Assume the family {Fθ, θ ∈ Θ} to be complete. If the finite mean
estimators g1, g2 : Rk → Rp are unbiased, then

Pθ [g1(Y ) = g2(Y )] = 1, θ ∈ Θ.
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3 The Rao-Blackwell Theorem
A basic step in the search for MVUEs is provided by the Rao-Blackwell Theorem.

Complete sufficient statistic
A statistic T : Rk → Rq is said to be a complete sufficient statistic for {Fθ, θ ∈ Θ}
if it is a sufficient statistic for {Fθ, θ ∈ Θ} such that the family {Hθ, θ ∈ Θ} of
probability distributions on Rq is complete where

Hθ(t) = Pθ [T (Y ) ≤ t ] ,
t ∈ Rq

θ ∈ Θ.

Rao-Blackwell Theorem
The Rao-Blackwell Theorem given next can be viewed as providing a “variance”
reduction algorithm.

Theorem 3.1 Let T : Rk → Rq be a sufficient statistic for {Fθ, θ ∈ Θ}. With
any finite variance estimator g : Rk → Rp, define the mapping ĝ : Rk → Rq given
by

ĝ(t) =

∫
Rk

g(y)dγ(y, t), t ∈ Rq

where the mapping γ : Rq ×B(Rk)→ [0, 1] is the one appearing in the definition
of the sufficiency of the statistic T : Rk → Rq.

The mapping ĝ ◦ T : Rk → Rp is a finite variance estimator for θ on the basis
of Y such that

bθ(ĝ ◦ T ) = bθ(g)

and
Σθ(ĝ ◦ T ) ≤ Σθ(g)

for every θ in Θ. Moreover,

Σθ(ĝ ◦ T ) = Σθ(g)

at some θ in Θ iff
Pθ [g(Y ) = ĝ(T (Y ))] = 1.
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The “algorithm” that takes the estimator g into the estimator ĝ ◦ T does not
change the bias but reduces variability. These properties are simple consequences
of Jensen’s inequality (for conditional expectations) and of the law of iterated
conditioning applied to the fact that

ĝ(T (Y )) = Eθ [g(Y )|T (Y )] , Pθ − a.s.

for every θ in Θ. The Rao-Blackwell Theorem has the following consequence.

Corollary 3.1 Let T : Rk → Rq be a sufficient statistic for {Fθ, θ ∈ Θ}. Assume
that there exists a Borel mapping g̃ : Rq → Rp such that g̃ ◦ T : Rk → Rp is a
finite variance unbiased estimator for θ on the basis of Y .

Then, the estimator g̃ ◦ T : Rk → Rp is an MVUE for θ on the basis of Y
whenever the Borel mapping g̃ : Rq → Rp is essentially unique in the following
sense: If Borel mappings g̃1, g̃2 : Rq → Rp have the property that for each i = 1, 2,
the estimator g̃i ◦ T : Rk → Rp is a finite variance unbiased estimator for θ on the
basis of Y , then

Pθ [g̃1(T (Y )) = g̃2(T (Y ))] = 1, θ ∈ Θ.

Finding MVUEs

The needed uniqueness condition in Corollary 3.1 can be guaranteed by asking
for a stronger form of sufficiency for the statistic T : Rk → Rq, namely its
complete sufficiency.

Lemma 3.1 Let T : Rk → Rq be a complete sufficient statistic for {Fθ, θ ∈ Θ}.
If there exists a Borel mapping g̃ : Rq → Rp such that g̃ ◦ T : Rk → Rp is a finite
variance unbiased estimator for θ on the basis of Y , then the following holds:

(i) The Borel mapping g̃ : Rq → Rp is essentially unique in the following
sense: If the Borel mappings g̃1, g̃2 : Rq → Rp have the property that for each
i = 1, 2, the estimator g̃i ◦T : Rk → Rp is a finite variance unbiased estimator for
θ on the basis of Y , then

Pθ [g̃1(T (Y ) = g̃2(T (Y ))] = 1, θ ∈ Θ.

