ENEE 627
SPRING 2011
INFORMATION THEORY
CONVEXITY

Convex sets

A subset K of \mathbb{R}^{d} is said to be convex if for any elements \boldsymbol{x} and \boldsymbol{y} of K, and any λ in $] 0,1]$, we have

$$
\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y} \in K, \quad \lambda \in[0,1]
$$

It is a simple exercise to show the following by induction:
Lemma $0.1 A$ set K in \mathbb{R}^{d} is convex if and only if for any integer $p=2,3, \ldots$, and any collection $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$ in K, we have

$$
\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p} \in K
$$

for arbitrary $\lambda_{1}, \ldots, \lambda_{p}$ in $[0,1]$ such that

$$
\lambda_{1}+\ldots+\lambda_{p}=1
$$

We refer to the linear combination $\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p}$ with $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$ in \mathbb{R}^{d} and $\lambda_{1}, \ldots, \lambda_{p}$ in $[0,1]$ such that

$$
\lambda_{1}+\ldots+\lambda_{p}=1
$$

as a convex combination.

Convex functions

Consider a convex set K in \mathbb{R}^{d}. A function $\varphi: K \rightarrow \mathbb{R}$ is said to be convex if for any elements \boldsymbol{x} and \boldsymbol{y} of K, and any λ in $] 0,1$], we have

$$
\varphi(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda \varphi(\boldsymbol{x})+(1-\lambda) \varphi(\boldsymbol{y}), \quad \lambda \in[0,1] .
$$

A function $\varphi: K \rightarrow \mathbb{R}$ is said to be concave if $-\varphi$ is a convex function.
It is also a simple exercise to show the following by induction:

Lemma 0.2 Consider a convex set K in \mathbb{R}^{d}. A function $\varphi: K \rightarrow \mathbb{R}$ is convex if and only if for any integer $p=2,3, \ldots$, and any collection $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$ in K, we have

$$
\varphi\left(\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p}\right) \leq \lambda_{1} \varphi\left(\boldsymbol{x}_{1}\right)+\ldots+\lambda_{p} \varphi\left(\boldsymbol{x}_{p}\right)
$$

for arbitrary $\lambda_{1}, \ldots, \lambda_{p}$ in $[0,1]$ such that

$$
\lambda_{1}+\ldots+\lambda_{p}=1
$$

Strictly convex functions

A function $\varphi: K \rightarrow \mathbb{R}$ is said to be strictly convex if it is convex and whenever the equality

$$
\varphi(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y})=\lambda \varphi(\boldsymbol{x})+(1-\lambda) \varphi(\boldsymbol{y}), \quad \begin{array}{ll}
\boldsymbol{x}, \boldsymbol{y} \in K \\
\lambda \in(0,1)
\end{array}
$$

holds, we necessarily have $\boldsymbol{x}=\boldsymbol{y}$. As expected, a function $\varphi: K \rightarrow \mathbb{R}$ is said to be strictly concave if $-\varphi$ is a strictly convex function.

Of great usefulness in many arguments is the following observation: Consider a strictly convex $\varphi: K \rightarrow \mathbb{R}$. Suppose that for some $p=2,3, \ldots$, with $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$ in K, we have the equality

$$
\begin{equation*}
\varphi\left(\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p}\right)=\lambda_{1} \varphi\left(\boldsymbol{x}_{1}\right)+\ldots+\lambda_{p} \varphi\left(\boldsymbol{x}_{p}\right) \tag{1}
\end{equation*}
$$

with $\lambda_{1}, \ldots, \lambda_{p}$ in $(0,1)$ such that

$$
\lambda_{1}+\ldots+\lambda_{p}=1
$$

Under such circumstances, what can we say about $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$? We shall show that we must necessarily have

$$
\begin{equation*}
\boldsymbol{x}_{1}=\ldots=\boldsymbol{x}_{p} . \tag{2}
\end{equation*}
$$

If $p=2$, since $0<\lambda_{1}, \lambda_{2}<1$, by definition of strict convexity we automatically have the conclusion $\boldsymbol{x}_{1}=\boldsymbol{x}_{2}$. If $p>2$, the matter is more involved. To proceed, with any subset I of $\{1, \ldots, p\}$ such that $1 \leq|I|<p$ we define

$$
\lambda_{I}=\sum_{i \in I} \lambda_{i}
$$

Under the foregoing assumptions we have $0<\lambda_{I}<1$, so that the definition

$$
\boldsymbol{x}_{I}=\sum_{i \in I} \frac{\lambda_{i}}{\lambda_{I}} \boldsymbol{x}_{i}
$$

is well posed and yields an element of K. We also note that

$$
\lambda_{I} \boldsymbol{x}_{I}+\lambda_{I^{c}} \boldsymbol{x}_{I^{c}}=\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p} .
$$

with

$$
\lambda_{I}+\lambda_{I^{c}}=1
$$

Using the convexity of φ twice we get

$$
\begin{align*}
& \varphi\left(\lambda_{1} \boldsymbol{x}_{1}+\ldots+\lambda_{p} \boldsymbol{x}_{p}\right) \\
& \quad=\varphi\left(\lambda_{I} \boldsymbol{x}_{I}+\lambda_{I^{c}} \boldsymbol{x}_{I^{c}}\right) \\
& \quad \leq \lambda_{I} \varphi\left(\boldsymbol{x}_{I}\right)+\lambda_{I^{c}} \varphi\left(\boldsymbol{x}_{I^{c}}\right) \\
& \quad \leq \lambda_{I}\left(\sum_{i \in I} \frac{\lambda_{i}}{\lambda_{I}} \varphi\left(\boldsymbol{x}_{i}\right)\right)+\lambda_{I^{c}}\left(\sum_{j \notin I} \frac{\lambda_{j}}{\lambda_{I^{c}}} \varphi\left(\boldsymbol{x}_{j}\right)\right) \\
& \quad=\lambda_{1} \varphi\left(\boldsymbol{x}_{1}\right)+\ldots+\lambda_{p} \varphi\left(\boldsymbol{x}_{p}\right) . \tag{3}
\end{align*}
$$

