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DETECTION AND ESTIMATION THEORY

ANSWER KEY TO FINAL EXAM:

1.
Fact: For any Borel mapping u : R→ R which is integrable, i.e.,∫

R
|u(y)|dy <∞

we necessarily have
lim

y→±∞
|u(y)| = 0.

1.a. The point of this question was to extract the conditions on the probability density
function h : R→ R+ which ensure that the conditions (CR1)-(CR5) hold for the family
{fθ, θ ∈ R}. They are

(i) The support of h : R→ R+ is the entirely line R, namely

h(y) > 0, y ∈ R. (1.1)

(ii) The probability density function h : R→ R+ is differentiable everywhere on R.

(iii) The square-integrability condition∫
R

∣∣∣∣h′(y)

h(y)

∣∣∣∣2 h(y)dy <∞ (1.2)

holds.

(iv) The derivative h′ : R→ R is integrable in that∫
R
|h′(y)| dy <∞. (1.3)
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(CR1) This condition is automatically satisfied here since Θ = (0,∞) is an open set in
R.
(CR2) For each θ in R, Fθ is absolutely continuous with respect to Lebesgue measure

with probability density function fθ : R→ R+ given by

fθ(y) = h(y − θ), y ∈ R

and (CR2a) holds. The support S(θ) of the probability density function fθ : R → R+

is given by
S(θ) = {y ∈ R : fθ(y) > 0} = {y ∈ R : h(y − θ) > 0}

so that
S(θ) = θ + S(0), θ ∈ R

It follows that we must have S(θ) = R for each θ in R and (CR2b) holds with S = R.
This obviously requires that (1.1) holds.
(CR3) Assuming the existence of needed derivatives we get

∂

∂θ
fθ(y) = −h′(y − θ), θ ∈ R

y ∈ R

where h′ : R → R is the derivative of h. Thus, (CR3) requires that the probability
density function h : R→ R+ be differentiable everywhere on R.
(CR4) This integrability condition reads

Eθ

[∣∣∣∣ ∂∂θ log fθ(Y )

∣∣∣∣2
]

=

∫
R

∣∣∣∣h′(y − θ)h(y − θ)

∣∣∣∣2 h(y − θ)dy <∞, θ ∈ R,

and reduces to the single integrability condition (1.2).
(CR5) This regularity condition amounts to

0 =

∫
R

∂

∂θ
fθ(y)dy, θ ∈ R

i.e.,

0 =

∫
R
h′(y − θ)dy, θ ∈ R

Thus, by a simple of variable we see that (CR5) holds provided the integrability condition
(1.3) holds for the derivative h′ : R→ R with

0 =

∫
R
h′(y)dy.

Note that ∫
R
h′(y)dy = lim

A,B→∞

∫ B

−A
h′(y)dy = lim

A,B→∞
(h(B)− h(−A)) = 0
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and this always holds by virtue of the assumed integrability (1.3).
1.b. It is plain that the Fisher information matrix is given

M(θ) = Eθ

[∣∣∣∣ ∂∂θ log fθ(Y )

∣∣∣∣2
]

=

∫
R

(
h′(y − θ)
h(y − θ)

)2

h(y − θ)dy

=

∫
R

(
h′(z)

h(z)

)2

h(z)dz, θ ∈ R. (1.4)

This quantity does not depend on θ.
1.c. Fix θ in R. Under the integrability condition on h : R→ R+, namely∫

R
|z|h(z)dz <∞ (1.5)

the integral

µh =

∫
R
zh(z)dz

is well defined and finite – In fact µh is simply the first moment under the probability
density function h : R→ R+. Hence, the estimator g : R→ R is a finite mean estimator
since

Eθ [g(Y )] =

∫
R
g(y)fθ(y)dy

=

∫
R
(ay + b)h(y − θ)dy

=

∫
R
(az + (aθ + b))h(z)dz [z = y − θ]

= aµh + (aθ + b) (1.6)

It follows that
d

dθ
Eθ [g(Y )] = a.

