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DETECTION AND ESTIMATION THEORY

ANSWER KEY TO FINAL EXAM:

1.
Fact: For any Borel mapping u : R — R which is integrable, i.e.,

[ 1wl < o

we necessarily have
lim |u(y)| = 0.

y—+too

1.a. The point of this question was to extract the conditions on the probability density
function h : R — R, which ensure that the conditions (CR1)-(CR5) hold for the family
{fo, 0 € R}. They are

(i) The support of h : R — R, is the entirely line R, namely

h(y) >0, yeR. (1.1)

(ii) The probability density function h : R — R, is differentiable everywhere on R.

(iii) The square-integrability condition
/ W (y)
R

h(y)
(iv) The derivative A’ : R — R is integrable in that

h(y)dy < oo (1.2)

holds.

/Ryh'(y)y dy < oo (1.3)
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(CR1) This condition is automatically satisfied here since © = (0, 00) is an open set in
R.

(CR2) For each 6 in R, Fj is absolutely continuous with respect to Lebesgue measure
with probability density function f, : R — R, given by

foly) =h(y—0), yeR

and (CR2a) holds. The support S(6) of the probability density function fp : R — R,
is given by
SO)={yeR: foly) >0} ={y € R: h(y —0) >0}
so that
S@#)=0+S5(0), #eR

It follows that we must have S(#) = R for each § in R and (CR2b) holds with S = R.
This obviously requires that (1.1) holds.
(CR3) Assuming the existence of needed derivatives we get

feR

9 :
%f@(y):_h (y_9)7 yeR

where h' : R — R is the derivative of h. Thus, (CR3) requires that the probability

density function h : R — R, be differentiable everywhere on R.
(CRA4) This integrability condition reads

).

and reduces to the single integrability condition (1.2).
(CR5) This regularity condition amounts to

0
0 /}R@fa(y)dy, R

2

/ JR—
iy = 0) h(y — 0)dy < 0o, 6 €R,

h(y —0)

‘—bgfe

ie.,
OZ/h’(y—H)dy, ASBIN
R

Thus, by a simple of variable we see that (CR5) holds provided the integrability condition
(1.3) holds for the derivative ' : R — R with

0= /R 1 (y)dy.

/R Widy = tim | W(y)dy= lim (h(B)—h(—A)) =0

A,B—00 _A A,B—00

Note that



ENEE 621/SPRING 2016

and this always holds by virtue of the assumed integrability (1.3).

1.b. It is plain that the Fisher information matrix is given

M) = ] log, oY

[t o

/R (Z((,f; )2 h(z)dz, 6€R.

This quantity does not depend on 6.

1.c. Fix # in R. Under the integrability condition on h : R — R, namely

/R]z|h(z)dz < 00

i, :/th(z)dz

the integral

(1.5)

is well defined and finite — In fact wy; is simply the first moment under the probability
density function h : R — R, . Hence, the estimator g : R — R is a finite mean estimator

since

B lg(Y)] = / 9(y) foly)dy
= /R(ay +b)h(y — 0)dy

z‘émz+m9+®M@MZ[2:y—ﬂ

= apup+ (ad +b)

It follows that p
—E YY) = a.
df olg(V)]=a

On the other hand,

0 0 0
/Rg(y)%fe(y)dy = a/Ry%fe( )dy + b aefe(y)dy

0
= a/Ry%fe(y)dy

[ sty =0

since

(1.6)

(1.7)
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by the regularity condition (CR5). Next, we see that

0
[ gghiwas = [ v=t—o)ay
:-i/@+mmgmz (1.8)
R
under the condition
/ |2||W(2)]dz < o0.
R

Here as well we have

/ h'(2)dz = lim ’ h'(z)dz = lim (h(B)—h(—=A))=0

A,B—oo |_ 4 A,B—x

as before. On the other hand, integration by parts gives
B

/ zh(2)dz = lim zh/(2)dz

R

A,B— —_A

- A}figrl}oo ([zh(z)]il - /_A h(z)dz)
= lim (Bh(B)+ Ah(—A)—(H(B)— H(-A)))=-1 (1.9

A,B—c0

because lim, o |2||h(2)] = 0 as a result of the integrability condition (1.5); see Fact.
Therefore,

[ ottty = a

and the affine estimator is indeed regular under the integrability condition (1.5).

