ENEE 621
 SPRING 2016
 DETECTION AND ESTIMATION THEORY
 ANSWER KEY TO FINAL EXAM:

1.

Fact: For any Borel mapping $u: \mathbb{R} \rightarrow \mathbb{R}$ which is integrable, i.e.,

$$
\int_{\mathbb{R}}|u(y)| d y<\infty
$$

we necessarily have

$$
\lim _{y \rightarrow \pm \infty}|u(y)|=0
$$

1.a. The point of this question was to extract the conditions on the probability density function $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$which ensure that the conditions (CR1)-(CR5) hold for the family $\left\{f_{\theta}, \theta \in \mathbb{R}\right\}$. They are
(i) The support of $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$is the entirely line \mathbb{R}, namely

$$
\begin{equation*}
h(y)>0, \quad y \in \mathbb{R} . \tag{1.1}
\end{equation*}
$$

(ii) The probability density function $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$is differentiable everywhere on \mathbb{R}.
(iii) The square-integrability condition

$$
\begin{equation*}
\int_{\mathbb{R}}\left|\frac{h^{\prime}(y)}{h(y)}\right|^{2} h(y) d y<\infty \tag{1.2}
\end{equation*}
$$

holds.
(iv) The derivative $h^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is integrable in that

$$
\begin{equation*}
\int_{\mathbb{R}}\left|h^{\prime}(y)\right| d y<\infty \tag{1.3}
\end{equation*}
$$

(CR1) This condition is automatically satisfied here since $\Theta=(0, \infty)$ is an open set in R.
(CR2) For each θ in \mathbb{R}, F_{θ} is absolutely continuous with respect to Lebesgue measure with probability density function $f_{\theta}: \mathbb{R} \rightarrow \mathbb{R}_{+}$given by

$$
f_{\theta}(y)=h(y-\theta), \quad y \in \mathbb{R}
$$

and (CR2a) holds. The support $S(\theta)$ of the probability density function $f_{\theta}: \mathbb{R} \rightarrow \mathbb{R}_{+}$ is given by

$$
S(\theta)=\left\{y \in \mathbb{R}: f_{\theta}(y)>0\right\}=\{y \in \mathbb{R}: h(y-\theta)>0\}
$$

so that

$$
S(\theta)=\theta+S(0), \quad \theta \in \mathbb{R}
$$

It follows that we must have $S(\theta)=\mathbb{R}$ for each θ in \mathbb{R} and (CR2b) holds with $S=\mathbb{R}$. This obviously requires that (1.1) holds.
(CR3) Assuming the existence of needed derivatives we get

$$
\begin{array}{ll}
\frac{\partial}{\partial \theta} f_{\theta}(y)=-h^{\prime}(y-\theta), & \theta \in \mathbb{R} \\
& y \in \mathbb{R}
\end{array}
$$

where $h^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ is the derivative of h. Thus, (CR3) requires that the probability density function $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$be differentiable everywhere on \mathbb{R}.
(CR4) This integrability condition reads

$$
\mathbb{E}_{\theta}\left[\left|\frac{\partial}{\partial \theta} \log f_{\theta}(Y)\right|^{2}\right]=\int_{\mathbb{R}}\left|\frac{h^{\prime}(y-\theta)}{h(y-\theta)}\right|^{2} h(y-\theta) d y<\infty, \quad \theta \in \mathbb{R}
$$

and reduces to the single integrability condition (1.2).
(CR5) This regularity condition amounts to

$$
0=\int_{\mathbb{R}} \frac{\partial}{\partial \theta} f_{\theta}(y) d y, \quad \theta \in \mathbb{R}
$$

i.e.,

$$
0=\int_{\mathbb{R}} h^{\prime}(y-\theta) d y, \quad \theta \in \mathbb{R}
$$

Thus, by a simple of variable we see that (CR5) holds provided the integrability condition (1.3) holds for the derivative $h^{\prime}: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
0=\int_{\mathbb{R}} h^{\prime}(y) d y
$$

