ESTIMATION AND DETECTION THEORY

HOMEWORK # 6:

Please work out the **ten** (10) problems stated below – HVP refers to the text: H. Vincent Poor, An Introduction to Signal Detection and Estimation (Second Edition), Springer Texts in Electrical Engineering Springer, New York (NY), 2010. With this in mind, Exercise **II.2** (HVP) refers to Exercise 2 for Chapter II of HVP. Exercises are located at the end of each chapter.

Show work and explain reasoning.

1. _____

Solve Exercise **IV.1** (HVP).

2. ____

Solve Exercise IV.2 (HVP).

3. __

Solve Exercise **IV.3** (HVP).

4. _

Solve Exercise IV.4 (HVP).

5. _

With θ in (0,1), let F_{θ} be the probability distribution associated with the Binomial $Bin(m,\theta)$ for some positive integer $m \ge 1$. We are in the Bayesian framework, so that $Y \sim F_{\theta}$ is interpreted as

$$\mathbb{P}[Y = y | \vartheta = \theta] = \binom{m}{y} \theta^y (1 - \theta)^{m-y}, \quad \begin{array}{l} y = 0, \dots, m\\ \theta \in (0, 1). \end{array}$$

Show that the rv Y is uniformly distributed on $\{0, 1, ..., m\}$ when $\vartheta \sim \mathcal{U}(0, 1)$. [Hint: For y = 0, ..., m - 1, relate $\mathbb{P}[Y = y + 1]$ to $\mathbb{P}[Y = y]$ with the help of integration by parts!]

6. _____

With $\alpha < \beta$, write $\theta = (\alpha, \beta)$, and let F_{θ} denote the uniform distribution on the interval (α, β) . Determine whether the family $\{F_{\theta}, \theta \in \Theta\}$ is an exponential family (with respect to Lebesgue measure) when

$$\Theta = \left\{ \theta = (\alpha, \beta) \in [0, 1]^2 : \ \alpha < \beta \right\}.$$

ENEE 621/SPRING 2016

7. _

(Problem 6 continued) Is the family $\{F_{\theta}, \theta \in \Theta\}$ a complete family when

$$\Theta = \left\{ \theta = (\alpha, \beta) \in [0, 1]^2 : \alpha < \beta \right\}?$$

Explain.

8. ____

An N-valued rv is said to be a geometric rv with parameter ρ (in (0,1)) if its pmf $\mathbf{p}_{\rho} \equiv \{p_{\rho}(y), y = 0, 1, ...\}$ is given by

$$p_{\rho}(y) = (1 - \rho)\rho^y, \quad y = 0, 1, \dots$$

Is the family $\{\boldsymbol{p}_{\rho}, \ \rho \in (0,1)\}$ a complete family? Explain.

9. _

For some positive integer k, the observations Y_1, \ldots, Y_k are \mathbb{R} -valued rvs given by

$$Y_i = \theta X + V_i, \quad i = 1, \dots, k$$

where θ is a scalar, and the rvs X, V_1, \ldots, V_k are i.i.d. Gaussian rvs with mean zero and unit variance. Find the sufficient statistics of θ on the basis of Y_1, \ldots, Y_k .

10. ____

(Problem 9 continued) For each θ in \mathbb{R} , let F_{θ} denote the probability distribution of the observation vector $(Y_1, \ldots, Y_k)'$. Determine whether the family $\{F_{\theta}, \theta \in \mathbb{R}\}$ is an exponential family with respect to Lebesgue measure.