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INFORMATION THEORY

CONVEXITY

Convex sets
A subsetK of Rd is said to beconvexif for any elementsx andy of K, and any
λ in ]0, 1], we have

λx+ (1− λ)y ∈ K, λ ∈ [0, 1]

It is a simple exercise to show the following by induction:

Lemma 0.1 A set K in Rd is convex if and only if for any integer p = 2, 3, . . .,
and any collection x1, . . . ,xp in K, we have

λ1x1 + . . .+ λpxp ∈ K

for arbitrary λ1, . . . , λp in [0, 1] such that

λ1 + . . .+ λp = 1.

We refer to the linear combinationλ1x1 + . . . + λpxp with x1, . . . ,xp in Rd

andλ1, . . . , λp in [0, 1] such that

λ1 + . . .+ λp = 1

as aconvexcombination.

Convex functions

Consider a convex setK in Rd. A functionϕ : K → R is said to beconvexif
for any elementsx andy of K, and anyλ in ]0, 1], we have

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y), λ ∈ [0, 1].

A functionϕ : K → R is said to beconcaveif −ϕ is a convex function.
It is also a simple exercise to show the following by induction:
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Lemma 0.2 Consider a convex set K in Rd. A function ϕ : K → R is convex if
and only if for any integer p = 2, 3, . . ., and any collection x1, . . . ,xp in K, we
have

ϕ(λ1x1 + . . .+ λpxp) ≤ λ1ϕ(x1) + . . .+ λpϕ(xp)

for arbitrary λ1, . . . , λp in [0, 1] such that

λ1 + . . .+ λp = 1.

Strictly convex functions
A functionϕ : K → R is said to bestrictly convexif it is convex and whenever
the equality

ϕ(λx+ (1− λ)y) = λϕ(x) + (1− λ)ϕ(y),
x,y ∈ K
λ ∈ (0, 1)

holds, we necessarily havex = y. As expected, a functionϕ : K → R is said to
bestrictly concaveif −ϕ is a strictly convex function.

Of great usefulness in many arguments is the following observation: Consider
a strictly convexϕ : K → R. Suppose that for somep = 2, 3, . . ., withx1, . . . ,xp
in K, we have the equality

ϕ(λ1x1 + . . .+ λpxp) = λ1ϕ(x1) + . . .+ λpϕ(xp)(1)

with λ1, . . . , λp in (0, 1) such that

λ1 + . . .+ λp = 1.

Under such circumstances, what can we say aboutx1, . . . ,xp? We shall show that
we must necessarily have

x1 = . . . = xp.(2)

If p = 2, since0 < λ1, λ2 < 1, by definition of strict convexity we automatically
have the conclusionx1 = x2. If p > 2, the matter is more involved. To proceed,
with any subsetI of {1, . . . , p} such that1 ≤ |I| < p we define

λI =
∑
i∈I

λi.

Under the foregoing assumptions we have0 < λI < 1, so that the definition

xI =
∑
i∈I

λi
λI
xi
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is well posed and yields an element ofK. We also note that

λIxI + λIcxIc = λ1x1 + . . .+ λpxp.

with
λI + λIc = 1.

Using the convexity ofϕ twice we get

ϕ(λ1x1 + . . .+ λpxp)

= ϕ(λIxI + λIcxIc)

≤ λIϕ(xI) + λIcϕ(xIc)

≤ λI

(∑
i∈I

λi
λI
ϕ(xi)

)
+ λIc

∑
j /∈I

λj
λIc

ϕ(xj)


= λ1ϕ(x1) + . . .+ λpϕ(xp).(3)

Moreover, convexity again gives

ϕ(xI) ≤
∑
i∈I

λi
λI
ϕ(xi)(4)

and

ϕ(xIc) ≤
∑
j /∈I

λj
λIc

ϕ(xj).(5)

However, because of (1) the inequalities leading to (3) must necessarily hold
as equalities, and this implies

ϕ(λIxI + λIcxIc) = λIϕ(xI) + λIcϕ(xIc),(6)

ϕ(xI) =
∑
i∈I

λi
λI
ϕ(xi)(7)

and

ϕ(xIc) =
∑
j /∈I

λj
λIc

ϕ(xj)(8)

as we make use of the fact that

0 < λI , λIc < 1.
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By strict convexity it follows from (6) that

xI = xIc .

With (7) and (8) as point of departure, in lieu of (1), we can repeat the arguments
above withI andIc, respectively, instead of{1, . . . , p}. Upon doing this as many
times as needed we can eventually conclude that

xi = xj,
i, j = 1, . . . , p
i 6= j

and this completes the proof of (2).

Kullback-Leibler distance
Consider a setX of finite cardinality. Withν andµ pmfs onX , define

D(ν||µ) =
∑

x
ν(x) log

(
ν(x)

µ(x)

)
with the conventions

0 log

(
0

0

)
= 0,

p log
(p

0

)
=∞ if p > 0

and

0 log

(
0

q

)
= 0 if q > 0

The proof of Theorem 2.6.3 revisited:Thus,

−D(ν||µ) = −
∑

x
ν(x) log

(
ν(x)

µ(x)

)
= −

∑
x: ν(x)>0

ν(x) log

(
ν(x)

µ(x)

)
=

∑
x: ν(x)>0

ν(x) log

(
µ(x)

ν(x)

)
≤ log

(∑
x: ν(x)>0

ν(x)
µ(x)

ν(x)

)
(9)

= log

(∑
x: ν(x)>0

µ(x)

)
≤ log 1 = 0(10)
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whence−D(ν||µ) ≤ 0, or equivalently,D(ν||µ) ≥ 0.
The equalityD(ν||µ) = 0 occurs if and only if equality occurs at both (9) and

(10). By the strict concavity oft → log t, equality occurs at (9) if and only terre
existsc > 0 such that

µ(x)

ν(x)
= c,

x ∈ X
ν(x) > 0

As a result, ∑
x: ν(x)>0

µ(x) = c
∑

x: ν(x)>0
ν(x) = c

since ∑
x: ν(x)>0

ν(x) =
∑

x
ν(x) = 1.

On the other hand, (10) occurs if and only if∑
x: ν(x)>0

µ(x) = 1

Consequently,c = 1 and ∑
x: ν(x)=0

µ(x) = 0,

whenceµ(x) = 0 if and only if ν(x) = 0. In sum,µ(x) = ν(x) for all x in X .