Note that

$$
\int_{\mathbb{R}} h^{\prime}(y) d y=\lim _{A, B \rightarrow \infty} \int_{-A}^{B} h^{\prime}(y) d y=\lim _{A, B \rightarrow \infty}(h(B)-h(-A))=0
$$

and this always holds by virtue of the assumed integrability (1.3).
1.b. It is plain that the Fisher information matrix is given

$$
\begin{align*}
M(\theta) & =\mathbb{E}_{\theta}\left[\left|\frac{\partial}{\partial \theta} \log f_{\theta}(Y)\right|^{2}\right] \\
& =\int_{\mathbb{R}}\left(\frac{h^{\prime}(y-\theta)}{h(y-\theta)}\right)^{2} h(y-\theta) d y \\
& =\int_{\mathbb{R}}\left(\frac{h^{\prime}(z)}{h(z)}\right)^{2} h(z) d z, \quad \theta \in \mathbb{R} . \tag{1.4}
\end{align*}
$$

This quantity does not depend on θ.
1.c. Fix θ in \mathbb{R}. Under the integrability condition on $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$, namely

$$
\begin{equation*}
\int_{\mathbb{R}}|z| h(z) d z<\infty \tag{1.5}
\end{equation*}
$$

the integral

$$
\mu_{h}=\int_{\mathbb{R}} z h(z) d z
$$

is well defined and finite - In fact μ_{h} is simply the first moment under the probability density function $h: \mathbb{R} \rightarrow \mathbb{R}_{+}$. Hence, the estimator $g: \mathbb{R} \rightarrow \mathbb{R}$ is a finite mean estimator since

$$
\begin{align*}
\mathbb{E}_{\theta}[g(Y)] & =\int_{\mathbb{R}} g(y) f_{\theta}(y) d y \\
& =\int_{\mathbb{R}}(a y+b) h(y-\theta) d y \\
& =\int_{\mathbb{R}}(a z+(a \theta+b)) h(z) d z \quad[z=y-\theta] \\
& =a \mu_{h}+(a \theta+b) \tag{1.6}
\end{align*}
$$

It follows that

$$
\frac{d}{d \theta} \mathbb{E}_{\theta}[g(Y)]=a
$$

On the other hand,

$$
\begin{align*}
\int_{\mathbb{R}} g(y) \frac{\partial}{\partial \theta} f_{\theta}(y) d y & =a \int_{\mathbb{R}} y \frac{\partial}{\partial \theta} f_{\theta}(y) d y+b \int_{\mathbb{R}} \frac{\partial}{\partial \theta} f_{\theta}(y) d y \\
& =a \int_{\mathbb{R}} y \frac{\partial}{\partial \theta} f_{\theta}(y) d y \tag{1.7}
\end{align*}
$$

since

$$
\int_{\mathbb{R}} \frac{\partial}{\partial \theta} f_{\theta}(y) d y=0
$$

by the regularity condition (CR5). Next, we see that

$$
\begin{align*}
\int_{\mathbb{R}} y \frac{\partial}{\partial \theta} f_{\theta}(y) d y & =\int_{\mathbb{R}} y\left(-h^{\prime}(y-\theta)\right) d y \\
& =-\int_{\mathbb{R}}(z+\theta) h^{\prime}(z) d z \tag{1.8}
\end{align*}
$$

under the condition

$$
\int_{\mathbb{R}}|z|\left|h^{\prime}(z)\right| d z<\infty
$$

Here as well we have

$$
\int_{\mathbb{R}} h^{\prime}(z) d z=\lim _{A, B \rightarrow \infty} \int_{-A}^{B} h^{\prime}(z) d z=\lim _{A, B \rightarrow \infty}(h(B)-h(-A))=0
$$

as before. On the other hand, integration by parts gives

$$
\begin{align*}
\int_{\mathbb{R}} z h^{\prime}(z) d z & =\lim _{A, B \rightarrow \infty} \int_{-A}^{B} z h^{\prime}(z) d z \\
& =\lim _{A, B \rightarrow \infty}\left([z h(z)]_{-A}^{B}-\int_{-A}^{B} h(z) d z\right) \\
& =\lim _{A, B \rightarrow \infty}(B h(B)+A h(-A)-(H(B)-H(-A)))=-1 \tag{1.9}
\end{align*}
$$

