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ESTIMATION AND DETECTION THEORY

ANSWER KEY TO TEST # 1:

1.

1l.a. For each h = 0,1, the probability distribution F} has probability density function
fn: R — R, given by
0 ify<0
fuly) =

are” Y if y > 0.

Therefore,

dy(y) =0 it fi(y) <nfo(y)
iff are” Y < nage” Y y >0

iff e (ol < n@, y>0

(€3]
. 251
iff  log <—) < (g —ag)y, y=0
NG
1
iff log ( A ) <y, y>0. (1.1)
a1 — Qg nco
It is plain that
C(dy) S0 g (1) < (1.2)
= : og [ — : .
! = Q1 — Qg g N Y

1.b. Obviously,

Pp(dy) = Pld,(Y)=1]H =0
= 1-P[d,(Y) =0|H = 0]

1
- 1-1@{ log(a1)<Y\H—O}
Q1 — Qo nco

]

=t (es(E)) (1.3)
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In a similar way, we get

Pp(dy) = Pld,(Y)=1H =1]
= 1-P[d,(Y)=0|H = 1]

1
- 1-1@{ 1og(0‘1><YyH:1]
o1 — o
(e (e +
= 1= e_a1—1a0 (10g<ﬁ)) .
1.c. With the notation introduced in the Lecture Notes we have

Vi(p) = Jp(d*(p)) = Jp(dn@)), P € [0,1]

where
_ Fo(l —p) . I—p

I'ip p
since here I'y = I'y = 1. It is now straightforward to see that

n(p)

V) = P [dyy(¥) = 01 = 1] + (1~ p)F [dyi(¥) = 1] = 0]
= p (1= Pp(dyp)) + (1 = p)Pr(dy)
el s (- sl )

(

e sit)) 1 (1) (1w o) ) it tplan <.

| » if a1 < n(p)ag
( P (%) o (1-p) (1 — (%) ala_o%) if n(p)ao <
= 9
L p if oy < n(p)ao.
[ ((5) ™ g e (1 (C) ) it <p <
| p ingpgaoofal.

1.d. First note that

@Q ]

Pr(d,) = 1_e—m(l°g(ﬁ))+

1— @7041%0‘10<10g(7702710>> if n < %
0
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Fix Pr in (0,1] and solve the equation
PF(dn):PFa T]ZO

In view of the previous calculations, this amounts to solving

«Q

<@>al_ao —1-Pp, 0<y<X
(651

This has a unique solution n(Prg) given by

Oél a1 —oQ
(1= Pn) e
" ( F) ©o

n(Pr) =

The corresponding point Pp on the ROC curve is therefore given by Pp(d,p,)) evaluated
as

PD(dn(PF)) =1 —¢ 21— (lOg<W(PF)a0)> . (14)

But o o S

P - = - a] —ap = (1 - PF)_T > 1

n(Pr)ao ag- 2 (1—Pp) @

and

aq —21=20 ] — Qg

log| ——— | =log(l1—P a0 = — log (1 — Pp) > 0.
¢(opiie ) — o= P ~ 1o (1 - )
Therefore,

Pp(dypp)) = 1- ¢ @ a0 (10g(7I(PC:rl)a0)>
= 1- e*ﬁ'(*%log(lf&))
— | — paglos(l=Pr)
— 1—(1—Pp). 15)
We conclude that T': [0, 1] — [0, 1] is given by

T(Pp)=1—(1—Pp)a, Ppelo,1].

Recall that a rv Y is said to be Rayleigh distributed with parameter 6 > 0 if its
probability distribution Fj admits a probability density function fp : R — R, given by

0 ify <0
foly) =

2

0%672‘?{? if y > 0.
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It is crucial to observe that

Foly) = / fo(z)dx

+>2

= l—e" 292, y € R. (1.6)

In particular, for each t in R, we have

+t

Py [Y? > t] = e 2.
2.a. With distinct 6y and 6, in (0, 00), consider the binary hypothesis testing problem

Hi: Y ~F,

Hy: Y ~Fy, (1.7)

For n > 0, consider the corresponding test d, : R — {0,1}. In a routine manner we find

dy(y) =0 it fo,(y) < nfa(y)

2
iff e 29%<7]02 2., y>0

with . ) 2
(61, 90) 92 — % and R(el, 90) 92 .
Taking logarithms on both sides, we get
d,(y)=0 iff  —2log(nR(6y,6)) < D(6y,60)y*, y > 0. (1.8)

It follows that
Pp(dy) = Pld,(Y) =1[H = 0]
= 1-P[d,(Y)=0|H =]
= 1—P[-2log(nR(6:,600)) < D(61,00)Y* H =0]. (1.9)

If 0 < 6y < 6y, then D(01,6p) <0 and R(64,60) > 1, so that

2 IOg (’I]R(gl, 00 ‘H
D(Qla 00
_ 2log (nR(61,00))
H =
(917 00 ‘

1 2log(nR(61,00)) \ "

_@'(_ D(1,00) ) (1‘10)

Pp(d,) = 1—1@[}/2

= P[YQ

= €
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With a in (0, 1), solving the equation

1 (_ 2log(nR(91,09)) >+

e 203 D(81,60) =a, 1n>0 (1.11)

requires
log (nR(64,6p)) > 0,

or equivalently,
nR(@l,Ho) > 1.