2

2.a. For each 6 > 0,

1 = /K(G)ez‘*dy
R

::L/GBXQe_ﬁeldy (1.10)
_ /ReK(e)e—Z“dz [z:%} (1.11)
0K(®) i
= W/RK(DB dz. (1.12)
It follows that
0K ()
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whence

2.b. Fixn=1,2,... and # > 0. For arbitrary v, ...,y, in R, we have

v,

—=

) = K@) o
i=1
= K(§)"e o Zimi !
= K1) e e Tiav
= K(1)ne ™8 gr Dyl (1.13)
Thus,
9,

The ML equation
0

6910gf9 (yl,...,yn):(), 0>0

has a unique solution

gML(yh s 7yn) =

4 n
o 2
n“
1=1
2.c. By the SLLNs for the rvs {Y;*, i = 1,2,...} (under Py) it holds that
Ly 4
JE&EZK’ =By [Y'] Pp—as,

whence

lim gML(YL e ,Yn) = \4/ 4E9 [Y4] P@ — a.s.
n—00

and it remains to evaluate Eg [Y'4].
We have

= K(G)GS/]Rz e dz [z: %] (1.14)

4
= —@9542- <6_24>/dz (1.15)
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with
/ o0
/z- (e’z4> dz = [26724] —/ez4dz
R —00 R
= —/e_z4dz
R

= —K(1)! (1.16)

by integration by parts. Collecting we conclude that

Eo [Y*] = —@95 (-K(1)™)

= — (1.17)
as we use the fact K(0) = K(1)§~! established in Part a, so that

VAR, [Y4] = 6.
The ML estimator is therefore strongly consistent.

3.
3.a. Here, for each 6 > 0,

1 s
—e Zi:l ‘yl 9"

3 yil,ye,y3 €R

fe(g)(ylay%yS) =

To find the ML estimator gyr, : R* — (0,00) we proceed as follows: With observations
Y1, Y2, Y3 given, we seek to find gy, (1, 2, y3) > 0 such that

3 3
Z lyi — gme (Y1, y2, y3)| < Z -6, 6>0.
=1 =1

Note that here # > 0, and not # unconstrained in R! For this unconstrained version of
the problem we need to find gur(y1, ¥2,y3) in R such that

3

D 19 = 9 (v, 92, 5))| Z|y¢—9|, feR.

=1 =1

w

Its solution is well known and can be described as follows: Given the values yy, y2,y3 in
R, write y(1), y2), y(3) for these values ordered in increasing values (with a lexicographic

tiebreaker), i.e., {y1,v2,y3} = {va), ¥2), Y3 } with

Yy < Ye) < Ye)-
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Then, with this notation we have

oL (Y1, Y2, ¥3) = Y(2)-

It can be interpreted as the median for the uniform distribution on {y1, y2,ys}!

To see why this is indeed true, observe that (i) gumL(y1, Y2, y3) must necessarily lie in the
interval [yq), y3)] — The metric of interest can always be decreased otherwise by moving
towards the boundary points yq) or ys); and (ii) With a < b, we have

la—0|+b—0=a—0, 6¢€]alb],

a fact which argues for the solution to necessarily be at y).
It is easy to see by a symmetry argument that

By Y] =0, 0€R.

Just take expectations in the identity

3 3
2 Yi=2 Y
i=1 i=1
and use the fact that for each 6 in R, we have
Yy = 0) =t = (Y5 = 0)

under Py.

However, here we need to solve the constrained problem: Find gy, (y1, y2, y3) > 0 such

that
3

3
> v — i, v2,98) < Y lyi = 6], 6> 0.
i=1 i=1
Four cases need to be considered:

(i) If yg) < 0, then the ML estimate g (Y1, Y2, y3) does not exist (at least in the strict
sense as an element of (0,00)). However one may decide to allow the search to be carried
out over the larger set R, (thereby including the boundary point # = 0), in which case
gur (Y1, Y2, y3) = 0.

(i) If y2) < 0 < y3), then gyw(y1,y2,y3) = 0 (in the extended formulation, otherwise
it does not exist).

(iii) If yay < 0 < y(2), then gur(y1, Y2, ¥3) = y(2) (in the original formulation).

(iv) If 0 < y(1), then gmr(y1, Y2, Y3) = Y(2) (in the original formulation).

3.b. The ML estimator cannot be an MVUE estimator since obviously

Eg [gnn (Y1, Y2, Ya)] # 60 >0
by remarks above as we note that

}/(2) S gML(Yia }/27 YE‘])
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3.c. The family {F(,(g) , 0 > 0} is not an exponential family as can be checked by direct
inspection (in spite of its “exponential nature”).

