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ESTIMATION AND DETECTION THEORY

ANSWER KEY TO TEST # 2:

1.
1.a. Consider a Borel mapping ψ : R→ such that Eθ [|ψ(Y )|] <∞ for each θ = 0, 1, . . .
– This condition is always satisfied since Fθ has finite support. The conditions

Eθ [ψ(Y )] = 0, θ = 0, 1, . . .

read
1

2θ + 1

θ∑
y=−θ

ψ(y) = 0, θ = 0, 1, . . .

or equivalently,
θ∑

y=−θ

ψ(y) = 0, θ = 0, 1, . . . (1.1)

It follows that ψ(0) = 0 [Just take θ = 0 above]. With θ = 0, 1, . . ., use (1.1) with θ and
θ + 1 to conclude that

ψ(−(θ + 1)) + ψ(θ + 1) = 0.

The family {Fθ, θ = 0, 1, . . .} is therefore not complete – Just take ψ(y) = y (as expected!)
1.b. There are several ways to show that the statistic T : R→ R is sufficient.

It suffices to note that

Pθ [Y = y] = h(θ;T (y))q(y),
y = 0,±1, . . .
θ = 0, 1, . . .

with

h(t; θ) = 1 [t ≤ θ] · 1

2θ + 1
,

t = 0, 1, . . .
θ = 0, 1, . . .

and
q(y) = 1, y = 0,±1, . . .

The sufficiency of the statistic T : R→ R follows by the Factorization Theorem.
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A direct calculation proceeds as follows: Fix θ = 0, 1, . . .. With t = 0 and y = 0,±1, . . .,
we have

Pθ [T (Y ) = 0] = Pθ [Y = 0] =
1

2θ + 1

and

Pθ [Y = y|T (Y ) = 0] =
Pθ [Y = y, T (Y ) = 0]

Pθ [T (Y ) = 0]

= δ(0, y) · Pθ [Y = 0]

Pθ [T (Y ) = 0]

= δ(0, y). (1.2)

It is obvious that

Pθ [Y ∈ B|T (Y ) = 0] = 1 [0 ∈ B] , B ∈ B(R)

regardless of θ and it is appropriate to take

γ(B; 0) = 1 [0 ∈ B] , B ∈ B(R).

On the other hand, with t = 1, 2, . . . , θ, and y = ±1,±2, . . ., it holds that

Pθ [T (Y ) = t] = Pθ [Y = t] + Pθ [Y = −t] =
2

2θ + 1

while

Pθ [Y = y|T (Y ) = t] =
Pθ [Y = y, T (Y ) = t]

Pθ [T (Y ) = t]

= δ(t; |y|) · Pθ [Y = y]

Pθ [T (Y ) = t]

= δ(t; |y|) ·
1

2θ+1
2

2θ+1

=
1

2
· δ(t; |y|). (1.3)

In conclusion, for t = 1, . . . , θ, the conditional distribution of Y given T (Y ) = t under Pθ
is the uniform distribution on the set {−t, t}. As customary, this conditional distribution
for all other values of t (i.e., those not in the support {0, 1, . . . , θ} of T (Y )) can be selected
arbitrarily. Here we select it also to be the uniform distribution on the set {−t, t}.
Therefore, in establishing that T : R→ R is a sufficient statistic, it is appropriate to take

γ(B; t) =
1

2
1 [−t ∈ B] +

1

2
1 [t ∈ B] ,

B ∈ B(R)
t 6= 0.

1.c. Consider a Borel mapping ψ : R → such that Eθ [|ψ(T (Y ))|] < ∞ for each θ =
0, 1, . . . – This condition is always satisfied since Fθ has finite support. The conditions

Eθ [ψ(T (Y ))] = 0, θ = 0, 1, . . .
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read
1

2θ + 1

θ∑
y=−θ

ψ(|y|) = 0, θ = 0, 1, . . .

or equivalently,

ψ(0) + 2
θ∑

y=1

ψ(y) = 0, θ = 0, 1, . . . (1.4)

Taking θ = 0 in (1.4) we obtain ψ(0) = 0, and (1.4) becomes

θ∑
y=1

ψ(y) = 0, θ = 0, 1, . . . (1.5)

It is now plain that
ψ(y) = 0, y = 0, 1, 2, . . .

so that
Pθ [ψ(|Y |) = 0] = 1, θ = 0, 1, . . .

The statistic T : R→ R is indeed a complete sufficient statistic for the family {Fθ, θ =
0, 1, . . .}.
1.d. A Borel mapping g : R → R is an unbiased estimator if Eθ [|g(Y )|] < ∞ for every
θ = 0, 1, . . . – This condition is always satisfied since Fθ has finite support, and

Eθ [g(Y )] = θ, θ = 0, 1, . . .

This last condition is equivalent to

θ∑
y=−θ

g(y) = θ(2θ + 1), θ = 0, 1, . . . (1.6)

Take θ = 0 in (1.6) to obtain g(0) = 0, and (1.6) now becomes

g(0) = 0,
θ∑

y=1

(g(−y) + g(y)) = θ(2θ + 1), θ = 1, 2, . . . (1.7)

It follows that

g(−θ) + g(θ) = θ(2θ + 1)− (θ − 1)(2θ − 1), θ = 1, 2, . . .

and combining we get

g(0) = 0, g(−y) + g(y) = 4y − 1, y = 1, 2, . . .

