ENEE 627
SPRING 2011
INFORMATION THEORY

DATA PROCESSING

Markov chains

Consider a collection of n rvs, say X_{1}, \ldots, X_{n}, defined on the same probability triple. For each $i=1, \ldots, n$, the rv X_{i} is \mathcal{X}_{i}-valued with \mathcal{X}_{i} a finite set. We shall write

$$
\mathcal{X}^{n}=\times_{i=1}^{n} \mathcal{X}_{i} .
$$

The rvs X_{1}, \ldots, X_{n} are said to form a Markov chain if the conditions

$$
\begin{align*}
& \mathbb{P}\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right] \\
& \quad=\mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-1} p_{k+1}\left(x_{k+1} \mid x_{k}\right), \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}^{n} \tag{1}
\end{align*}
$$

all hold where for each $k=1, \ldots, n-1$, we require

$$
\begin{gathered}
0 \leq p_{k+1}\left(x_{k+1} \mid x_{k}\right) \leq 1 \\
\sum_{x_{k+1} \in \mathcal{X}_{k+1}} p_{k+1}\left(x_{k+1} \mid x_{k}\right)=1
\end{gathered}
$$

The Markov chain property of the rvs X_{1}, \ldots, X_{n} is concisely represented through

$$
X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}
$$

Simple facts

Here are some simple facts concerning Markov chains as needed in the context of Information Theory.

Fact 0.1 If $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$, then for each $k=2, \ldots, n-1$, the rvs $\left\{X_{i}, i=1,2, \ldots, k-1\right\}$ and $\left\{X_{j}, j=k+1, k+2, \ldots, n\right\}$ are mutually independent given X_{k}.

The Markov property is inherited by taking subsets.
Fact 0.2 If $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$, then for any subset I of $\{1, \ldots, n\}$ with $|I| \geq 2$, the collection of rvs $\left\{X_{i}, i \in I\right\}$ is also a Markov chain, namely if $I=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1}<i_{2}<\ldots<i_{k}$ for some $k=2, \ldots, n$, then

$$
X_{i_{1}} \rightarrow X_{i_{2}} \rightarrow \ldots \rightarrow X_{i_{k}}
$$

Proof. Note that if $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$, then

$$
\begin{aligned}
\mathbb{P} & {\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}\right] } \\
& =\sum_{x_{n} \in \mathcal{X}_{n}} \mathbb{P}\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right] \\
& =\sum_{x_{n} \in \mathcal{X}_{n}} \mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-1} p_{k+1}\left(x_{k+1} \mid x_{k}\right) \\
& =\sum_{x_{n} \in \mathcal{X}_{n}} \mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-2} p_{k+1}\left(x_{k+1} \mid x_{k}\right) p_{n}\left(x_{n} \mid x_{n-1}\right) \\
& =\mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-2} p_{k+1}\left(x_{k+1} \mid x_{k}\right)\left(\sum_{x_{n} \in \mathcal{X}_{n}} p_{n}\left(x_{n} \mid x_{n-1}\right)\right) \\
& =\mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-2} p_{k+1}\left(x_{k+1} \mid x_{k}\right), \quad\left(x_{1}, \ldots, x_{n-1}\right) \in \mathcal{X}^{n-1}
\end{aligned}
$$

since

$$
\sum_{x_{n} \in \mathcal{X}_{n}} p_{n}\left(x_{n} \mid x_{n-1}\right), \quad x_{n-1} \in \mathcal{X}_{n-1}
$$

and it is now plain that $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1}$.
Similarly, if $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$, then

$$
\begin{aligned}
\mathbb{P} & {\left[X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}, X_{n}=x_{n}\right] } \\
& =\sum_{x_{1} \in \mathcal{X}_{1}} \mathbb{P}\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n-1}=x_{n-1}, X_{n}=x_{n}\right] \\
& =\sum_{x_{1} \in \mathcal{X}_{1}} \mathbb{P}\left[X_{1}=x_{1}\right] \prod_{k=1}^{n-1} p_{k+1}\left(x_{k+1} \mid x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{x_{1} \in \mathcal{X}_{1}} \mathbb{P}\left[X_{1}=x_{1}\right] p_{2}\left(x_{2} \mid x_{1}\right)\right) \prod_{k=1}^{n-1} p_{k+1}\left(x_{k+1} \mid x_{k}\right) \\
& =\mathbb{P}\left[X_{2}=x_{2}\right] \prod_{k=2}^{n-1} p_{k+1}\left(x_{k+1} \mid x_{k}\right), \quad\left(x_{2}, \ldots, x_{n}\right) \in \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{n}
\end{aligned}
$$

as we note that

$$
\mathbb{P}\left[X_{2}=x_{2}\right]=\sum_{x_{1} \in \mathcal{X}_{1}} \mathbb{P}\left[X_{1}=x_{1}\right] p_{2}\left(x_{2} \mid x_{1}\right)
$$

Just apply (1) and use the conditions

$$
\sum_{x_{k+1} \in \mathcal{X}_{k+1}} p_{k+1}\left(x_{k+1} \mid x_{k}\right)=1, \quad k=1, \ldots, n-1
$$

and we get $X_{2} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$.
Finally, assuming $n \geq 3$, pick $2 \leq \ell \leq n-1$. Similar arguments show that removing X_{ℓ} does not change the Markov property of the remaining rvs. Thus removing any one of the rvs does not change the Markov property. Iterating this operation k times with the rvs with index in I yields the result.

