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ESTIMATION AND DETECTION THEORY
ANSWER KEY TO TEST # 2:
1.

1.a. Consider a Borel mapping ¢ : R — such that Ey [|(Y)|] < oo for each § =0, 1, ...
— This condition is always satisfied since Fj has finite support. The conditions

By [0(Y)] =0, 6=0,1,...

read

6

1

1 > w(y)=0, §=0,1,...
y=—0

or equivalently,

0
> wy)=0, 0=0,1,... (1.1)
y=—0
It follows that v (0) = 0 [Just take # = 0 above]. With § =0,1,..., use (1.1) with 6 and
6 + 1 to conclude that
P(=(0+1)) + (@ +1)=0.

The family {Fp, 6 = 0,1, ...} is therefore not complete — Just take ¥ (y) = y (as expected!)
1.b. There are several ways to show that the statistic 7' : R — R is sufficient.

It suffices to note that

—=0,+1,...
B[V =y] = h(8: T(v)aty).  “y_ 370
with 1
t=0,1
h(t;0) =1[t <] —— T
(t;0) [t < 0] 20+1° 6=0,1,.
and

qly) =1, y=0,£1,...
The sufficiency of the statistic T': R — R follows by the Factorization Theorem.
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A direct calculation proceeds as follows: Fix 0 =0,1,.... Witht =0andy =0, +£1,...

we have

Py [T(Y) = 0] = By [Y = 0] = ——

and

Py [Y =y[T(Y)=0] =

It is obvious that
PpY €eBIT(Y)=0=1[0€ B], Be€B(R)
regardless of 0 and it is appropriate to take
v(B;0)=1[0€ B], B e B(R).
On the other hand, with ¢t =1,2,...,6, and y = +1,+2, ..., it holds that
Po[T(Y)=t]|=Pp[Y =t] + Py [V = —t] = ——

while

Po[Y =y|T(Y) =1] =

= o(t:1yl) - *5

1

(1.2)

(1.3)

In conclusion, for t = 1,...,0, the conditional distribution of Y given T'(Y) = t under Py
is the uniform distribution on the set {—t,¢}. As customary, this conditional distribution
for all other values of ¢ (i.e., those not in the support {0, 1,...,0} of T(Y')) can be selected
arbitrarily. Here we select it also to be the uniform distribution on the set {—t,t¢}.
Therefore, in establishing that 7" : R — R is a sufficient statistic, it is appropriate to take

B € B(R)

7<B;t)=%1[—teB]+%1[t€B]’ t #0.

1.c. Consider a Borel mapping ¢ : R — such that Ey [|¢(T(Y))]] < oo for each 6 =
0,1,... — This condition is always satisfied since Fy has finite support. The conditions

E, [(T(Y))] =0, 6=0,1,...
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read

0

1

g1 O =0, 6=01.
y=—0

or equivalently,

0
P(0)+2) db(y) =0, 6=0,1,... (1.4)
y=1
Taking @ = 0 in (1.4) we obtain ¥ (0) = 0, and (1.4) becomes
0
D d(y)=0, 6=0,1, (1.5)
y=1

It is now plain that
Pv(y) =0, y=0,1,2,...
so that
Py[0(Y])=0l=1, 0=0,1,...

The statistic T : R — R is indeed a complete sufficient statistic for the family {Fy, 6 =
0,1,...}.

1.d. A Borel mapping ¢ : R — R is an unbiased estimator if Ey [|g(Y)|] < oo for every
0 =0,1,... — This condition is always satisfied since Fy has finite support, and

Eo[g(Y)] =6, 6=0,1,...