(ii) The estimator g̃ ◦ T : Rk → Rp is MVUE.
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Part (i) is a consequence of the fact that T : Rk → Rq is a complete sufficient
statistic for {Fθ, θ ∈ Θ}, and Part (ii) follows then by Corollary 3.1. Taken
together, these results lead to the following strategy for finding MVUEs:

(i) Find a complete sufficient statistic T : Rk → Rq for {Fθ, θ ∈ Θ};

(ii) Find a finite variance unbiased estimator g : Rk → Rp for θ on the basis of
Y – This step is often implemented by guessing g = g̃ ◦ T for some Borel
mapping g̃ : Rq → Rp;

(iii) Absent such a guess, generate from g the Borel mapping ĝ : Rq → Rp as
per the Rao-Blackwell Theorem. The estimator ĝ ◦ T is MVUE.

4 Exponential families
Recall that the family {Fθ, θ ∈ Θ} is an exponential family (with respect to
F ) if its absolutely continuous with respect to F , and the corresponding density
functions {fθ, θ ∈ Θ} are of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.(1)

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q : Rk → R+

and K : Rk → Rq. The requirement∫
Rk

fθ(y)dF (y) = 1

reads
C(θ)

∫
Rk

q(y)eQ(θ)′K(y)dF (y) = 1.

This is equivalent to
C(θ) > 0

and
0 <

∫
Rk

q(y)eQ(θ)′K(y)dF (y) <∞.

Exponential families and sufficient statistics
An exponential family always admits at least one sufficient statistic.
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Theorem 4.1 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with representation (1). Then, the mapping K : Rk → Rq is a sufficient
statistic for {Fθ, θ ∈ Θ}.

The sufficient statistic K : Rk → Rq for {Fθ, θ ∈ Θ} admits a simple charac-
terization as a complete sufficient statistic.

Theorem 4.2 Assume {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with representation (1). Then, the mapping K : Rk → Rq is a complete
sufficient statistic for {Fθ, θ ∈ Θ} if the set

Q(Θ) = {Q(θ) : θ ∈ Θ} .

contains a q-dimensional rectangle.

A proof
Consider a Borel mapping ψ : Rq → R such that

Eθ [|ψ(K(Y ))|] <∞, θ ∈ Θ.

We need to show that if

Eθ [ψ(K(Y ))] = 0, θ ∈ Θ

then
Pθ[ψ(K(Y )) = 0] = 1, θ ∈ Θ.

The integrability conditions are equivalent to∫
Rk

|ψ(K(y))|q(y)eQ(θ)′K(y)dF (y) <∞, θ ∈ Θ.

With u = (u1, . . . , uq)
′ in Cq, we note that∫
Rk

|ψ(K(y))q(y)eu
′K(y)|dF (y) <∞

as soon as <(u) = ((<(u1), . . . ,<(uq))
′ lies in Q(Θ). This is a consequence of

the fact that

|ψ(K(y))q(y)eu
′K(y)| = q(y)|ψ(K(y))| · |eu′K(y)|
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where

|eu′K(y)| = |
q∏
i=1

euiKi(y)|

= |
q∏
i=1

e(<(ui)+j=(ui))Ki(y)|

= |
q∏
i=1

e<(ui)Ki(y)|

=

q∏
i=1

e<(ui)Ki(y)(2)

so that∫
Rk

|ψ(K(y))q(y)eu
′K(y)|dF (y) =

∫
Rk

|ψ(K(y))|q(y)e<(u)′K(y)dF (y).

Let R denotes a q-dimensional rectangle contained in Q(Θ), i.e.,

R =

q∏
i=1

[ai, bi] ⊆ Q(Θ).

The arguments given above then show that on the subset R? given by

R? =

q∏
i=1

([ai, bi] + jR) ,

the C-valued integral

Ψ̂(u) ≡
∫
Rk

ψ(K(y))q(y)eu
′K(y)dF (y)

is well defined as soon as u = (u1, . . . , uq)
′ lies in R? (hence in R).

Under the enforced assumptions on the mapping Ψ : Rq → R, we have

Ψ̂(u) = 0, u ∈ R.

Standard properties of functions of complex variables imply that

Ψ̂(u) = 0, u ∈ R?.
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In particular, given the form of R?, we also have

Ψ̂(a+ ju) = 0, u ∈ Rq

where a = (a1, . . . , aq). It now follows the theory of Fourier transforms that

ψ(K(y))q(y)ea
′K(y) = 0 F − aa.e.

and the desired conclusion is readily obtained.

