ESTIMATION AND DETECTION THEORY

HOMEWORK # 8:

Please work out the **ten** (10) problems stated below – HVP refers to the text: H. Vincent Poor, An Introduction to Signal Detection and Estimation (Second Edition), Springer Texts in Electrical Engineering Springer, New York (NY), 2010. With this in mind, Exercise **II.2** (HVP) refers to Exercise 2 for Chapter II of HVP. Exercises are located at the end of each chapter.

Show work and explain reasoning.

1. _____

Solve Exercise **IV.5** (HVP).

2. _

Assume the family $\{F_{\theta}, \theta \in \Theta\}$ to be an exponential family (with respect to some distribution function F on \mathbb{R}^k) with density functions of the form

$$f_{\theta}(\boldsymbol{y}) = C(\theta)q(\boldsymbol{y})e^{Q(\theta)'K(\boldsymbol{y})}$$
 F - a.e.

for every θ in Θ with Borel mappings $C : \Theta \to \mathbb{R}_+, Q : \Theta \to \mathbb{R}^q, q : \mathbb{R}^k \to \mathbb{R}_+$, and $K : \mathbb{R}^k \to \mathbb{R}^q$.

2.a Specialize Conditions (CR1)–(CR5) in terms (of properties) of the Borel mappings entering the definition of the exponential family. In particular, show that the regularity condition (CR5) is equivalent to

$$\left(\frac{\partial}{\partial \theta_i}Q(\theta)\right)' \mathbb{E}_{\theta}\left[K(\boldsymbol{Y})\right] = -\frac{\partial}{\partial \theta_i}\log C(\theta), \quad \begin{array}{l} \theta_i \in \Theta\\ i = 1, \dots, p. \end{array}$$

2.b Find an expression for the Fisher information matrix $M(\theta)$ in terms of the covariance $\operatorname{Cov}_{\theta}[K(\boldsymbol{Y})]$. **HINT:** Use Part **2.a** together with the fact that

$$\frac{\partial}{\partial \theta_i} \log f_{\theta}(\boldsymbol{y}) = \frac{\partial}{\partial \theta_i} \log C(\theta) + \frac{\partial}{\partial \theta_i} Q(\theta)' K(\boldsymbol{y}), \qquad \substack{i = 1, \dots, p \\ \boldsymbol{y} \in S}$$

2.c What are the conditions that need to hold for an estimator $g : \mathbb{R}^k \to \mathbb{R}^p$ to be a regular estimator?

3. ____

Solve Exercise IV.15 (HVP).

4. _____

Solve Exercise IV.21 Part (a) (HVP).

5. _

Solve Exercise **IV.22** (HVP).

6. _

In the context of the Cramèr-Rao bounds, with arbitrary p, consider the \mathbb{R}^p -valued rv $U(\theta, \mathbf{Y})$ given by

$$U(\theta, \mathbf{Y}) = g(\mathbf{Y}) - \theta - b_{\theta}(g) - (\mathbf{I}_{p} + \nabla_{\theta} b_{\theta}(g)) M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(\mathbf{Y}), \quad \theta \in \Theta.$$

Show that the rv $U(\theta, \mathbf{Y})$ has zero mean and that its covariance matrix is given by

$$Cov_{\theta}[U(\theta, \boldsymbol{Y})] = Cov_{\theta}[U(\theta, \boldsymbol{Y})]$$

= $\Sigma_{\theta}(g) - b_{\theta}(g)b_{\theta}(g)'$
 $- (\boldsymbol{I}_{p} + \nabla_{\theta}b_{\theta}(g)) M(\theta)^{-1} (\boldsymbol{I}_{p} + \nabla_{\theta}b_{\theta}(g))'.$ (1.1)

Use this fact to show that the Cramèr-Rao bound is equivalent to the statement that the covariance matrix $\operatorname{Cov}_{\theta}[U(\theta, \boldsymbol{Y})]$ is positive semi-definite. Explore what happens when the bound is achieved.

In the exercises that follow, a family of distributions $\{F_{\theta}, \theta \in \Theta\}$ is given. For each $n = 1, 2, \ldots,$ let $\{F_{\theta}^{(n)}, \theta \in \Theta\}$ denote the corresponding families associated with n i.i.d. samples. In each case, (i) compute the Fisher information matrices $M^{(n)}(\theta)$ for each θ in Θ ; (ii) find the efficient estimator for θ on the basis of the samples Y_1, \ldots, Y_n ; (iii) find the ML estimator of θ on the samples Y_1, \ldots, Y_n ; (iv) Are these estimators unbiased? asymptotically unbiased? consistent? asymptotically normal?

7. _

Here $\Theta = (0, \infty)$ and for each $\theta > 0$, F_{θ} is an exponential distribution with parameter θ , namely

$$F_{\theta}(y) = \left(1 - e^{-\theta y}\right)^+, \quad y \in \mathbb{R}.$$

8. ____

Here $\Theta = \mathbb{R}$ and for each $\theta > 0$, F_{θ} is the shifted Cauchy distribution whose probability density function is given by

$$f_{\theta}(y) = \frac{1}{\pi(1 + (y - \theta)^2)}, \quad y \in \mathbb{R}.$$

9. _____

10. _