4.
4.a. Fixt > 0and y = 0,1,.... The posterior distribution of ¥ given Y = y is easily
computed as

tY —t
¢ g(t) t>0
= 1.1
for (tly) Py =y y=01,... (1.18)
with
PlY =y] = / —e "g(r)dr, y=0,1,...
o Y
Therefore, for each y = 0,1, ..., we get
EOY ol = [t
0
_ Jo~ e g(t)dt
fooo %e‘tg(t)dt
W(y+1)
1.19
W) (149
with -
W(y) =E[0We "] = / tYetg(t)dt, y=0,1,...
0
4.b. Alternatively,
PY =y+1]
ERY =y=wy+1)—————, y=01,...
4.c. It is well known that
=~ )y
EWY =yl =pm+ 5 (y—pr), yeR
Y
Note that
Y ifp=1
E[Y?[J] =
2+ ifp=2
by standard properties of the Poisson distribution.
By standard preconditioning arguments it follows that
py =E[Y] = E[E[Y|J]] = E[J]. (1.20)

and
Yy = Var[Y]
= E[Y?] - (E[Y])’
_ E[E (1)) - E )
= E[0*+9] - (E[)’
= Var[v]+E[v]. (1.21)
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In a similar vein, we have

Eﬁy = Cov [ﬁ,Y]

= EWY]-EWE[Y]
= EWE[Y]9] — (E[9])?
= E[’] - (EW])’
= Var[?]. (1.22)
Collecting,
EW)Y =y = EWH%@_EW
B Var[?] (E [9])”
= LB T Varld LB y € R. (1.23)
5.

5.a. Here © = {0,1,...,M —1}. With 6§ =0,1,..., M — 1, we have

Dy, yn) = H fo(yi)

—  eXxi=1108 fo(yi)
— il Le=H (T log fi(vi) )

= Cu(0)gn(y1, - -, yn)eOn @ Knlvrun) (1.24)
where for each 6 in ©, we have set
Co(d)=1 and Q.(0)=(1[0=0],...,1[0=M —1])

while with yq,...,y, in R,
Qn(ylu-w,yn) =1

and ,
Ku(ys, - yn) = (Zlogfo vi), Zlong ' yﬂ) :

It is plain from (1.24) that the family {Fm" , m=0,...,M—1} is an exponential family.
5.b. There are M natural sufficient statistics Ty, ..., Th—1 : R® — R given by

s Un €ER
T y1>--'ayn ZIngmyl myzl()yM—l

This set of sufﬁ(nent statistics are marginally interesting as they are equivalent to the
statistics f0 e (n) : R" — R,; however they do reduce dimensionality from n
(number of observatlons) to M (number of hypotheses)!
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6.
6.a. With n > 0, write = ™" for some 7 in R. The test d, : R — {0, 1} is then given
by

dy(y) =0 it fi(y) <nfo(y).

This reduces to
dy(y) =0 iff 7+ |yl <[y—A|

so that
Cld,)={yeR: 7+ 1yl <|y— A} withn=e.

Three separate cases need to be considered. An easy geometric argument shows the
following:
(i) If 7 < —A, then C(d,) = R.

(ii) If =\ <7 < A, then
A —
C(d,) = <—oo, > T) .

(iii) If X <7, then C(d,) is empty.
6.b. Using the results of Part a, we conclude the following: If 7 < —\, then

Pi(d,) = Pld(Y) = 1| = 0] = 0,

and
Pp(d,) =P[d,(Y)=1H=1]=0.
If A <7, then
Pe(dy) = P[d,(Y) = 1[H = 0] = 1,
and

Pp(d,) =P[d,(Y)=1H=1]=1.
If =\ <7 <A, then

Pp(d;) = Pld,(Y)=1/H = (]
A—T
2

= [ sty
1

R
_ e
/M 26 dy

2

1 s
= 5@*3 (1.25)

_ P{Yz \H:o]
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and

Pp(dy) = Pld)(Y)=1H =1]
A—T
2

= P[Yz

- .

= / 1e_‘y_)‘|dy. (1.26)
A=z 2

2

1]

_ h(y)dy

In computing this last integral, we note that

Therefore,

= 2—¢ 7, (1.27)

whence
1 A+T

PD(dn):l—ﬁe_ 2,

6.c. To compute the ROC curve, first we note that

{Pr(dy), 7 < =A} ={Pp(dy), 7 <—-A} ={0}

and
{Pr(d,), A< 71}={Pp(d,), N <7} ={1},
while
1 v e—/\ 1
{Pp(dy), - A<7<A}=9ze 27, A<7< A= |—,2
2 272
and

1 T 1
{PD(dTi)’ _)\§T<>\}:{1—§€>\; , —)\ST<>\}: (—,1——6/\} .

With Pr in [%, %) we solve the equation

1 s
56”2 =Pp, —A<T<A
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It has a unique solution 7(Pr) given by
7(Pr) = A + log(4PZ).

Note that
7(Pr) € [=A\,0)

by direct inspection (as expected). Therefore, with n = e~ 77) we find

1 _ A7 (PR)
2

PD<CZ77) = 1—56

1 2A+logap?)

— 1 _— = 2
26
- 11— le—A—log(QPF)
-2
(&
= 1-—. 1.28
1P, (1.28)

From the discussion it follows that the mapping I' is not defined on the entire interval
[0,1]. In fact, we have

0 if Pp =0
D(Pp) =14 1-5 if Pre 5 4)
1 if Pp = 1.

As always the ROC curve can be completed through linear interpolation achieved through
randomization.