5 The Cramèr-Rao bounds
The Cramèr-Rao bound requires certain technical conditions to be satisfied by the
family {Fθ, θ ∈ Θ}.

CR1 The parameter set Θ is an open set in Rp;

CR2a The probability distributions {Fθ, θ ∈ Θ} are all absolutely continuous
with respect to the same distribution F : Rk → R+. Thus, for each θ in Θ,
there exists a Borel mapping fθ : Rk → R+ such that

Fθ(y) =

∫ y
∞

fθ(η)dF (η), y ∈ Rk;

CR2b The density functions {fθ, θ ∈ Θ} all have the same support in the sense
that the set {y ∈ Rk : fθ(y) > 0} is the same for all θ in Θ. Let S denote
this common support;

CR3 For each θ in Θ, the gradient∇θfθ(y) exists and is finite on S;

CR4 For each θ in Θ, the square integrability condition

Eθ

[∣∣∣∣ ∂∂θi log fθ(Y )

∣∣∣∣2
]
<∞, i = 1, . . . , p

holds;
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CR5 For each θ in Θ, the regularity condition

∂

∂θi

∫
S

fθ(y)dF (y) =

∫
S

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p

holds. This is equivalent to asking∫
S

(
∂

∂θi
fθ(y)

)
dF (y) = 0, i = 1, . . . , p

since ∫
S

fθ(y)dF (y) = 1.

The Fisher information matrix
Under Conditions (CR1)–(CR4), define the Fisher information matrix M(θ) at
parameter θ as the p× p matrix given entrywise by

Mij(θ) = Eθ
[
∂

∂θi
log fθ(Y ) · ∂

∂θj
log fθ(Y )

]
, i, j = 1, . . . , p,

or equivalently,

M(θ) = Eθ
[
(∇θ log fθ(Y )) (∇θ log fθ(Y ))′

]
.

Regular estimators
A finite variance estimator g : Rk → Rp is a regular estimator (with respect to the
family {Fθ, θ ∈ Θ}) if the regularity conditions

∂

∂θi

(∫
S

g(y)fθ(y)dF (y)

)
=

∫
S

g(y)

(
∂

∂θi
fθ(y)

)
dF (y), i = 1, . . . , p

hold for all θ in Θ.
The regularity of an estimator g : Rk → Rp amounts to

∂

∂θi
(Eθ [g(Y )]) = Eθ

[
g(Y )

(
∂

∂θi
log fθ(Y )

)]
, i = 1, . . . , p.

The bounds
The generalized Cramèr-Rao bound is given first
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Theorem 5.1 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every regular estimator g : Rk → Rp

(with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥ bθ(g)bθ(g)′ + (Ip +∇θbθ(g))M(θ)−1 (Ip +∇θbθ(g))′ .

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(Y )− θ = bθ(g) +K(θ)∇θ log fθ(Y ) F − a.e.

with
K(θ) = (Ip +∇θbθ(g))M(θ)−1.

The classical Cramèr-Rao bound holds for unbiased estimators, and is now a
simple corollary of Theorem 5.1.

Theorem 5.2 Assume Conditions (CR1)–(CR5). If the Fisher information ma-
trix M(θ) is invertible for each θ in Θ, then every unbiased regular estimator
g : Rk → Rp (with respect to the family {Fθ, θ ∈ Θ}) obeys the lower bound

Σθ(g) ≥M(θ)−1.

Equality holds at θ in Θ if and only if there exists a p× p matrix K(θ) such that

g(Y )− θ = K(θ)∇θ log fθ(Y ) F − a.e.

with
K(θ) = M(θ)−1.

The Fisher information matrix is often computed through an alternate expres-
sion given next. It requires three additional conditions. The first one provides
smoothness beyond (CR3).