because $\lim _{z \rightarrow \infty}|z \| h(z)|=0$ as a result of the integrability condition (1.5); see Fact. Therefore,

$$
\int_{\mathbb{R}} g(y) \frac{\partial}{\partial \theta} f_{\theta}(y) d y=a
$$

and the affine estimator is indeed regular under the integrability condition (1.5).
2.
2.a. For each $\theta>0$,

$$
\begin{align*}
1 & =\int_{\mathbb{R}} K(\theta) e^{-\frac{y^{4}}{\theta^{4}}} d y \\
& =\int_{\mathbb{R}} \theta K(\theta) e^{-\frac{y^{4}}{\theta^{4}}} \theta^{-1} d y \tag{1.10}\\
& =\int_{\mathbb{R}} \theta K(\theta) e^{-z^{4}} d z \quad\left[z=\frac{y}{\theta}\right] \tag{1.11}\\
& =\frac{\theta K(\theta)}{K(1)} \int_{\mathbb{R}} K(1) e^{-z^{4}} d z \tag{1.12}
\end{align*}
$$

It follows that

$$
1=\frac{\theta K(\theta)}{K(1)}
$$

whence

$$
K(\theta)=\frac{K(1)}{\theta}
$$

2.b. Fix $n=1,2, \ldots$ and $\theta>0$. For arbitrary y_{1}, \ldots, y_{n} in \mathbb{R}, we have

$$
\begin{align*}
f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right) & =\prod_{i=1}^{n} K(\theta) e^{-\frac{y_{i}^{4}}{\theta^{4}}} \\
& =K(\theta)^{n} e^{-\frac{1}{\theta^{4}} \sum_{i=1}^{n} y_{i}^{4}} \\
& =K(1)^{n} \theta^{-n} e^{-\frac{1}{\theta^{4}} \sum_{i=1}^{n} y_{i}^{4}} \\
& =K(1)^{n} e^{-n \log \theta-\frac{1}{\theta^{4}} \sum_{i=1}^{n} y_{i}^{4}} \tag{1.13}
\end{align*}
$$

Thus,

$$
\frac{\partial}{\partial \theta} \log f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right)=-\frac{n}{\theta}+\frac{4}{\theta^{5}} \sum_{i=1}^{n} y_{i}^{4}
$$

The ML equation

$$
\frac{\partial}{\partial \theta} \log f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right)=0, \quad \theta>0
$$

has a unique solution

$$
g_{\mathrm{ML}}\left(y_{1}, \ldots, y_{n}\right)=\sqrt[4]{\frac{4}{n} \sum_{i=1}^{n} y_{i}^{4}}
$$

2.c. By the SLLNs for the rvs $\left\{Y_{i}^{4}, i=1,2, \ldots\right\}$ (under \mathbb{P}_{θ}) it holds that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} Y_{i}^{4}=\mathbb{E}_{\theta}\left[Y^{4}\right] \quad \mathbb{P}_{\theta} \text { - a.s. }
$$

whence

$$
\lim _{n \rightarrow \infty} g_{\mathrm{ML}}\left(Y_{1}, \ldots, Y_{n}\right)=\sqrt[4]{4 \mathbb{E}_{\theta}\left[Y^{4}\right]} \quad \mathbb{P}_{\theta}-\text { a.s }
$$

and it remains to evaluate $\mathbb{E}_{\theta}\left[Y^{4}\right]$.
We have

$$
\begin{align*}
\mathbb{E}_{\theta}\left[Y^{4}\right] & =\int_{\mathbb{R}} K(\theta) y^{4} e^{-\frac{y^{4}}{\theta^{4}}} d y \\
& =K(\theta) \theta^{5} \int_{\mathbb{R}} \frac{y^{4}}{\theta^{4}} e^{-\frac{y^{4}}{\theta^{4}}} \theta^{-1} d y \\
& =K(\theta) \theta^{5} \int_{\mathbb{R}} z^{4} e^{-z^{4}} d z \quad\left[z=\frac{y}{\theta}\right] \tag{1.14}\\
& =-\frac{K(\theta)}{4} \theta^{5} \int_{\mathbb{R}} z \cdot\left(-4 z^{3} e^{-z^{4}}\right) d z \\
& =-\frac{K(\theta)}{4} \theta^{5} \int_{\mathbb{R}} z \cdot\left(e^{-z^{4}}\right)^{\prime} d z \tag{1.15}
\end{align*}
$$