This last condition is equivalent to

> gly)=06020+1), 0=0,1,... (1.6)

y=—0

Take # = 0 in (1.6) to obtain g(0) = 0, and (1.6) now becomes

9(0) =0, ) (g(-y) +9) =0020+1), 6=1,2,. .. (1.7)

y=1
It follows that

g(—=0)+g(@)=0(20+1)—(0—-1)(20—-1), 6=1,2,...
and combining we get

9(0) =0, g(=y) +9(y) =4y -1, y=12,..
l.e. For every # = 0,1,..., note that
g(t) = Eg[g(V)|T(Y) =]
g(0) ift=20

% (g(=t)+g(t)) ift=1,2,...
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with the adopted selection of v : B(R) x R — [0, 1].
1.f. Finally, if g : R — R is an unbiased estimator, then by the Rao-Blackwell Theorem
the estimator go T : R — R is is also an unbiased estimator with g : R — R given by

9(0) ift=0
g(t) = (1.9)
Lig(—t) +g(t)) ift+£0

But by Part d, the lack of bias for the estimator g : R — R requires that the conditions
g(0) =0, g(—t)+g(t)=4t—-1, t=1,2,...
hold, in which case

0 if t =0
gt) = (1.10)
(4t —1) ift#0.

The estimator go T : R — R is therefore MVUE. Concretely,

0 ify=0
(GoT)(y) =
5 Ayl =1) ify#0.

It is essentially the only MVUE as a consequence of the complete sufficiency of the
statistics T': R — R. For the particular situation at hand, it is also a direct consequence
of Parts d and e.

2.
2.a. With the usual notation, for each y = 0,1, ..., we have
_ PY =yl =t] fo(t)
fory (tly) = P[Y =g
(=t + 1
N PlY =y
(r+1)(1—t)trtv
= , 0<t<1 1.11
PIY =y] (1D
with

PlY =y = /01(1—t)ty(r+1)t’"dt

r+1 r+1

rry+1 r+y+2
1
- T . (1.12)
r+y+1)(r+y+2)
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Combining, we conclude that

(r+1)(1 =)ty
Py =y]

fory (tly) =

r+y+1)(r+y+2)
r—+1
= (r+y+1)r+y+2) (11— (1.13)

= (r+1)A -ty

on the range 0 <t < 1.
2.b. Fixy=0,1,.... With 0 <t < 1, we note that

log foy (tly) =log(r +y + 1)(r+y+2) +log(l —t) + (r +y)logt
so that 5 . .
—1 tly) = ——— -.
5 108 oy (tly) = —— + (r +y)5
The solution to the MAP equation

0
e log foy (tly) =0

is rfyﬁl, and the MAP estimator gyap : R — R can be defined by

r+4yt
= — e R.
gmap () oyt +1 Y
Here (and elsewhere in this problem) we use y™ (instead of y) to have an expression that
is well defined on the entirety of R rather than on N since we have defined estimators as
Borel mappings R¥ — RP. This creates no contradiction with the alternate definition of
the MAP estimator (found in many textbooks) as a mapping gyap : N — R given by

r+y

:—’ :O,l,...
r+y+1 Y

9IMAP (y)

because the rv Y has its support on N.
2.c. Fixy=0,1,.... We have

EW)Y =y = /Ofme(ﬂy)dt
= /%&+y+ﬂ@+y+%ﬂ—ﬂf”ﬁ

1
- (r+y+1)(r+y+2)/ (1 —t)t"tvtiae
0

(r+ +M-F+%< 1 1 )
= (r T —
Y Y r+y+2 r+y+3

1
(r+y+2)(r+y+3)
r+y+1

= — (1.14)
r+y+3

= (r+y+1)r+y+2)-
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and the MMSE estimator gyusg : R — R can be defined by

r+yt+1
= —, e R.
gvmise(Y) r+yt+3 Y
2.d. The ML estimator reduces to the MAP estimator when ¢ is uniformly distributed
on [0, 1]; this corresponds to = 0. Hence

gue(y) = y € R.

yt+ 1
Direct calculations are also possible.

3.
3.a. For each # > 0, the distribution Fj admits a probability density function with
respect to Lebesgue measure given by

foly) =0n(y)H(y)"™", yeR.