CR6 For each θ in Θ, the partial derivatives

∂2

∂θi∂θij
fθ(y), i, j = 1, . . . , p

all exist and are finite on S;
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CR7 For each θ in Θ,

Eθ
[∣∣∣∣ ∂2

∂θi∂θj
fθ(Y )

∣∣∣∣] <∞, i, j = 1, . . . , p;

CR8 For each θ in Θ, the regularity conditions

∂2

∂θi∂θij

∫
S

fθ(y)dF (y) =

∫
S

∂2

∂θi∂θj
fθ(y)dF (y), i, j = 1, . . . , p

hold. This is equivalent to asking∫
S

∂2

∂θi∂θj
fθ(y)dF (y) = 0, i, j = 1, . . . , p

Lemma 5.1 Assume Conditions (CR1)–(CR8) to hold. Then, the Fisher infor-
mation matrix takes the form

Mij(θ) = −Eθ
[

∂2

∂θi∂θj
log fθ(Y )

]
, i, j = 1, . . . , p

Facts and arguments
Two key facts flow from the assumptions: Fix θ in Θ. From (CR3) and (CR5),
we get

Eθ [∇θ log fθ(Y )] = 0p.

Recall that
Eθ [g(Y )] = θ + bθ(g), θ ∈ Θ.

Thus, if the estimator g : Rk → Rp is regular, differentiating and using (CR3), we
conclude that

Ip +∇θbθ(g) = Eθ
[
g(Y ) (∇θ log fθ(Y ))′

]
.

Therefore,

Ip +∇θbθ(g)

= Eθ
[
(g(Y )− Eθ [g(Y )]) · (∇θ log fθ(Y ))′

]
= Eθ

[
(g(Y )− θ − bθ(g)) · (∇θ log fθ(Y ))′

]
.
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When p = 1, this last relation forms the basis for a proof via the Cauchy-
Schwarz inequality. An alternate proof, valid for arbitrary p, can be obtained as
follows: Introduce the Rp-valued rv U(θ,Y ) given by

U(θ,Y ) = g(Y )− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1∇θ log fθ(Y ), θ ∈ Θ.

Note that the rv U(θ,Y ) has zero mean since

Eθ [U(θ,Y )]

= Eθ [g(Y )]− θ − bθ(g)− (Ip +∇θbθ(g))M(θ)−1Eθ [∇θ log fθ(Y )]

= 0p.

The Cramèr-Rao bound is equivalent to the statement that the covariance matrix
Covθ[U(θ,Y )] is positive semi-definite! Indeed, it is straightforward to check that

Covθ[U(θ,Y )] = Covθ [U(θ,Y )]

= Σθ(g)− bθ(g)bθ(g)′

− (Ip +∇θbθ(g))M(θ)−1 (Ip +∇θbθ(g))′ .(3)

In particular, Covθ[U(θ,Y )] = Op iff

Pθ [U(θ,Y )] = 0p] = 1.

Efficient estimators
A finite variance unbiased estimator g : Rk → Rp is an efficient estimator if it
achieves the Cràmer-Rao bound, namely

Σθ(g) = M(θ)−1, θ ∈ Θ.

Efficiency is meaningless for unbiased estimators!

Lemma 5.2 Assume Conditions (CR1)–(CR5) to hold. A regular estimator that
is also efficient satisfies the relations

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S

for each θ on Θ. Conversely, any estimator g : Rk → Rp which satisfies

g(y)− θ = M(θ)−1∇θ log fθ(y) F − a.e. on S

on Θ is an efficient regular estimator.
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As an immediate corollary we have the following.

Corollary 5.1 Assume Conditions (CR1)–(CR5) to hold. If an efficient regular
estimator g : Rk → Rp exists, it is essentially unique on S in the sense that if
g1, g2 : Rk → Rp are two efficient regular estimators, then g1(y) = g2(y) F -a.e.
on S.

6 Cramèr-Rao bounds for exponential families
Assume the family {Fθ, θ ∈ Θ} to be an exponential family (with respect to F )
with density functions of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q : Rk → R+

and K : Rk → Rq. Conditions (CR1)–(CR8) can now be expressed more simply
as follows:

Condition (CR2a) is obviously satisfied . Note that fθ(y) > 0 if and only if
q(y) > 0, whence{

y ∈ Rk : fθ(y) > 0
}

=
{
y ∈ Rk : q(y) > 0

}
for each θ in Θ, and (CR2b) holds.