Reversing time does not change the Markov property.
Fact 0.3 If $X_{1} \rightarrow X_{2} \rightarrow \ldots \rightarrow X_{n-1} \rightarrow X_{n}$, then it is also the case that $X_{n} \rightarrow X_{n-1} \rightarrow \ldots \rightarrow X_{2} \rightarrow X_{1}$.

Proof. From (1) we note that

$$
\begin{align*}
& \mathbb{P}\left[X_{n}=y_{1}, X_{n-1}=y_{2}, \ldots, X_{1}=y_{n}\right] \\
& \quad=\mathbb{P}\left[X_{1}=y_{n}, X_{2}=y_{n-1}, \ldots, X_{n-1}=y_{2}, X_{n}=y_{1}\right] \\
& \quad=\mathbb{P}\left[X_{1}=y_{n}\right] \prod_{k=1}^{n-1} p_{k+1}\left(y_{k} \mid y_{k-1}\right), \quad\left(y_{n}, \ldots, y_{1}\right) \in \mathcal{X}^{n} \tag{4}
\end{align*}
$$

Data Processing Inequalities

We begin with the Data Processing Inequality in its standard form.

Lemma 0.1 For any Markov chain $X \rightarrow Y \rightarrow Z$, it is the case that

$$
\begin{equation*}
I(X ; Z) \leq I(X ; Y) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
I(X ; Z) \leq I(Z ; Y) \tag{6}
\end{equation*}
$$

Proof. By the chain rule for mutual informations applied to $I(X ;(Y, Z))$ twice, we find

$$
\begin{equation*}
I(X ;(Y, Z))=I(X ; Y)+I(X ; Z \mid Y) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
I(X ;(Y, Z))=I(X ; Z)+I(X ; Y \mid X) \tag{8}
\end{equation*}
$$

The Markov property $X \rightarrow Y \rightarrow Z$ implies that X and Z are conditionally independent given Y, whence $I(X ; Z \mid Y)=0$. Thus,

$$
\begin{equation*}
I(X ;(Y, Z))=I(X ; Y) \tag{9}
\end{equation*}
$$

and we conclude that

$$
\begin{equation*}
I(X ; Z)+I(X ; Y \mid X)=I(X ; Y) \tag{10}
\end{equation*}
$$

The desired conclusion (5) now follows since $I(X ; Y \mid X) \geq 0$.
By Fact 0.3 we note that $Z \rightarrow Y \rightarrow X$ since $X \rightarrow Y \rightarrow Z$, and applying (5) (this time with $X \leftarrow Z, Y \leftarrow Y$ and $Z \leftarrow X$) yields (6).

In the context of the Channel Coding Theorem, the following version of the Data Processing Inequality is needed.

Lemma 0.2 For any Markov chain $X \rightarrow U \rightarrow V \rightarrow Y$, we have

$$
\begin{equation*}
I(X ; Y) \leq I(U ; V) \tag{11}
\end{equation*}
$$

Proof. By Fact 0.2 the Markov property $X \rightarrow U \rightarrow V \rightarrow Y$ implies both

$$
\begin{equation*}
X \rightarrow V \rightarrow Y \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
X \rightarrow U \rightarrow V \tag{13}
\end{equation*}
$$

Applying Lemma 0.1 to (12) and (13) we get

$$
\begin{equation*}
I(X ; Y) \leq I(X ; V) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
I(X ; V) \leq I(U ; V) \tag{15}
\end{equation*}
$$

The conclusion (11) follows by combining (14) and (15).

The Markov property and the DMC

Consider the DMC with channel matrix $\boldsymbol{P}=(p(y \mid x), x \in \mathcal{X}, y \in \mathcal{Y})$. The message W to be sent is selected from a set of M distinct messages $\mathcal{M} \equiv$ $\{1,2, \ldots, M\}$ with M some positive integer. For each $n=1.2 \ldots$, consider the (M, n)-code $C_{n}=\left(f_{n}, g_{n}\right)$ with encoding function $f_{n}: \mathcal{M} \rightarrow \mathcal{X}^{n}$ and decoding function $g_{n}: \mathcal{Y}^{n} \rightarrow \mathcal{M}$.