On the other hand,∫
R
g(y)

∂

∂θ
fθ(y)dy = a

∫
R
y
∂

∂θ
fθ(y)dy + b

∫
R

∂

∂θ
fθ(y)dy

= a

∫
R
y
∂

∂θ
fθ(y)dy (1.7)

since ∫
R

∂

∂θ
fθ(y)dy = 0
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by the regularity condition (CR5). Next, we see that∫
R
y
∂

∂θ
fθ(y)dy =

∫
R
y(−h′(y − θ))dy

= −
∫
R
(z + θ)h′(z)dz (1.8)

under the condition ∫
R
|z||h′(z)|dz <∞.

Here as well we have∫
R
h′(z)dz = lim

A,B→∞

∫ B

−A
h′(z)dz = lim

A,B→∞
(h(B)− h(−A)) = 0

as before. On the other hand, integration by parts gives∫
R
zh′(z)dz = lim

A,B→∞

∫ B

−A
zh′(z)dz

= lim
A,B→∞

(
[zh(z)]B−A −

∫ B

−A
h(z)dz

)
= lim

A,B→∞
(Bh(B) + Ah(−A)− (H(B)−H(−A))) = −1 (1.9)

because limz→∞ |z||h(z)| = 0 as a result of the integrability condition (1.5); see Fact.
Therefore, ∫

R
g(y)

∂

∂θ
fθ(y)dy = a,

and the affine estimator is indeed regular under the integrability condition (1.5).

2.
2.a. For each θ > 0,

1 =

∫
R
K(θ)e−

y4

θ4 dy

=

∫
R
θK(θ)e−

y4

θ4 θ−1dy (1.10)

=

∫
R
θK(θ)e−z

4

dz
[
z =

y

θ

]
(1.11)

=
θK(θ)

K(1)

∫
R
K(1)e−z

4

dz. (1.12)

It follows that

1 =
θK(θ)

K(1)
,
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whence

K(θ) =
K(1)

θ
.

2.b. Fix n = 1, 2, . . . and θ > 0. For arbitrary y1, . . . , yn in R, we have

f
(n)
θ (y1, . . . , yn) =

n∏
i=1

K(θ)e−
y4i
θ4

= K(θ)ne−
1
θ4

∑n
i=1 y

4
i

= K(1)nθ−ne−
1
θ4

∑n
i=1 y

4
i

= K(1)ne−n log θ− 1
θ4

∑n
i=1 y

4
i . (1.13)

Thus,
∂

∂θ
log f

(n)
θ (y1, . . . , yn) = −n

θ
+

4

θ5

n∑
i=1

y4i .

The ML equation
∂

∂θ
log f

(n)
θ (y1, . . . , yn) = 0, θ > 0

has a unique solution

gML(y1, . . . , yn) = 4

√√√√ 4

n

n∑
i=1

y4i .

2.c. By the SLLNs for the rvs {Y 4
i , i = 1, 2, . . .} (under Pθ) it holds that

lim
n→∞

1

n

n∑
i=1

Y 4
i = Eθ

[
Y 4
]

Pθ − a.s.,

whence
lim
n→∞

gML(Y1, . . . , Yn) = 4
√

4Eθ [Y 4] Pθ − a.s.

and it remains to evaluate Eθ [Y 4].
We have

Eθ
[
Y 4
]

=

∫
R
K(θ)y4e−

y4

θ4 dy

= K(θ)θ5
∫
R

y4

θ4
e−

y4

θ4 θ−1dy

= K(θ)θ5
∫
R
z4e−z

4

dz
[
z =

y

θ

]
(1.14)

= −K(θ)

4
θ5
∫
R
z · (−4z3e−z

4

)dz

= −K(θ)

4
θ5
∫
R
z ·
(
e−z

4
)′
dz (1.15)
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with ∫
R
z ·
(
e−z

4
)′
dz =

[
ze−z

4
]∞
−∞
−
∫
R
e−z

4

dz

= −
∫
R
e−z

4

dz

= −K(1)−1 (1.16)

by integration by parts. Collecting we conclude that

Eθ
[
Y 4
]

= −K(θ)

4
θ5
(
−K(1)−1

)
=

K(θ)

4
θ5K(1)−1

=
θ4

4
(1.17)

as we use the fact K(θ) = K(1)θ−1 established in Part a, so that

4
√

4Eθ [Y 4] = θ.