Next, observe that here

∂

∂θi
log fθ(y) =

∂

∂θi
logC(θ) +

∂

∂θi
Q(θ)′K(y),

i = 1, . . . , p
y ∈ S(4)

upon assuming the existence of the various derivatives. Therefore, (CR3) is equiv-
alent to the differentiability of the mappings C : Θ → R+ and Q : Θ → Rq. It
follows that (CR4) is equivalent to

Eθ
[
|K`(Y )|2

]
<∞, ` = 1, . . . , p.

Furthermore, the regularity condition (CR5) is easily seen to be equivalent to(
∂

∂θi
Q(θ)

)′
Eθ [K(Y )] = − ∂

∂θi
logC(θ),

θi ∈ Θ
i = 1, . . . , p.

(5)
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Combining (4) and (5) we get

∂

∂θi
log fθ(y) =

(
∂

∂θi
Q(θ)

)′
(K(y)− Eθ [K(Y )]) ,

i = 1, . . . , p
y ∈ S(6)

It is now straightforward to see that

Mij(θ) =

(
∂

∂θi
Q(θ)

)′
Covθ [K(Y )]

(
∂

∂θij
Q(θ)

)
,

i, j = 1, . . . , p
θ ∈ Θ

(7)

The regularity of the estimator g : Rk → Rp can be expressed as the equalities

∂

∂θi
(θ + bθ(g))

= Eθ
[
(g(Y )− Eθ [g(Y )])

(
∂

∂θi
Q(θ)

)′
K(Y )

]
, i = 1, . . . , p

on Θ.

The case p = 1 with q = 1
Under these conditions K : R → R is a bone fide estimator of θ on the basis of
Y . In view of the last equality above (with g = K), this estimator is regular if

d

dθ
Eθ [K(Y )] =

d

dθ
Q(θ) · Eθ [(K(Y )− Eθ [K(Y )])K(Y )]

=
d

dθ
Q(θ) · Varθ [K(Y )] , θ ∈ Θ.(8)

The estimator K : R → R then satisfies the Cramèr-Rao bound with equality, as
this is equivalent to

K(y)− θ(9)

= bθ(K) +

(
1 +

d

dθ
bθ(K)

)
M(θ)−1

∂

∂θ
log fθ(y) F − a.e. on S

for every θ in Θ. The validity of (9) follows by direct substitution as we note that

1 +
d

dθ
bθ(K) =

d

dθ
Eθ [K(Y )] =

d

dθ
Q(θ) · Varθ [K(Y )] ,

M(θ) =

(
d

dθ
Q(θ)

)2

· Varθ [K(Y )] .
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and
∂

∂θ
log fθ(y) =

d

dθ
Q(θ) (K(y)− Eθ [K(Y )]) .

If the estimator K : R→ R is also unbiased, that is

Eθ [K(Y )] = θ, θ ∈ Θ

the condition for it being regular reads

d

dθ
Q(θ) · Varθ [K(Y )] = 1, θ ∈ Θ

whence
M(θ) =

d

dθ
Q(θ), θ ∈ Θ

and the estimator K : R→ R indeed achieves the Cramèr-Rao bound since

Varθ [K(Y )] = M(θ)−1, θ ∈ Θ.

Therefore, the (assumed) regular unbiased estimator K : R → R is MVUE
amongst all regular unbiased estimators (upon applying the Cramèr-Rao bound).
If in addition, it is also a complete sufficient statistic for the family {Fθ, θ ∈ Θ},
then it is also MVUE (among all unbiased finite variantce estimators) by virtue of
Lemma 3.1 (with g̃(t) = t).

7 The i.i.d. case
In many situations the data to be used for estimating the parameter θ is obtained by
collecting i.i.d. samples from the underlying distribution. Formally, let {Fθ, θ ∈
Θ} denote the usual collection of probability distributions on Rk. With positive
integer n, let Y 1, . . . ,Y n be i.i.d. Rk-valued rvs, each distributed according to Fθ
under Pθ. Thus, for each θ in Θ we have

Pθ[Y 1 ∈ B1, . . . ,Y n ∈ Bn] =
n∏
i=1

Pθ[Y i ∈ Bi],
Bi ∈ B(Rk),
i = 1, . . . , n.
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Let F (n)
θ denote the corresponding probability distributions on Rnk, namely

F
(n)
θ (y1, . . . ,yn) = Pθ[Y 1 ≤ y1, . . . ,Y n ≤ yn]

= =
n∏
i=1

Pθ[Y i ≤ yi]

= =
n∏
i=1

Fθ(yi),
yi ∈ Rk

i = 1, . . . , n
(10)

When n ≥ 2 the family {F (n)
θ , θ ∈ Θ} is never complete even if the family

{Fθ, θ ∈ Θ} is complete.