with

$$
\begin{align*}
\int_{\mathbb{R}} z \cdot\left(e^{-z^{4}}\right)^{\prime} d z & =\left[z e^{-z^{4}}\right]_{-\infty}^{\infty}-\int_{\mathbb{R}} e^{-z^{4}} d z \\
& =-\int_{\mathbb{R}} e^{-z^{4}} d z \\
& =-K(1)^{-1} \tag{1.16}
\end{align*}
$$

by integration by parts. Collecting we conclude that

$$
\begin{align*}
\mathbb{E}_{\theta}\left[Y^{4}\right] & =-\frac{K(\theta)}{4} \theta^{5}\left(-K(1)^{-1}\right) \\
& =\frac{K(\theta)}{4} \theta^{5} K(1)^{-1} \\
& =\frac{\theta^{4}}{4} \tag{1.17}
\end{align*}
$$

as we use the fact $K(\theta)=K(1) \theta^{-1}$ established in Part a, so that

$$
\sqrt[4]{4 \mathbb{E}_{\theta}\left[Y^{4}\right]}=\theta
$$

The ML estimator is therefore strongly consistent.
3.
3.a. Here, for each $\theta>0$,

$$
f_{\theta}^{(3)}\left(y_{1}, y_{2}, y_{3}\right)=\frac{1}{8} e^{-\sum_{i=1}^{3}\left|y_{i}-\theta\right|}, \quad y_{1} 1, y_{2}, y_{3} \in \mathbb{R}
$$

To find the ML estimator $g_{\mathrm{ML}}: \mathbb{R}^{3} \rightarrow(0, \infty)$ we proceed as follows: With observations y_{1}, y_{2}, y_{3} given, we seek to find $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)>0$ such that

$$
\sum_{i=1}^{3}\left|y_{i}-g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)\right| \leq \sum_{i=1}^{3}\left|y_{i}-\theta\right|, \quad \theta>0
$$

Note that here $\theta>0$, and not θ unconstrained in \mathbb{R} ! For this unconstrained version of the problem we need to find $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbb{R} such that

$$
\sum_{i=1}^{3}\left|y_{i}-g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)\right| \leq \sum_{i=1}^{3}\left|y_{i}-\theta\right|, \quad \theta \in \mathbb{R}
$$

Its solution is well known and can be described as follows: Given the values y_{1}, y_{2}, y_{3} in \mathbb{R}, write $y_{(1)}, y_{(2)}, y_{(3)}$ for these values ordered in increasing values (with a lexicographic tiebreaker), i.e., $\left\{y_{1}, y_{2}, y_{3}\right\}=\left\{y_{(1)}, y_{(2)}, y_{(3)}\right\}$ with

$$
y_{(1)} \leq y_{(2)} \leq y_{(3)} .
$$

Then, with this notation we have

$$
g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)=y_{(2)}
$$

It can be interpreted as the median for the uniform distribution on $\left\{y_{1}, y_{2}, y_{3}\right\}$!
To see why this is indeed true, observe that (i) $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)$ must necessarily lie in the interval $\left[y_{(1)}, y_{(3)}\right]$ - The metric of interest can always be decreased otherwise by moving towards the boundary points $y_{(1)}$ or $y_{(3)}$; and (ii) With $a<b$, we have

$$
|a-\theta|+|b-\theta|=a-b, \quad \theta \in[a, b],
$$

a fact which argues for the solution to necessarily be at $y_{(2)}$.
It is easy to see by a symmetry argument that

$$
\mathbb{E}_{\theta}\left[Y_{(2)}\right]=\theta, \quad \theta \in \mathbb{R}
$$

Just take expectations in the identity

$$
\sum_{i=1}^{3} Y_{i}=\sum_{i=1}^{3} Y_{(i)}
$$

and use the fact that for each θ in \mathbb{R}, we have

$$
\left(Y_{(1)}-\theta\right)=_{s t}-\left(Y_{(3)}-\theta\right)
$$

under \mathbb{P}_{θ}.