The ML estimator is therefore strongly consistent.

3.
3.a. Here, for each θ > 0,

f
(3)
θ (y1, y2, y3) =

1

8
e−

∑3
i=1 |yi−θ|, y11, y2, y3 ∈ R

To find the ML estimator gML : R3 → (0,∞) we proceed as follows: With observations
y1, y2, y3 given, we seek to find gML(y1, y2, y3) > 0 such that

3∑
i=1

|yi − gML(y1, y2, y3)| ≤
3∑
i=1

|yi − θ|, θ > 0.

Note that here θ > 0, and not θ unconstrained in R! For this unconstrained version of
the problem we need to find gML(y1, y2, y3) in R such that

3∑
i=1

|yi − gML(y1, y2, y3)| ≤
3∑
i=1

|yi − θ|, θ ∈ R.

Its solution is well known and can be described as follows: Given the values y1, y2, y3 in
R, write y(1), y(2), y(3) for these values ordered in increasing values (with a lexicographic
tiebreaker), i.e., {y1, y2, y3} = {y(1), y(2), y(3)} with

y(1) ≤ y(2) ≤ y(3).
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Then, with this notation we have

gML(y1, y2, y3) = y(2).

It can be interpreted as the median for the uniform distribution on {y1, y2, y3}!
To see why this is indeed true, observe that (i) gML(y1, y2, y3) must necessarily lie in the

interval [y(1), y(3)] – The metric of interest can always be decreased otherwise by moving
towards the boundary points y(1) or y(3); and (ii) With a < b, we have

|a− θ|+ |b− θ| = a− b, θ ∈ [a, b],

a fact which argues for the solution to necessarily be at y(2).
It is easy to see by a symmetry argument that

Eθ
[
Y(2)
]

= θ, θ ∈ R.

Just take expectations in the identity

3∑
i=1

Yi =
3∑
i=1

Y(i)

and use the fact that for each θ in R, we have(
Y(1) − θ

)
=st −

(
Y(3) − θ

)
under Pθ.

However, here we need to solve the constrained problem: Find gML(y1, y2, y3) > 0 such
that

3∑
i=1

|yi − gML(y1, y2, y3)| ≤
3∑
i=1

|yi − θ|, θ > 0.

Four cases need to be considered:
(i) If y(3) ≤ 0, then the ML estimate gML(y1, y2, y3) does not exist (at least in the strict

sense as an element of (0,∞)). However one may decide to allow the search to be carried
out over the larger set R+ (thereby including the boundary point θ = 0), in which case
gML(y1, y2, y3) = 0.

(ii) If y(2) ≤ 0 < y(3), then gML(y1, y2, y3) = 0 (in the extended formulation, otherwise
it does not exist).

(iii) If y(1) ≤ 0 < y(2), then gML(y1, y2, y3) = y(2) (in the original formulation).
(iv) If 0 < y(1), then gML(y1, y2, y3) = y(2) (in the original formulation).
3.b. The ML estimator cannot be an MVUE estimator since obviously

Eθ [gML(Y1, Y2, Y3)] 6= θ > 0

by remarks above as we note that

Y(2) ≤ gML(Y1, Y2, Y3).
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3.c. The family {F (3)
θ , θ > 0} is not an exponential family as can be checked by direct

inspection (in spite of its “exponential nature”).