1.e. For every θ = 0, 1, . . ., note that

ĝ(t) = Eθ [g(Y )|T (Y ) = t]

=


g(0) if t = 0

1
2

(g(−t) + g(t)) if t = 1, 2, . . .
(1.8)
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with the adopted selection of γ : B(R)× R→ [0, 1].
1.f. Finally, if g : R→ R is an unbiased estimator, then by the Rao-Blackwell Theorem
the estimator ĝ ◦ T : R→ R is is also an unbiased estimator with ĝ : R→ R given by

ĝ(t) =


g(0) if t = 0

1
2

(g(−t) + g(t)) if t 6= 0.
(1.9)

But by Part d, the lack of bias for the estimator g : R→ R requires that the conditions

g(0) = 0, g(−t) + g(t) = 4t− 1, t = 1, 2, . . .

hold, in which case

ĝ(t) =


0 if t = 0

1
2

(4t− 1) if t 6= 0.
(1.10)

The estimator ĝ ◦ T : R→ R is therefore MVUE. Concretely,

(ĝ ◦ T )(y) =


0 if y = 0

1
2

(4|y| − 1) if y 6= 0.

It is essentially the only MVUE as a consequence of the complete sufficiency of the
statistics T : R→ R. For the particular situation at hand, it is also a direct consequence
of Parts d and e.

2.
2.a. With the usual notation, for each y = 0, 1, . . ., we have

fϑ|Y (t|y) =
P [Y = y|ϑ = t] fϑ(t)

P [Y = y]

=
(1− t)ty(r + 1)tr

P [Y = y]

=
(r + 1)(1− t)tr+y

P [Y = y]
, 0 ≤ t ≤ 1 (1.11)

with

P [Y = y] =

∫ 1

0

(1− t)ty(r + 1)trdt

=
r + 1

r + y + 1
− r + 1

r + y + 2

=
r + 1

(r + y + 1)(r + y + 2)
. (1.12)
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Combining, we conclude that

fϑ|Y (t|y) =
(r + 1)(1− t)tr+y

P [Y = y]

= (r + 1)(1− t)tr+y · (r + y + 1)(r + y + 2)

r + 1
= (r + y + 1)(r + y + 2)(1− t)tr+y (1.13)

on the range 0 < t < 1.
2.b. Fix y = 0, 1, . . .. With 0 < t < 1, we note that

log fϑ|Y (t|y) = log(r + y + 1)(r + y + 2) + log(1− t) + (r + y) log t

so that
∂

∂t
log fϑ|Y (t|y) = − 1

1− t
+ (r + y)

1

t
.

The solution to the MAP equation

∂

∂t
log fϑ|Y (t|y) = 0

is r+y
r+y+1

, and the MAP estimator gMAP : R→ R can be defined by

gMAP(y) =
r + y+

r + y+ + 1
, y ∈ R.

Here (and elsewhere in this problem) we use y+ (instead of y) to have an expression that
is well defined on the entirety of R rather than on N since we have defined estimators as
Borel mappings Rk → Rp. This creates no contradiction with the alternate definition of
the MAP estimator (found in many textbooks) as a mapping gMAP : N→ R given by

gMAP(y) =
r + y

r + y + 1
, y = 0, 1, . . .

because the rv Y has its support on N.
2.c. Fix y = 0, 1, . . .. We have

E [ϑ|Y = y] =

∫ 1

0

tfϑ|Y (t|y)dt

=

∫ 1

0

t(r + y + 1)(r + y + 2)(1− t)tr+ydt

= (r + y + 1)(r + y + 2)

∫ 1

0

(1− t)tr+y+1dt

= (r + y + 1)(r + y + 2)

(
1

r + y + 2
− 1

r + y + 3

)
= (r + y + 1)(r + y + 2) · 1

(r + y + 2)(r + y + 3)

=
r + y + 1

r + y + 3
. (1.14)
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and the MMSE estimator gMMSE : R→ R can be defined by

gMMSE(y) =
r + y+ + 1

r + y+ + 3
, y ∈ R.

2.d. The ML estimator reduces to the MAP estimator when ϑ is uniformly distributed
on [0, 1]; this corresponds to r = 0. Hence

gML(y) =
y+

y+ + 1
, y ∈ R.

Direct calculations are also possible.

3.
3.a. For each θ > 0, the distribution Fθ admits a probability density function with
respect to Lebesgue measure given by

fθ(y) = θh(y)H(y)θ−1, y ∈ R.

Therefore, for each n = 1, 2, . . ., the probability distribution F
(n)
θ also admits a probability

density function with respect to Lebesgue measure given by

f
(n)
θ (y1, . . . , yn) =

n∏
i=1

fθ(yi)

= θn

(
n∏
i=1

h(yi)H(yi)
θ−1

)

=

(
n∏
i=1

h(yi)

)
· en log θ+(θ−1)

∑n
i=1 logH(yi),

yi ∈ R
i = 1, . . . , n.