However, here we need to solve the constrained problem: Find $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)>0$ such that

$$
\sum_{i=1}^{3}\left|y_{i}-g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)\right| \leq \sum_{i=1}^{3}\left|y_{i}-\theta\right|, \quad \theta>0
$$

Four cases need to be considered:
(i) If $y_{(3)} \leq 0$, then the ML estimate $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)$ does not exist (at least in the strict sense as an element of $(0, \infty))$. However one may decide to allow the search to be carried out over the larger set \mathbb{R}_{+}(thereby including the boundary point $\theta=0$), in which case $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)=0$.
(ii) If $y_{(2)} \leq 0<y_{(3)}$, then $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)=0$ (in the extended formulation, otherwise it does not exist).
(iii) If $y_{(1)} \leq 0<y_{(2)}$, then $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)=y_{(2)}$ (in the original formulation).
(iv) If $0<y_{(1)}$, then $g_{\mathrm{ML}}\left(y_{1}, y_{2}, y_{3}\right)=y_{(2)}$ (in the original formulation).
3.b. The ML estimator cannot be an MVUE estimator since obviously

$$
\mathbb{E}_{\theta}\left[g_{\mathrm{ML}}\left(Y_{1}, Y_{2}, Y_{3}\right)\right] \neq \theta>0
$$

by remarks above as we note that

$$
Y_{(2)} \leq g_{\mathrm{ML}}\left(Y_{1}, Y_{2}, Y_{3}\right)
$$

3.c. The family $\left\{F_{\theta}^{(3)}, \theta>0\right\}$ is not an exponential family as can be checked by direct inspection (in spite of its "exponential nature").
4.
4.a. Fix $t \geq 0$ and $y=0,1, \ldots$. The posterior distribution of ϑ given $Y=y$ is easily computed as

$$
\begin{equation*}
f_{\vartheta \mid Y}(t \mid y)=\frac{\frac{t^{y}}{y!} e^{-t} g(t)}{\mathbb{P}[Y=y]}, \quad y=0,1, \ldots \tag{1.18}
\end{equation*}
$$

with

$$
\mathbb{P}[Y=y]=\int_{0}^{\infty} \frac{\tau^{y}}{y!} e^{-\tau} g(\tau) d \tau, \quad y=0,1, \ldots
$$

Therefore, for each $y=0,1, \ldots$, we get

$$
\begin{align*}
\mathbb{E}[\vartheta \mid Y=y] & =\int_{0}^{\infty} t f_{\vartheta \mid Y}(t \mid y) d t \\
& =\frac{\int_{0}^{\infty} t \frac{t^{y}}{y!} e^{-t} g(t) d t}{\int_{0}^{\infty} \frac{t y}{y!}-e^{-t} g(t) d t} \\
& =\frac{W(y+1)}{W(y)} \tag{1.19}
\end{align*}
$$

with

$$
W(y)=\mathbb{E}\left[\vartheta^{y} e^{-\vartheta}\right]=\int_{0}^{\infty} t^{y} e^{-t} g(t) d t, \quad y=0,1, \ldots
$$

4.b. Alternatively,

$$
\mathbb{E}[\vartheta \mid Y=y]=(y+1) \frac{\mathbb{P}[Y=y+1]}{\mathbb{P}[Y=y]}, \quad y=0,1, \ldots
$$

4.c. It is well known that

$$
\widehat{\mathbb{E}}[\vartheta \mid Y=y]=\mu_{\vartheta}+\frac{\Sigma_{\vartheta Y}}{\Sigma_{Y}}\left(y-\mu_{Y}\right), \quad y \in \mathbb{R}
$$