4.
4.a. Fix t ≥ 0 and y = 0, 1, . . .. The posterior distribution of ϑ given Y = y is easily
computed as

fϑ|Y (t|y) =

ty

y!
e−tg(t)

P [Y = y]
,

t ≥ 0
y = 0, 1, . . .

(1.18)

with

P [Y = y] =

∫ ∞
0

τ y

y!
e−τg(τ)dτ, y = 0, 1, . . .

Therefore, for each y = 0, 1, . . ., we get

E [ϑ|Y = y] =

∫ ∞
0

tfϑ|Y (t|y)dt

=

∫∞
0
t t
y

y!
e−tg(t)dt∫∞

0
ty

y!
e−tg(t)dt

=
W (y + 1)

W (y)
(1.19)

with

W (y) = E
[
ϑye−ϑ

]
=

∫ ∞
0

tye−tg(t)dt, y = 0, 1, . . .

4.b. Alternatively,

E [ϑ|Y = y] = (y + 1)
P [Y = y + 1]

P [Y = y]
, y = 0, 1, . . .

4.c. It is well known that

Ê [ϑ|Y = y] = µϑ +
ΣϑY

ΣY

(y − µY ) , y ∈ R.

Note that

E [Y p|ϑ] =


ϑ if p = 1

ϑ2 + ϑ if p = 2

by standard properties of the Poisson distribution.
By standard preconditioning arguments it follows that

µY = E [Y ] = E [E [Y |ϑ]] = E [ϑ] , (1.20)

and

ΣY = Var[Y ]

= E
[
Y 2
]
− (E [Y ])2

= E
[
E
[
Y 2|ϑ

]]
− (E [ϑ])2

= E
[
ϑ2 + ϑ

]
− (E [ϑ])2

= Var [ϑ] + E [ϑ] . (1.21)
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In a similar vein, we have

ΣϑY = Cov [ϑ, Y ]

= E [ϑY ]− E [ϑ]E [Y ]

= E [ϑE [Y |ϑ]]− (E [ϑ])2

= E
[
ϑ2
]
− (E [ϑ])2

= Var[ϑ]. (1.22)

Collecting,

Ê [ϑ|Y = y] = E [ϑ] +
Var[ϑ]

Var[ϑ] + E [ϑ]
(y − E [θ])

=
Var[ϑ]

Var[ϑ] + E [ϑ]
y +

(E [ϑ])2

Var[ϑ] + E [ϑ]
, y ∈ R. (1.23)

5.
5.a. Here Θ = {0, 1, . . . ,M − 1}. With θ = 0, 1, . . . ,M − 1, we have

f
(n)
θ (y1, . . . , yn) =

n∏
i=1

fθ(yi)

= e
∑n
i=1 log fθ(yi)

= e
∑M−1
k=0 1[θ=k](

∑n
i=1 log fk(yi))

= Cn(θ)qn(y1, . . . , yn)eQn(θ)
′Kn(y1,...,yn) (1.24)

where for each θ in Θ, we have set

Cn(θ) = 1 and Qn(θ) = (1 [θ = 0] , . . . ,1 [θ = M − 1])′

while with y1, . . . , yn in R,
qn(y1, . . . , yn) = 1

and

Kn(y1, . . . , yn) =

(
n∑
i=1

log f0(yi), . . . ,
n∑
i=1

log fM−1(yi)

)′
.

It is plain from (1.24) that the family {F (n)
m , m = 0, . . . ,M −1} is an exponential family.

5.b. There are M natural sufficient statistics T0, . . . , TM−1 : Rn → R given by

Tm(y1, . . . , yn) =
n∑
i=1

log fm(yi),
y1, . . . , yn ∈ R

m = 0, . . . ,M − 1.

This set of sufficient statistics are marginally interesting as they are equivalent to the
statistics f

(n)
0 , . . . , f

(n)
M−1 : Rn → R+; however they do reduce dimensionality from n

(number of observations) to M (number of hypotheses)!
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6.
6.a. With η > 0, write η = e−τ for some τ in R. The test dη : R→ {0, 1} is then given
by

dη(y) = 0 iff fλ(y) < ηf0(y).

