ESTIMATION AND DETECTION THEORY

HOMEWORK \# 8:

Please work out the ten (10) problems stated below - HVP refers to the text: H. Vincent Poor, An Introduction to Signal Detection and Estimation (Second Edition), Springer Texts in Electrical Engineering Springer, New York (NY), 2010. With this in mind, Exercise II. 2 (HVP) refers to Exercise 2 for Chapter II of HVP. Exercises are located at the end of each chapter.

Show work and explain reasoning.
1.

Solve Exercise IV. 5 (HVP).
2.

Assume the family $\left\{F_{\theta}, \theta \in \Theta\right\}$ to be an exponential family (with respect to some distribution function F on \mathbb{R}^{k}) with density functions of the form

$$
f_{\theta}(\boldsymbol{y})=C(\theta) q(\boldsymbol{y}) e^{Q(\theta)^{\prime} K(\boldsymbol{y})} \quad F-\text { a.e. }
$$

for every θ in Θ with Borel mappings $C: \Theta \rightarrow \mathbb{R}_{+}, Q: \Theta \rightarrow \mathbb{R}^{q}, q: \mathbb{R}^{k} \rightarrow \mathbb{R}_{+}$, and $K: \mathbb{R}^{k} \rightarrow \mathbb{R}^{q}$.
2.a Specialize Conditions (CR1)-(CR5) in terms (of properties) of the Borel mappings entering the definition of the exponential family. In particular, show that the regularity condition (CR5) is equivalent to

$$
\left(\frac{\partial}{\partial \theta_{i}} Q(\theta)\right)^{\prime} \mathbb{E}_{\theta}[K(\boldsymbol{Y})]=-\frac{\partial}{\partial \theta_{i}} \log C(\theta), \quad \begin{gathered}
\\
i=1, \ldots, p
\end{gathered}
$$

2.b Find an expression for the Fisher information matrix $M(\theta)$ in terms of the covariance $\operatorname{Cov}_{\theta}[K(\boldsymbol{Y})]$. HINT: Use Part 2.a together with the fact that

$$
\frac{\partial}{\partial \theta_{i}} \log f_{\theta}(\boldsymbol{y})=\frac{\partial}{\partial \theta_{i}} \log C(\theta)+\frac{\partial}{\partial \theta_{i}} Q(\theta)^{\prime} K(\boldsymbol{y}), \quad i=1, \ldots, p
$$

2.c What are the conditions that need to hold for an estimator $g: \mathbb{R}^{k} \rightarrow \mathbb{R}^{p}$ to be a regular estimator?
3.

Solve Exercise IV. 15 (HVP).
4.

Solve Exercise IV. 21 Part (a) (HVP).
5.

Solve Exercise IV. 22 (HVP).
6.

In the context of the Cramèr-Rao bounds, with arbitrary p, consider the \mathbb{R}^{p}-valued rv $U(\theta, \boldsymbol{Y})$ given by

$$
U(\theta, \boldsymbol{Y})=g(\boldsymbol{Y})-\theta-b_{\theta}(g)-\left(\boldsymbol{I}_{p}+\nabla_{\theta} b_{\theta}(g)\right) M(\theta)^{-1} \nabla_{\theta} \log f_{\theta}(\boldsymbol{Y}), \quad \theta \in \Theta
$$

Show that the rv $U(\theta, \boldsymbol{Y})$ has zero mean and that its covariance matrix is given by

$$
\begin{align*}
\operatorname{Cov}_{\theta}[U(\theta, \boldsymbol{Y})]= & \operatorname{Cov}_{\theta}[U(\theta, \boldsymbol{Y})] \\
= & \Sigma_{\theta}(g)-b_{\theta}(g) b_{\theta}(g)^{\prime} \\
& -\left(\boldsymbol{I}_{p}+\nabla_{\theta} b_{\theta}(g)\right) M(\theta)^{-1}\left(\boldsymbol{I}_{p}+\nabla_{\theta} b_{\theta}(g)\right)^{\prime} . \tag{1.1}
\end{align*}
$$

Use this fact to show that the Cramèr-Rao bound is equivalent to the statement that the covariance matrix $\operatorname{Cov}_{\theta}[U(\theta, \boldsymbol{Y})]$ is positive semi-definite. Explore what happens when the bound is achieved.

In the exercises that follow, a family of distributions $\left\{F_{\theta}, \theta \in \Theta\right\}$ is given. For each $n=1,2, \ldots$, , let $\left\{F_{\theta}^{(n)}, \theta \in \Theta\right\}$ denote the corresponding families associated with n i.i.d. samples. In each case, (i) compute the Fisher information matrices $M^{(n)}(\theta)$ for each θ in Θ; (ii) find the efficient estimator for θ on the basis of the samples Y_{1}, \ldots, Y_{n}; (iii) find the ML estimator of θ on the samples Y_{1}, \ldots, Y_{n}; (iv) Are these estimators unbiased? asymptotically unbiased? consistent? asymptotically normal?
7.

Here $\Theta=(0, \infty)$ and for each $\theta>0, F_{\theta}$ is an exponential distribution with parameter θ, namely

$$
F_{\theta}(y)=\left(1-e^{-\theta y}\right)^{+}, \quad y \in \mathbb{R} .
$$

8.

Here $\Theta=\mathbb{R}$ and for each $\theta>0, F_{\theta}$ is the shifted Cauchy distribution whose probability density function is given by

$$
f_{\theta}(y)=\frac{1}{\pi\left(1+(y-\theta)^{2}\right)}, \quad y \in \mathbb{R}
$$

9. \qquad
10. \qquad