Note that

$$
\mathbb{E}\left[Y^{p} \mid \vartheta\right]= \begin{cases}\vartheta & \text { if } p=1 \\ \vartheta^{2}+\vartheta & \text { if } p=2\end{cases}
$$

by standard properties of the Poisson distribution.
By standard preconditioning arguments it follows that

$$
\begin{equation*}
\mu_{Y}=\mathbb{E}[Y]=\mathbb{E}[\mathbb{E}[Y \mid \vartheta]]=\mathbb{E}[\vartheta] \tag{1.20}
\end{equation*}
$$

and

$$
\begin{align*}
\Sigma_{Y} & =\operatorname{Var}[Y] \\
& =\mathbb{E}\left[Y^{2}\right]-(\mathbb{E}[Y])^{2} \\
& =\mathbb{E}\left[\mathbb{E}\left[Y^{2} \mid \vartheta\right]\right]-(\mathbb{E}[\vartheta])^{2} \\
& =\mathbb{E}\left[\vartheta^{2}+\vartheta\right]-(\mathbb{E}[\vartheta])^{2} \\
& =\operatorname{Var}[\vartheta]+\mathbb{E}[\vartheta] . \tag{1.21}
\end{align*}
$$

In a similar vein, we have

$$
\begin{align*}
\Sigma_{\vartheta Y} & =\operatorname{Cov}[\vartheta, Y] \\
& =\mathbb{E}[\vartheta Y]-\mathbb{E}[\vartheta] \mathbb{E}[Y] \\
& =\mathbb{E}[\vartheta \mathbb{E}[Y \mid \vartheta]]-(\mathbb{E}[\vartheta])^{2} \\
& =\mathbb{E}\left[\vartheta^{2}\right]-(\mathbb{E}[\vartheta])^{2} \\
& =\operatorname{Var}[\vartheta] . \tag{1.22}
\end{align*}
$$

Collecting,

$$
\begin{align*}
\widehat{\mathbb{E}}[\vartheta \mid Y=y] & =\mathbb{E}[\vartheta]+\frac{\operatorname{Var}[\vartheta]}{\operatorname{Var}[\vartheta]+\mathbb{E}[\vartheta]}(y-\mathbb{E}[\theta]) \\
& =\frac{\operatorname{Var}[\vartheta]}{\operatorname{Var}[\vartheta]+\mathbb{E}[\vartheta]} y+\frac{(\mathbb{E}[\vartheta])^{2}}{\operatorname{Var}[\vartheta]+\mathbb{E}[\vartheta]}, \quad y \in \mathbb{R} . \tag{1.23}
\end{align*}
$$

5.

5.a. Here $\Theta=\{0,1, \ldots, M-1\}$. With $\theta=0,1, \ldots, M-1$, we have

$$
\begin{align*}
f_{\theta}^{(n)}\left(y_{1}, \ldots, y_{n}\right) & =\prod_{i=1}^{n} f_{\theta}\left(y_{i}\right) \\
& =e^{\sum_{i=1}^{n} \log f_{\theta}\left(y_{i}\right)} \\
& =e^{\sum_{k=0}^{M-1} 1[\theta=k]\left(\sum_{i=1}^{n} \log f_{k}\left(y_{i}\right)\right)} \\
& =C_{n}(\theta) q_{n}\left(y_{1}, \ldots, y_{n}\right) e^{Q_{n}(\theta)^{\prime} K_{n}\left(y_{1}, \ldots, y_{n}\right)} \tag{1.24}
\end{align*}
$$

where for each θ in Θ, we have set

$$
C_{n}(\theta)=1 \quad \text { and } \quad Q_{n}(\theta)=(\mathbf{1}[\theta=0], \ldots, \mathbf{1}[\theta=M-1])^{\prime}
$$

while with y_{1}, \ldots, y_{n} in \mathbb{R},

$$
q_{n}\left(y_{1}, \ldots, y_{n}\right)=1
$$

and

$$
K_{n}\left(y_{1}, \ldots, y_{n}\right)=\left(\sum_{i=1}^{n} \log f_{0}\left(y_{i}\right), \ldots, \sum_{i=1}^{n} \log f_{M-1}\left(y_{i}\right)\right)^{\prime}
$$