The string of symbols \boldsymbol{X}^{n} to be sent over the channel is specified by

$$
\boldsymbol{X}^{n}=f_{n}(W)
$$

and upon receiving the string of symbols \boldsymbol{Y}^{n}, the estimate \widehat{W} is generated according to

$$
\widehat{W}=g_{n}\left(\boldsymbol{Y}^{n}\right)
$$

As usual the DMC assumption is encapsulated through

$$
\mathbb{P}\left[\boldsymbol{Y}^{n}=\boldsymbol{y}^{n} \mid \boldsymbol{X}^{n}=\boldsymbol{x}^{n}\right]=\prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right), \quad \boldsymbol{x}^{n} \in \mathcal{X}^{n}, \boldsymbol{y}^{n} \in \mathcal{Y}^{n} .
$$

Lemma 0.3 With the usual notation, for each $n=1,2, \ldots$, we have

$$
\begin{equation*}
W \rightarrow \boldsymbol{X}^{n} \rightarrow \boldsymbol{Y}^{n} \rightarrow \widehat{W} \tag{16}
\end{equation*}
$$

provided W is selected independently of the operation of the DMC.

Proof. Select w in $\mathcal{M}, \boldsymbol{x}^{n}$ in $\mathcal{X}^{n}, \boldsymbol{y}^{n}$ in \mathcal{Y}^{n} and v in \mathcal{M}. Note that

$$
\begin{aligned}
\mathbb{P} & {\left[W=w, \boldsymbol{X}^{n}=\boldsymbol{x}^{n}, \boldsymbol{Y}^{n}=\boldsymbol{y}^{n}, \widehat{W}=v\right] } \\
& =\mathbb{P}\left[W=w, \boldsymbol{X}^{n}=\boldsymbol{x}^{n}, \boldsymbol{Y}^{n}=\boldsymbol{y}^{n}, g_{n}\left(\boldsymbol{Y}^{n}\right)=v\right] \\
& =\mathbb{P}\left[W=w, \boldsymbol{X}^{n}=\boldsymbol{x}^{n}, \boldsymbol{Y}^{n}=\boldsymbol{y}^{n}, g_{n}\left(\boldsymbol{y}^{n}\right)=v\right] \\
& =\mathbb{P}\left[W=w, \boldsymbol{X}^{n}=\boldsymbol{x}^{n}, \boldsymbol{Y}^{n}=\boldsymbol{y}^{n}\right] \cdot \delta\left(g_{n}\left(\boldsymbol{y}^{n}\right), v\right) \\
& =\mathbb{P}\left[W=w, \boldsymbol{X}^{n}=\boldsymbol{x}^{n}\right] \cdot \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) \cdot \delta\left(g_{n}\left(\boldsymbol{y}^{n}\right), v\right) \\
& =\mathbb{P}\left[W=w, f_{n}(W)=\boldsymbol{x}^{n}\right] \cdot \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) \cdot \delta\left(g_{n}\left(\boldsymbol{y}^{n}\right), v\right) \\
& \mathbb{P}[W=w] \cdot \delta\left(f_{n}(w), \boldsymbol{x}^{n}\right) \cdot \prod_{k=1}^{n} p\left(y_{k} \mid x_{k}\right) \cdot \delta\left(g_{n}\left(\boldsymbol{y}^{n}\right), v\right) .
\end{aligned}
$$

Basic arguments in the converse of the CCT

The converse to the Channel Coding Theorem results from the following chain of arguments:

Assume W to be uniformly distributed over the message set \mathcal{M}, and independent of the operation of the DMC. Thus,

$$
\begin{aligned}
& \log _{2} M \\
& \quad=H(W) \\
& \quad=H(W \mid \widehat{W})+I(W ; \widehat{W}) \\
& \leq 1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+I(W ; \widehat{W}) \quad \text { (Fano's Inequality) } \\
& \leq 1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+I\left(\boldsymbol{X}^{n} ; \boldsymbol{Y}^{n}\right) \quad \text { (Data Processing) } \\
& \quad=1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+H\left(\boldsymbol{Y}^{n}\right)-H\left(\boldsymbol{Y}^{n} \mid \boldsymbol{X}^{n}\right) \\
& \quad=1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+H\left(\boldsymbol{Y}^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid \boldsymbol{X}^{n}, \boldsymbol{Y}^{i-1}\right)
\end{aligned}
$$

(Chain rule for conditional entropy)

$$
\begin{aligned}
& =1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+H\left(\boldsymbol{Y}^{n}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \quad \text { (DMC) } \\
& \leq 1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+\sum_{i=1}^{n} H\left(Y_{i}\right)-\sum_{i=1}^{n} H\left(Y_{i} \mid X_{i}\right) \\
& =1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+\sum_{i=1}^{n} I\left(X_{i} ; Y_{i}\right) \\
& \leq 1+\log _{2} M \cdot \mathbb{P}[\widehat{W} \neq W]+n C \quad \text { (Definition of channel capacity for the DMC) }
\end{aligned}
$$

In short,

$$
\begin{equation*}
\frac{\log _{2} M}{n} \leq \frac{1}{n}+\frac{\log _{2} M}{n} \cdot \mathbb{P}[\widehat{W} \neq W]+C \tag{18}
\end{equation*}
$$