Therefore, for each n = 1,2, ..., the probability distribution F] én) also admits a probability
density function with respect to Lebesgue measure given by

17 m) = T o)

1=1,...,n.

= (H h(@h)) - e 1og 0+ (0=1) 3 iy log Hyi) vi €R (1.15)

The condition h(y) > 0 for each y in R implies

Yy
O<H(y):/ h(t)dt <1, yeR.

The family {Fe(n), 6 > 0} is an exponential family with
CO)=0" and QB)=6—1, 6>0

and

n

Q(ylavyn>:Hh(yl) and K(ylaayn)zzlog[—[(yz)a
i=1

i=1

y € R
1=1,...,n.

3.b. As well known, if Y is distributed according to Fjp, then the rv Fp(Y')) is uniformly
distributed on (0,1). Here, H(Y)? = Fy(Y'), hence the result H(Y)? =,, U where U is
uniformly distributed on (0, 1) under Py. For each p > 0 we conclude that

By [(log H(Y))") = 07", [(log H(Y)")"] = 0B, [(log U)?).
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It follows that Eq [log H(Y)] = =0~ and E, [(log H(Y))?] = 202.
3.c. Fixn=1,2,... and # > 0. Since

R
log fo(y) = log 0+ log h(y) + (0 — log H(y), < |
we conclude that
( ) yeR

0 1
%1nga(y):5+10gHy D=0

Therefore,

'—logfg

(1.16)
by the calculations carried in Part b. Thus,
M(9) =672

and
M™(9) = nf=2,

A simpler argument would proceed as follows: It is also the case here that

0? 1 yeR
Wlogfg(y)——ﬁ, 0>0

and the desired conclusion immediately follows.
3.d. To find the ML estimator, given the observation yy, ..., y,, consider the ML equation

0
8910gf9 (yl,...,yn):(), 6>0

or equivalently,

n

> (%JFlOgH(Z/z’)) =0, 6>0.

i=1

[ts unique solution gy, (y1, ..., ys) is given by

( )= :
IMLAGL = Yn) = S T ()

with guvn (Y1, - -+, Yn) > 0 as desired!
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3.e. The ML estimator is strongly consistent (hence weakly consistent) since for each
6 > 0, the SLLNs implies

1 n
lim —> "log H(Y;) = Eglog HY)] = =0~ Py — a.s.

n—oo 1, 4

so that

n—o0

~1
. 1T
n11_>nologML(Y1, ., Y,)=—lim (ﬁ Zlog H(Y;)) =60 Py—a.s.
3.f. Finally, we get
n
Yi,...,Y,) — = — .
\/ﬁ(gML( 1, 3 n) 0) \/ﬁ (Z?:l lOgH(Y;) +0)
w0 log H(Y)
> iz log H(Y))
140 (1 Z? 110gH(Y;>)
1 Zz 1 log H(Y;)

1 log H 6!
L yp AT HO) - (0
w 2zt 10g H(Y7)
VRS o HY) - (-67)
= — 7 .
v 2t log H(Y:)
The SLLNs for the rvs {log H(Y;), i = 1,2,...} (under Py) yields
p— 71 pa—
angoni;logH Yi)=—-0" Py—a.s.
whereas the corresponding CLT (under Py) gives
1 n
vn (ﬁ Zlog H(Y;) — (—6’1)> —,, \/Varg[log H(Y)]Z
i=1
where Z is a standard (zero-mean unit-variance) Gaussian rv. We have
2 1 1
Varg[log H(Y)] = Eg [(log H(Y))?] — (Eg [log H(Y)])? = E R

Therefore,

v (% S log H(Y;) (—91)> 0717

Combining these facts and using standard facts concerning convergence of rvs, we
conclude that under Py we have

A
The limiting rv is indeed a Gaussian rv with zero mean and variance 6 = M(0)~! (as
expected).