It is plain from (1.24) that the family $\left\{F_{m}^{(n)}, m=0, \ldots, M-1\right\}$ is an exponential family.
5.b. There are M natural sufficient statistics $T_{0}, \ldots, T_{M-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by

$$
T_{m}\left(y_{1}, \ldots, y_{n}\right)=\sum_{i=1}^{n} \log f_{m}\left(y_{i}\right), \quad \begin{gathered}
y_{1}, \ldots, y_{n} \in \mathbb{R} \\
=0, \ldots, M-1
\end{gathered}
$$

This set of sufficient statistics are marginally interesting as they are equivalent to the statistics $f_{0}^{(n)}, \ldots, f_{M-1}^{(n)}: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$; however they do reduce dimensionality from n (number of observations) to M (number of hypotheses)!
6.
6.a. With $\eta>0$, write $\eta=e^{-\tau}$ for some τ in \mathbb{R}. The test $d_{\eta}: \mathbb{R} \rightarrow\{0,1\}$ is then given by

$$
d_{\eta}(y)=0 \quad \text { iff } \quad f_{\lambda}(y)<\eta f_{0}(y)
$$

This reduces to

$$
d_{\eta}(y)=0 \quad \text { iff } \quad \tau+|y|<|y-\lambda|
$$

so that

$$
C\left(d_{\eta}\right)=\{y \in \mathbb{R}: \tau+|y|<|y-\lambda|\} \quad \text { with } \eta=e^{-\tau}
$$

Three separate cases need to be considered. An easy geometric argument shows the following:
(i) If $\tau<-\lambda$, then $C\left(d_{\eta}\right)=\mathbb{R}$.
(ii) If $-\lambda \leq \tau<\lambda$, then

$$
C\left(d_{\eta}\right)=\left(-\infty, \frac{\lambda-\tau}{2}\right)
$$

(iii) If $\lambda \leq \tau$, then $C\left(d_{\eta}\right)$ is empty.
6.b. Using the results of Part a, we conclude the following: If $\tau<-\lambda$, then

$$
P_{F}\left(d_{\eta}\right)=\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=0\right]=0,
$$

and

$$
P_{D}\left(d_{\eta}\right)=\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=1\right]=0 .
$$

If $\lambda \leq \tau$, then

$$
P_{F}\left(d_{\eta}\right)=\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=0\right]=1,
$$

and

$$
P_{D}\left(d_{\eta}\right)=\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=1\right]=1 .
$$

If $-\lambda \leq \tau<\lambda$, then

$$
\begin{align*}
P_{F}\left(d_{\eta}\right) & =\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=0\right] \\
& =\mathbb{P}\left[\left.Y \geq \frac{\lambda-\tau}{2} \right\rvert\, H=0\right] \\
& =\int_{\frac{\lambda-\tau}{2}}^{\infty} f_{0}(y) d y \\
& =\int_{\frac{\lambda-\tau}{2}}^{\infty} \frac{1}{2} e^{-|y|} d y \\
& =\frac{1}{2} e^{-\frac{\lambda-\tau}{2}} \tag{1.25}
\end{align*}
$$

and

$$
\begin{align*}
P_{D}\left(d_{\eta}\right) & =\mathbb{P}\left[d_{\eta}(Y)=1 \mid H=1\right] \\
& =\mathbb{P}\left[\left.Y \geq \frac{\lambda-\tau}{2} \right\rvert\, H=1\right] \\
& =\int_{\frac{\lambda-\tau}{2}}^{\infty} f_{\lambda}(y) d y \\
& =\int_{\frac{\lambda-\tau}{2}}^{\infty} \frac{1}{2} e^{-|y-\lambda|} d y . \tag{1.26}
\end{align*}
$$

In computing this last integral, we note that

$$
0<\frac{\lambda-\tau}{2} \leq \lambda \quad \text { if } \quad-\lambda \leq \tau<\lambda
$$