Moreover, convexity again gives

$$
\begin{equation*}
\varphi\left(\boldsymbol{x}_{I}\right) \leq \sum_{i \in I} \frac{\lambda_{i}}{\lambda_{I}} \varphi\left(\boldsymbol{x}_{i}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi\left(\boldsymbol{x}_{I^{c}}\right) \leq \sum_{j \notin I} \frac{\lambda_{j}}{\lambda_{I^{c}}} \varphi\left(\boldsymbol{x}_{j}\right) . \tag{5}
\end{equation*}
$$

However, because of (1) the inequalities leading to (3) must necessarily hold as equalities, and this implies

$$
\begin{align*}
\varphi\left(\lambda_{I} \boldsymbol{x}_{I}+\lambda_{I^{c}} \boldsymbol{x}_{I^{c}}\right) & =\lambda_{I} \varphi\left(\boldsymbol{x}_{I}\right)+\lambda_{I^{c}} \varphi\left(\boldsymbol{x}_{I^{c}}\right), \tag{6}\\
\varphi\left(\boldsymbol{x}_{I}\right) & =\sum_{i \in I} \frac{\lambda_{i}}{\lambda_{I}} \varphi\left(\boldsymbol{x}_{i}\right) \tag{7}
\end{align*}
$$

and

$$
\begin{equation*}
\varphi\left(\boldsymbol{x}_{I^{c}}\right)=\sum_{j \notin I} \frac{\lambda_{j}}{\lambda_{I^{c}}} \varphi\left(\boldsymbol{x}_{j}\right) \tag{8}
\end{equation*}
$$

as we make use of the fact that

$$
0<\lambda_{I}, \lambda_{I^{c}}<1
$$

By strict convexity it follows from (6) that

$$
\boldsymbol{x}_{I}=\boldsymbol{x}_{I^{c}}
$$

With (7) and (8) as point of departure, in lieu of (1), we can repeat the arguments above with I and I^{c}, respectively, instead of $\{1, \ldots, p\}$. Upon doing this as many times as needed we can eventually conclude that

$$
\boldsymbol{x}_{i}=\boldsymbol{x}_{j}, \quad \begin{aligned}
& i, j=1, \ldots, p \\
& \\
& i \neq j
\end{aligned}
$$

and this completes the proof of (2).

Kullback-Leibler distance

Consider a set \mathcal{X} of finite cardinality. With $\boldsymbol{\nu}$ and $\boldsymbol{\mu} \mathrm{pmfs}$ on \mathcal{X}, define

$$
D(\boldsymbol{\nu} \| \boldsymbol{\mu})=\sum_{x} \nu(x) \log \left(\frac{\nu(x)}{\mu(x)}\right)
$$

with the conventions

$$
\begin{gathered}
0 \log \left(\frac{0}{0}\right)=0 \\
p \log \left(\frac{p}{0}\right)=\infty \quad \text { if } p>0
\end{gathered}
$$

and

$$
0 \log \left(\frac{0}{q}\right)=0 \quad \text { if } q>0
$$

The proof of Theorem 2.6 .3 revisited: Thus,

$$
\begin{aligned}
-D(\boldsymbol{\nu} \| \boldsymbol{\mu}) & =-\sum_{x} \nu(x) \log \left(\frac{\nu(x)}{\mu(x)}\right) \\
& =-\sum_{x: \nu(x)>0} \nu(x) \log \left(\frac{\nu(x)}{\mu(x)}\right) \\
& =\sum_{x: \nu(x)>0} \nu(x) \log \left(\frac{\mu(x)}{\nu(x)}\right) \\
& \leq \log \left(\sum_{x: \nu(x)>0} \nu(x) \frac{\mu(x)}{\nu(x)}\right) \\
& =\log \left(\sum_{x: \nu(x)>0} \mu(x)\right) \\
& \leq \log 1=0
\end{aligned}
$$

whence $-D(\boldsymbol{\nu} \| \boldsymbol{\mu}) \leq 0$, or equivalently, $D(\boldsymbol{\nu} \| \boldsymbol{\mu}) \geq 0$.
The equality $D(\boldsymbol{\nu} \| \boldsymbol{\mu})=0$ occurs if and only if equality occurs at both (9) and (10). By the strict concavity of $t \rightarrow \log t$, equality occurs at (9) if and only terre exists $c>0$ such that

$$
\frac{\mu(x)}{\nu(x)}=c, \quad x \in \mathcal{X}, \quad \nu(x)>0
$$

As a result,

$$
\sum_{x: \nu(x)>0} \mu(x)=c \sum_{x: \nu(x)>0} \nu(x)=c
$$

since

$$
\sum_{x: \nu(x)>0} \nu(x)=\sum_{x} \nu(x)=1 .
$$

On the other hand, (10) occurs if and only if

$$
\sum_{x: \nu(x)>0} \mu(x)=1
$$

Consequently, $c=1$ and

$$
\sum_{x: \nu(x)=0} \mu(x)=0,
$$

whence $\mu(x)=0$ if and only if $\nu(x)=0$. In sum, $\mu(x)=\nu(x)$ for all x in \mathcal{X}.