The following hereditary properties are easily shown.

1. If the family {Fθ, θ ∈ Θ} is absolutely continuous with respect to the dis-
tribution F on Rk with density functions {fθ, θ ∈ Θ}, then the family
{F (n)

θ , θ ∈ Θ} is also absolutely continuous but with respect to the distri-
bution F (n) on Rnk given by

F (n)(y1, . . . ,yn) =
n∏
i=1

F (yi),
yi ∈ Rk

i = 1, . . . , n

For each θ in Θ, he corresponding density function f (n)
θ : Rnk → R+ is

given by

f (n)(y1, . . . ,yn) =
n∏
i=1

f(yi),
yi ∈ Rk

i = 1, . . . , n.

2. Assume the family {Fθ, θ ∈ Θ} to be an exponential family (with respect
to F ) with density functions of the form

fθ(y) = C(θ)q(y)eQ(θ)′K(y) F − a.e.

for every θ in Θ with Borel mappings C : Θ → R+, Q : Θ → Rq, q :

Rk → R+ and K : Rk → Rq. Then, the family {F (n)
θ , θ ∈ Θ} is also an

exponential family (with respect to F (n)) with density functions of the form

f
(n)
θ (y1, . . . ,yn) = C(θ)nq(n)(y1, . . . ,yn)eQ(θ)′K(n)(y1,...,yn) F (n) − a.e.
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for each θ in Θ, where

q(n)(y1, . . . ,yn) =
n∏
i=1

q(yi),
yi ∈ Rk

i = 1, . . . , n

and

K(n)(y1, . . . ,yn) =
n∑
i=1

K(yi),
yi ∈ Rk

i = 1, . . . , n.

3. Assuming (CR1), if the family {Fθ, θ ∈ Θ} satisfies Conditions (CR2)–
(CR5) (with respect to F ), then the family {F (n)

θ , θ ∈ Θ} also satisfies
Conditions (CR2)–(CR5) (with respect to F (n)), and the Fisher information
matrices are related through the relation

M (n)(θ) = nM(θ), θ ∈ Θ.

8 Asymptotic theory – Types of estimators
We are often interested in situations where the parameter θ is estimated on the
basis of multiple Rk-valued samples, say Y 1, . . . ,Y n for n large. The most com-
mon situation is that when the incoming observations form a sequence {Y n, n =
1, 2, . . .} of i.i.d. Rk-valued rvs (as described earlier). However, in some applica-
tions the variates {Y n, n = 1, 2, . . .} may be correlated, e.g., the rvs {Y n, n =
1, 2, . . .} form a Markov chain.

In general, for each n = 1, 2, . . ., let gn : Rnk → Rk be an estimator for θ on
the basis of the Rk-valued observations Y 1, . . . ,Y n. We shall write

Y (n) =

 Y 1
...
Y n

 , n = 1, 2, . . .

The estimators {gn, n = 1, 2, . . .} are (weakly) consistent at θ (in Θ) if the
rvs {gn(Y (n)), n = 1, 2, . . .} converge in probability to θ under Pθ, i.e., for every
ε > 0,

lim
n→∞

Pθ
[
‖gn(Y (n))− θ‖ > ε

]
. = 0

The estimators {gn, n = 1, 2, . . .} are (strongly) consistent at θ (in Θ) if the
rvs {gn(Y (n)), n = 1, 2, . . .} converge a.s. to θ under Pθ, i.e.,

lim
n→∞

gn(Y (n)) = θ Pθ − a.s.
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As expected, strong consistency implies (weak) consistency.
The estimators {gn, n = 1, 2, . . .} are asymptotically normal at θ (in Θ) if

there exists a p× p positive semi-definite matrix Σ(θ) with the property that

√
n
(
gn(Y (n))− θ

)
=⇒n N(0p,Σ(θ)).