This reduces to
dη(y) = 0 iff τ + |y| < |y − λ|

so that
C(dη) = {y ∈ R : τ + |y| < |y − λ|} with η = e−τ .

Three separate cases need to be considered. An easy geometric argument shows the
following:

(i) If τ < −λ, then C(dη) = R.
(ii) If −λ ≤ τ < λ, then

C(dη) =

(
−∞, λ− τ

2

)
.

(iii) If λ ≤ τ , then C(dη) is empty.
6.b. Using the results of Part a, we conclude the following: If τ < −λ, then

PF (dη) = P [dη(Y ) = 1|H = 0] = 0,

and
PD(dη) = P [dη(Y ) = 1|H = 1] = 0.

If λ ≤ τ , then
PF (dη) = P [dη(Y ) = 1|H = 0] = 1,

and
PD(dη) = P [dη(Y ) = 1|H = 1] = 1.

If −λ ≤ τ < λ, then

PF (dη) = P [dη(Y ) = 1|H = 0]

= P
[
Y ≥ λ− τ

2

∣∣∣H = 0

]
=

∫ ∞
λ−τ
2

f0(y)dy

=

∫ ∞
λ−τ
2

1

2
e−|y|dy

=
1

2
e−

λ−τ
2 (1.25)
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and

PD(dη) = P [dη(Y ) = 1|H = 1]

= P
[
Y ≥ λ− τ

2

∣∣∣H = 1

]
=

∫ ∞
λ−τ
2

fλ(y)dy

=

∫ ∞
λ−τ
2

1

2
e−|y−λ|dy. (1.26)

In computing this last integral, we note that

0 <
λ− τ

2
≤ λ if − λ ≤ τ < λ.

Therefore, ∫ ∞
λ−τ
2

e−|y−λ|dy =

∫ λ

λ−τ
2

e−|y−λ|dy +

∫ ∞
λ

e−|y−λ|dy

=

∫ λ

λ−τ
2

e−(λ−y)dy +

∫ ∞
λ

e−(y−λ)dy

= e−λ
(
eλ − e

λ−τ
2

)
+ 1

= 2− e−
λ+τ
2 , (1.27)

whence

PD(dη) = 1− 1

2
e−

λ+τ
2 .

6.c. To compute the ROC curve, first we note that

{PF (dη), τ < −λ} = {PD(dη), τ < −λ} = {0}

and
{PF (dη), λ ≤ τ} = {PD(dη), λ ≤ τ} = {1},

while

{PF (dη), −λ ≤ τ < λ} =

{
1

2
e−

λ−τ
2 , −λ ≤ τ < λ

}
=

[
e−λ

2
,
1

2

)
and

{PD(dη), −λ ≤ τ < λ} =

{
1− 1

2
e−

λ+τ
2 , −λ ≤ τ < λ

}
=

(
1

2
, 1− 1

2
e−λ
]
.

With PF in
[
e−λ

2
, 1
2

)
we solve the equation

1

2
e−

λ−τ
2 = PF , −λ ≤ τ < λ
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It has a unique solution τ(PF ) given by

τ(PF ) = λ+ log(4P 2
F ).

Note that
τ(PF ) ∈ [−λ, λ)

by direct inspection (as expected). Therefore, with η = e−τ(PF ), we find

PD(dη) = 1− 1

2
e−

λ+τ(PF )

2

= 1− 1

2
e−

λ+λ+log(4P2
F )

2

= 1− 1

2
e−λ−log(2PF )

= 1− e−λ

4PF
. (1.28)

From the discussion it follows that the mapping Γ is not defined on the entire interval
[0, 1]. In fact, we have

Γ(PF ) =


0 if PF = 0

1− e−λ

4PF
if PF ∈

[
e−λ

2
, 1
2

)
1 if PF = 1.

As always the ROC curve can be completed through linear interpolation achieved through
randomization.