Therefore,

$$
\begin{align*}
\int_{\frac{\lambda-\tau}{2}}^{\infty} e^{-|y-\lambda|} d y & =\int_{\frac{\lambda-\tau}{2}}^{\lambda} e^{-|y-\lambda|} d y+\int_{\lambda}^{\infty} e^{-|y-\lambda|} d y \\
& =\int_{\frac{\lambda-\tau}{2}}^{\lambda} e^{-(\lambda-y)} d y+\int_{\lambda}^{\infty} e^{-(y-\lambda)} d y \\
& =e^{-\lambda}\left(e^{\lambda}-e^{\frac{\lambda-\tau}{2}}\right)+1 \\
& =2-e^{-\frac{\lambda+\tau}{2}} \tag{1.27}
\end{align*}
$$

whence

$$
P_{D}\left(d_{\eta}\right)=1-\frac{1}{2} e^{-\frac{\lambda+\tau}{2}} .
$$

6.c. To compute the ROC curve, first we note that

$$
\left\{P_{F}\left(d_{\eta}\right), \tau<-\lambda\right\}=\left\{P_{D}\left(d_{\eta}\right), \tau<-\lambda\right\}=\{0\}
$$

and

$$
\left\{P_{F}\left(d_{\eta}\right), \lambda \leq \tau\right\}=\left\{P_{D}\left(d_{\eta}\right), \lambda \leq \tau\right\}=\{1\}
$$

while

$$
\left\{P_{F}\left(d_{\eta}\right),-\lambda \leq \tau<\lambda\right\}=\left\{\frac{1}{2} e^{-\frac{\lambda-\tau}{2}},-\lambda \leq \tau<\lambda\right\}=\left[\frac{e^{-\lambda}}{2}, \frac{1}{2}\right)
$$

and

$$
\left\{P_{D}\left(d_{\eta}\right),-\lambda \leq \tau<\lambda\right\}=\left\{1-\frac{1}{2} e^{-\frac{\lambda+\tau}{2}},-\lambda \leq \tau<\lambda\right\}=\left(\frac{1}{2}, 1-\frac{1}{2} e^{-\lambda}\right]
$$

With P_{F} in $\left[\frac{e^{-\lambda}}{2}, \frac{1}{2}\right)$ we solve the equation

$$
\frac{1}{2} e^{-\frac{\lambda-\tau}{2}}=P_{F}, \quad-\lambda \leq \tau<\lambda
$$

ENEE 621/SPRING 2016
It has a unique solution $\tau\left(P_{F}\right)$ given by

$$
\tau\left(P_{F}\right)=\lambda+\log \left(4 P_{F}^{2}\right)
$$

Note that

$$
\tau\left(P_{F}\right) \in[-\lambda, \lambda)
$$

by direct inspection (as expected). Therefore, with $\eta=e^{-\tau\left(P_{F}\right)}$, we find

$$
\begin{align*}
P_{D}\left(d_{\eta}\right) & =1-\frac{1}{2} e^{-\frac{\lambda+\tau\left(P_{F}\right)}{2}} \\
& =1-\frac{1}{2} e^{-\frac{\lambda+\lambda+\log \left(4 P_{F}^{2}\right)}{2}} \\
& =1-\frac{1}{2} e^{-\lambda-\log \left(2 P_{F}\right)} \\
& =1-\frac{e^{-\lambda}}{4 P_{F}} . \tag{1.28}
\end{align*}
$$

From the discussion it follows that the mapping Γ is not defined on the entire interval $[0,1]$. In fact, we have

$$
\Gamma\left(P_{F}\right)= \begin{cases}0 & \text { if } P_{F}=0 \\ 1-\frac{e^{-\lambda}}{4 P_{F}} & \text { if } P_{F} \in\left[\frac{e^{-\lambda}}{2}, \frac{1}{2}\right) \\ 1 & \text { if } P_{F}=1\end{cases}
$$

As always the ROC curve can be completed through linear interpolation achieved through randomization.

