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5. Repeat Exercise 2 for the hypothesis pair

Hy : Y has density poly) = #e‘”’”.y eR
versiis
1/5, ify € [0,5)
0, ifye [0,5].

For part (a) assume priors mp = 3/4 and my = 1/4.

Hy : Y has density pi(y) = {

6. Repeat Exercise 2 for the hypothesis pair

Hy:Y=N-3s
yersus
Hy:Y=N+s

where s > 0 is a fixed real number and N is a continuous random
variable with density :

1
pn(n) AT neR.
7. (a) Consider the hypothesis pair
Hy:Y=N
Vorsus
H :VY=N+8

where N and 5 are independent random variaples each having
pdf

_Je® x>0
p(e) = { 0, T <0,
Find the likelihood ratio between Hyp and H;.

(b) Find the threshold and detection probability for o-level Neyman-
Pearson testing in (a).

{c)- Consider the hypothesis pair
HO:Yk =.Nk, k=1,...,n

versus

H:Yy =N, +5, k=1,...,n
where n > 1 and Ny,..., N, and § are independent random
variables each having the pdf given in (a). Find the likelihood

“ratio.

(d) Find the threshold for a-level Neyman-Pearson testipg in {c).
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8. Show that the minimum-Bayes-risk function V (defined in Sec-
tion IL.C) is concave and continuous in [0, 1]. [After showing that
V is concave you may use the fact that any concave function on [0,

—g?/2 R
li“?e ity € 1] is continuous on (0, 1))

1/5, if ye(0,8 9. Suppose we have a real observation ¥ and binary hypotheses de-
0, ify € [0, 8. . scribed by the following pair of pdf’s:
L | o _ [, i<
n = 1/4 | S po(y) = { g, iflyl>1
and

V—s piy) = { g?‘ Wi/4, iyl <2

if Jy} > 2

V43

N is a continuous random

. (a) Assume that the costs are given by

Cﬂl = 2010 > 0
Co = Cu = 0
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z20
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-1ty ranging from 0 to 1.
b) Find the power of the Neyman-Pearson decision rule as a func-

 etliam - “tion of the false-alarm probability and the parameter . Sketch
- ) - the receiver operating characteristics.
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Suppose the cost assignment is given by Cyp = Cy; = 0,Cj = 1,
and Cpy = N, Investigate the behavior of the Bayes rule and risk for
equally likely hypotheses and the minimax rule and risk when N is
very large. :

Consider a simple binary hypothesis testing problem. For a decision
rule 4, denote the false-alarm and miss probabilities by Pg(8) and
Py (6), respectively. Consider the performance measure:

p(8) £ (Pr(8)) + [Pu(8)]*:

and let 6, denote a decision rule minimizing p(§) over all randomized
decision rules 4.

(a) Show that 8, must be a likelihood-ratio test.
(b) ¥or mg € [0,1], define the function V by

V('J‘I‘g) = main [TI'QPF + (1 —WQ)PM] .

Suppose that V() achieves its maximum on [0,1] at the point
7o = 1/2. Show that &, is a Bayes rule for prior mp = 1/2.
[Hint: Note that we can write 2p(6) = [Pr(6) + Prp(8)]® +
[Pr(6) = Pu(8))* ]

Consider the following Bayes decision problem: The conditional den-
sity of the real observation ¥ given the real parameter © = @ is given
by ‘

fe~%, y>0

pely) = { 0, y < 0.

© is random variable with density

ae™®? §>0
w(6) = { 0, 8<0.

where a > 0. Find the Bayes rule and minimum Bayes risk for the

hypotheses

Hy: 0 € (0,020
Versus

H1 10 e Iﬂ, OO)éA]_
where 8 > 0 is fixed. Assume the cost structure

. 1, if6gA
C["(’]:{o: ifﬂzl\:. "
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14, Repeat Exercise 13 for the case in which Y consists of n inde-

pendent (conditioned on ©) and identically distributed observations
Y = V1,..., Y, each with the conditional density given in 13. You
need not find the Bayes risk in closed form.

. 15. Consider the composite hypothesis testing problem:

Hy : Y has density po(y) = 3¢ ¥, yeR

versus
Hy :Y has density pp(y) = $e1¥-%,y e R,0 > 0.

{a) Describe the locally most powerful a-level test and derive its
power function.

(b) Does a uniformly most powerful test exist? If so, find it and
derive its power function. If not, find the generalized likelihood
ratio test for Hy versus Hj,

16. In Section B, we formulated and solved the binary Bayesian hypothesis-
testing problem. Generalize thls formulation and solution to M hy-
potheses for M > 2.

17. Formulate the M-ary minimax hypothesis-testing problem. Show that
a Bayes equalizer rule (if one exists) is minimax.

18. How would you formulate a criterion analogous to the Neyman-
Pearson criterion for M hypotheses? Conjecture a solution.

19. Consider the following pair of hypotheses concerning a sequence
Y1,Y2,...,Y, of independent random variables

Hy: Y, NN(F‘O:U(z))p k=12...,n
VErsus

Hl:Yk ~N(p1,af), k=1,2,...,n

where g, 11,02, and o are known constants,

(a) Show that the iike}ihood ratio can be expressed as a function of
the parameters ig, fi1,0¢, and of, and the quantities Yope1 Y
and 35, Y.

(b) Descnbe the Neyman—Pearson test for the two cases (g =
p1,0¢ > 03) and (0§ = o, > o).

() Find the threshold and ROC's for the case pp = y,0} > o
withn = 1.

20. Consider the hypotheses of Exercise 198 with pgpl > pg = 0 and

A . .
a?=0¢ = o} > 0. Does there exist a uniformly most powerful” test-
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of these hypotheses under the assumption that u is known and o2 is
not? If so, find it and show that it is UMP. If not, show why and find
the generalized likelihood ratio test.

21. Suppose Y1,Ys,..., Y, is a sequence of random observations, each tak-
ing the values 0 and 1 with probabilities 1/2. Consider the following
two hypotheses concerning ¥7,Ys,...,%, :

Hy: 11,Ys,..., Y, are independent
Versus
3/4 if yp = Yk
Hy: 158y k-1 = : )
1 pu(uklyn voy e e Yk-1) { /4 i gy # bas
k=23...,n,

where p1(yely1, y2,. . ., Ye—1) denotes the conditional probability that
Yy = yg given that Y1, = y1,Ys = 19,...,Y_| = yx_1. Find the
Bayes decision rule for testing Hp versus H) under the assumption of
uniform costs and equal priors.