The estimators {gn, n = 1, 2, . . .} are asymptotically unbiased at θ (in Θ) if
for each n = 1, 2, . . ., the estimator is a finite mean estimator and

lim
n→∞

Eθ
[
gn(Y (n))

]
= θ.

This is equivalent to
lim
n→∞

bθ(gn) = 0p.

Assume that for each n = 1, 2, . . ., the family of distributions {F (n)
θ , θ ∈

Θ} satisfies the appropriate conditions (CR2)–(CR5). The estimators {gn, n =
1, 2, . . .} are asymptotically efficient at θ (in Θ) if

lim
n→∞

(
Σθ(gn)−M (n)(θ)−1

)
= Op×p, θ ∈ Θ

provided the Fisher information matrices {M (n)(θ), n = 1, 2, . . .} are invertible
for each θ in Θ.

9 Maximum likelihood estimation methods
Assume (CR2a) to hold. A Borel mapping gML : Rk → Θ is called a maximum
likelihood estimator of θ on the basis of Y if

fgML(y)(y) = max (fθ(y), θ ∈ Θ) , y ∈ Rk.

This definition implicitly assumes that at the observation point y, the supremum

sup (fθ(y), θ ∈ Θ)

is indeed achieved at some point in Θ. Note that (i) maximum likelihood estima-
tors may not exist or (ii) may not be unique. Often these problems are handled by
altering the selection of the density functions {fθ, θ ∈ Θ}.
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ML equation
Note that the maximum likelihood estimator of θ on the basis of Y can equiva-
lently be defined by

log fgML(y)(y) = max (log fθ(y), θ ∈ Θ) , y ∈ Rk

under the convention log 0 = −∞. This equation is known as the maximum
likelihood equation.

This observation leads to the following characterization: Assume Int(Θ) to
be non-empty and that condition (CR2) holds. Also assume that condition (CR3)
holds for all θ in Int(Θ) (rather than for all θ in Θ). Then

∇θ log fθ(y)
∣∣∣
θ=gML(y)

= 0p y ∈ S

provided
gML(y) ∈ Int(Θ).

When a sufficient statistics exists, the ML estimates can always expressed in
terms of it. This is a consequence of the Factorization Theorem.

Theorem 9.1 Assume that Condition (CR2a) holds and that for each y in S, the
ML estimate gML(y) exists. If the statistic T : Rk → Rq is sufficient for the
family {Fθ, θ ∈ Θ}, then there exists a Borel mapping GML : Rq → Θ such that

gML(y) = GML(T (y)) F − a.e. on S.

ML estimators and efficiency
There are relationships between efficiency and ML estimators.

Theorem 9.2 Assume Conditions (CR1)–(CR5) to hold, and that for each θ in Θ,
the Fisher information matrix M(θ) is invertible. Assume further that for each y
in S, the ML estimate gML(y) exists. Then every regular estimator g : Rk → Rp

which achieves the generalized Cramér-Rao bound must necessarily satisfy the
equality

g(y) = gML(y) + bgML(y)(g) F − a.e. on S.

Corollary 9.1 Under the assumptions of Theorem 9.2, if the regular estimator
g : Rk → Rp is efficient, then it must necessarily be an ML estimator.
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Asymptotic theory for ML estimators
The result given next assumes the availability of i.i.d. samples

Theorem 9.3 Assume Conditions (CR1)–(CR8) to hold. For each n = 1, 2, . . .,
assume that for each y(n) in Sn, the ML estimate gn,ML(y(n)) exists. Then the
following statements hold.

(i) The ML estimators {gn,ML, n = 1, 2, . . .} are strongly consistent, i.e., for
each θ in Θ,

lim
n→∞

gn,ML(Y (n)) = θ Pθ − a.s.

(ii) The ML estimators {gn,ML, n = 1, 2, . . .} are asymptotically normal, i.e.,
for each θ in Θ,

√
n
(
gn,ML(Y (n))− θ

)
=⇒n N(0p,M(θ)−1)

under Pθ provided the Fisher information matrix M(θ) is invertible.