Under that condition, we get

74Lﬂ<72maan1ﬁm>)+ log(nR(91,00))

e 203 D(01,00) —e 02D (01.,90) (112)

and the equation (1.11) becomes
log (nR(61,6y)) = 65 D(61,6,) - log a.
The solution n(«) satisfies
n(a)R(01,6) = ozegD(al’eO),

and is therefore given by
0P8 D(61,00)

R(01,00)

The Neyman-Pearson test dyp(61,00; ) of size a is characterized by

n(a) =

dap(01,00;0)(y) =0 iff —2log ((a) R(61,05)) < D(01,00)y%, y >0
iff  —202D(6;,0,) - log o < D(61,00)y%, y >0
iff 202 - loga < —y%, y >0
iff  y? < —2605-loga, y > 0. (1.13)

Note that
C(dnp(b1,00; ) = {y >0: y* < 263 loga} )

On the other hand, if 0 < 01 < 6y, then D(6,6y) > 0 and R(61,6,) < 1, so that

PF(dn> — 1—-P Y2>_210g(nR(91,90))‘H:0}

D(61,6o)
_¢.<_%(91,90>>>+
= l—e¢e 203 D(61,90) : (114)
With a in (0, 1), solving the equation
,L.<,M>+
L—e % PO/ =a >0 (1.15)

requires

log (nR(01,6p)) <0,
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or equivalently,
’I’/R(Ql,eo) < 1.

Under that condition, we get

1 .(_QIong(el,em))* log(nR(61,90))

1o 22 D(81.00) — 1 — ¢ 93D(1.60) (1.16)

e
and the equation (1.15) becomes
log (nR(01,00)) = 05.D(61,0o) - log(1 — ).

This yields
nR(gla 00) = (1 — a)egD(elﬂo)’

and the solution n(«) is given by

1 — 98D(91,90)
n(o) = L=
R(64,6)

The Neyman-Pearson test dyp(6;,0o; @) of size « is now characterized by
de(Gl, 90; a)(y) =0 if —210g (7’}(0()3(91, 90)) < D(@l, 90)’3}2, Yy >0
iff —QQSD(Ql, 80) . lOg(]_ — Oé) < D(Hl, 00)y2, Yy > 0
iff  —202-log(l—a) <y?* y>0. (1.17)
Note that
Cldnp(01,60;a)) = {y>0: =6 -log(l — a) < y*}.
2.b. With ©g = {1} and 6, = (1,00), it is plain that there exists a UMP test of size a.
Indeed note that
C(dnp(01,1;0)) = {y >0: y° < —210g0z}, 0, > 1.

These tests are all Neyman-Pearson tests of size a implementing the same decision regions
without having to require explicit knowledge of #;. All that is needed is that #; > 1!
2.c. When 6y = (0,1) and 6, = (1, 00), there is no UMP test.

3.

3.a. In Chapter 3 we have seen that when all the hypotheses are equally likely, namely

1
pD:---:pM—IZMa

the optimal test under the probability of error criterion is the Maximum Likelihood test
dyr, : R —{0,1,..., M — 1} given by

dur(y) =argmax({ =0,...,.M —1: fp(y)), yeR
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with a lexicographic tiebreaker in the event of ties. In other words,
dML<y):m iff fgm(y):max(fgz(y), 6207177M_1)

with a lexicographic tiebreaker in the event of ties.
However, we note that

max (fg,(y), £=0,1,...,M —1)
= max (g(y —0p), {=0,1,...
(

= max (g(|ly — ), £=0,1,...,M —1) [By symmetry]

M—-1)
= g(min(Jy — 0], £=0,1,...,M — 1)) [By strict decreasing monotonicity on R].
This implies that

dur(y) =m iff |y—0,] =min(ly—6,, £=0,1,...,M —1)

with a lexicographic tiebreaker in the event of ties. The geometric interpretation is clear:
Given the observation y, the test dyy, selects that hypothesis H,, whose parameter 6,, is
closest to y — This is sometimes known as the nearest neighbor detector.

It is plain that the nearest neighbor detector depends on g : R — R, only through
conditions (i)—(iii), not on the specific form of g : R — R, . For instance, the two densities

a _q
9(y) = e Wi yeR

and

—_
>

Y

ez, yelk

will yield the same conclusion.

3.b. As in the binary case, randomization does not affect optimality in the M-ary case
— This was not done in the Lecture Notes but can be easily shown by similar arguments.
In particulate the ML test dy, is also optimal among all admissible randomized tests.
Therefore, by the optimality of dy;, we must have

Pldun(Y) # H] <P[Dp # H]
where Dp is the decision to flip an M-sided coin (independently of everything else) with

1
]P’[DR:m]:M, m=20,...,M—1.
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But, assuming an arbitrary pdf p for the rv H, we see that

M—1
P[Dp#H| = Y P[H#m,Dp=m]
m=0
M—1
= P[H;ém]IP’[DR:m]
m=0
M—1
1
= (1 _pm)M
m=0
M—1
1
= _— 1— m
7 m:o( Pm)
B M-—-1
M
since
M-1 M—1
Z(l_pm>:M_me:M_l~
m=0 m=0

The result of this calculation is independent of the prior p on H.