(1.15)

The condition h(y) > 0 for each y in R implies

0 < H(y) =

∫ y

∞
h(t)dt < 1, y ∈ R.

The family {F (n)
θ , θ > 0} is an exponential family with

C(θ) = θn and Q(θ) = θ − 1, θ > 0

and

q(y1, . . . , yn) =
n∏
i=1

h(yi) and K(y1, . . . , yn) =
n∑
i=1

logH(yi),
yi ∈ R

i = 1, . . . , n.

3.b. As well known, if Y is distributed according to Fθ, then the rv Fθ(Y )) is uniformly
distributed on (0, 1). Here, H(Y )θ = Fθ(Y ), hence the result H(Y )θ =st U where U is
uniformly distributed on (0, 1) under Pθ. For each p > 0 we conclude that

Eθ [(logH(Y ))p] = θ−pEθ
[(

logH(Y )θ
)p]

= θ−pEθ [(logU)p] .
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It follows that Eθ [logH(Y )] = −θ−1 and Eθ
[
(logH(Y ))2

]
= 2θ−2.

3.c. Fix n = 1, 2, . . . and θ > 0. Since

log fθ(y) = log θ + log h(y) + (θ − 1) logH(y),
y ∈ R
θ > 0,

we conclude that
∂

∂θ
log fθ(y) =

1

θ
+ logH(y),

y ∈ R
θ > 0.

Therefore,

Eθ

[∣∣∣∣ ∂∂θ log fθ(Y )

∣∣∣∣2
]

= Eθ

[∣∣∣∣1θ + logH(Y )

∣∣∣∣2
]

= Eθ
[

1

θ2
+

2

θ
logH(Y ) + (logH(Y ))2

]
=

1

θ2
+

2

θ
(Eθ [logH(Y )]) + Eθ

[
(logH(Y ))2

]
=

1

θ2
− 2

θ2
+

2

θ2
=

1

θ2
(1.16)

by the calculations carried in Part b. Thus,

M(θ) = θ−2

and
M (n)(θ) = nθ−2,

A simpler argument would proceed as follows: It is also the case here that

∂2

∂θ2
log fθ(y) = − 1

θ2
,

y ∈ R
θ > 0

and the desired conclusion immediately follows.
3.d. To find the ML estimator, given the observation y1, . . . , yn, consider the ML equation

∂

∂θ
log f

(n)
θ (y1, . . . , yn) = 0, θ > 0

or equivalently,
n∑
i=1

(
1

θ
+ logH(yi)

)
= 0, θ > 0.

Its unique solution gML(y1, . . . , yn) is given by

gML(y1, . . . , yn) = − n∑n
i=1 logH(yi)

with gML(y1, . . . , yn) > 0 as desired!
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3.e. The ML estimator is strongly consistent (hence weakly consistent) since for each
θ > 0, the SLLNs implies

lim
n→∞

1

n

n∑
i=1

logH(Yi) = Eθ [logH(Y )] = −θ−1 Pθ − a.s.

so that

lim
n→∞

gML(Y1, . . . , Yn) = − lim
n→∞

(
1

n

n∑
i=1

logH(Yi)

)−1
= θ Pθ − a.s.

3.f. Finally, we get

√
n (gML(Y1, . . . , Yn)− θ) = −

√
n ·
(

n∑n
i=1 logH(Yi)

+ θ

)
= −

√
n · n+ θ

∑n
i=1 logH(Yi)∑n

i=1 logH(Yi)

= −
√
n ·

1 + θ
(
1
n

∑n
i=1 logH(Yi)

)
1
n

∑n
i=1 logH(Yi)

= −
√
n ·

1
n

∑n
i=1 logH(Yi)− (−θ−1)
1
n

∑n
i=1 logH(Yi)

· θ

= −
√
n
(
1
n

∑n
i=1 logH(Yi)− (−θ−1)

)
1
n

∑n
i=1 logH(Yi)

· θ

The SLLNs for the rvs {logH(Yi), i = 1, 2, . . .} (under Pθ) yields

lim
n→∞

1

n

n∑
i=1

logH(Yi) = −θ−1 Pθ − a.s.

whereas the corresponding CLT (under Pθ) gives

√
n

(
1

n

n∑
i=1

logH(Yi)− (−θ−1)

)
=⇒n

√
Varθ[logH(Y )]Z

where Z is a standard (zero-mean unit-variance) Gaussian rv. We have

Varθ[logH(Y )] = Eθ
[
(logH(Y ))2

]
− (Eθ [logH(Y )])2 =

2

θ2
− 1

θ2
=

1

θ2
.

Therefore,

√
n

(
1

n

n∑
i=1

logH(Yi)− (−θ−1)

)
=⇒n θ

−1Z.

Combining these facts and using standard facts concerning convergence of rvs, we
conclude that under Pθ we have

√
n (gML(Y1, . . . , Yn)− θ) =⇒n −θ ·

(
θ−1Z

−θ−1

)
= θZ.

The limiting rv is indeed a Gaussian rv with zero mean and variance θ2 = M(θ)−1 (as
expected).


