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DATA PROCESSING

Markov chains

Consider a collection ofn rvs, sayX1, . . . , Xn, defined on the same probabil-
ity triple. For eachi = 1, . . . , n, the rvXi is Xi-valued withXi a finite set. We
shall write

X n = ×ni=1Xi.

The rvsX1, . . . , Xn are said to form aMarkov chainif the conditions

P [X1 = x1, X2 = x2, . . . , Xn = xn]

= P [X1 = x1]
n−1∏
k=1

pk+1(xk+1|xk), (x1, . . . , xn) ∈ X n(1)

all hold where for eachk = 1, . . . , n− 1, we require

0 ≤ pk+1(xk+1|xk) ≤ 1∑
xk+1∈Xk+1

pk+1(xk+1|xk) = 1
, xk ∈ Xk, xk+1 ∈ Xk+1.

The Markov chain property of the rvsX1, . . . , Xn is concisely represented
through

X1 → X2 → . . .→ Xn−1 → Xn.

Simple facts
Here are some simple facts concerning Markov chains as needed in the context

of Information Theory.

Fact 0.1 If X1 → X2 → . . . → Xn−1 → Xn, then for each k = 2, . . . , n − 1,
the rvs {Xi, i = 1, 2, . . . , k− 1} and {Xj, j = k+ 1, k+ 2, . . . , n} are mutually
independent given Xk.
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The Markov property is inherited by taking subsets.

Fact 0.2 If X1 → X2 → . . .→ Xn−1 → Xn, then for any subset I of {1, . . . , n}
with |I| ≥ 2, the collection of rvs {Xi, i ∈ I} is also a Markov chain, namely if
I = {i1, . . . , ik} with i1 < i2 < . . . < ik for some k = 2, . . . , n, then

Xi1 → Xi2 → . . .→ Xik .

Proof. Note that ifX1 → X2 → . . .→ Xn−1 → Xn, then

P [X1 = x1, X2 = x2, . . . , Xn−1 = xn−1]

=
∑
xn∈Xn

P [X1 = x1, X2 = x2, . . . , Xn = xn]

=
∑
xn∈Xn

P [X1 = x1]
n−1∏
k=1

pk+1(xk+1|xk)

=
∑
xn∈Xn

P [X1 = x1]
n−2∏
k=1

pk+1(xk+1|xk)pn(xn|xn−1)

= P [X1 = x1]
n−2∏
k=1

pk+1(xk+1|xk)

( ∑
xn∈Xn

pn(xn|xn−1)

)

= P [X1 = x1]
n−2∏
k=1

pk+1(xk+1|xk), (x1, . . . , xn−1) ∈ X n−1(2)

since ∑
xn∈Xn

pn(xn|xn−1), xn−1 ∈ Xn−1,

and it is now plain thatX1 → X2 → . . .→ Xn−1.
Similarly, if X1 → X2 → . . .→ Xn−1 → Xn, then

P [X2 = x2, . . . , Xn−1 = xn−1, Xn = xn]

=
∑
x1∈X1

P [X1 = x1, X2 = x2, . . . , Xn−1 = xn−1, Xn = xn]

=
∑
x1∈X1

P [X1 = x1]
n−1∏
k=1

pk+1(xk+1|xk)
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=

(∑
x1∈X1

P [X1 = x1] p2(x2|x1)

)
n−1∏
k=1

pk+1(xk+1|xk)

= P [X2 = x2]
n−1∏
k=2

pk+1(xk+1|xk), (x2, . . . , xn) ∈ X2 × . . .×Xn(3)

as we note that

P [X2 = x2] =
∑
x1∈X1

P [X1 = x1] p2(x2|x1).

Just apply (1) and use the conditions∑
xk+1∈Xk+1

pk+1(xk+1|xk) = 1,
k = 1, . . . , n− 1

xk ∈ Xk

and we getX2 → X2 → . . .→ Xn−1 → Xn.
Finally, assumingn ≥ 3, pick 2 ≤ ` ≤ n − 1. Similar arguments show that

removingX` does not change the Markov property of the remaining rvs. Thus
removing any one of the rvs does not change the Markov property. Iterating this
operationk times with the rvs with index inI yields the result.

Reversing time does not change the Markov property.

Fact 0.3 If X1 → X2 → . . . → Xn−1 → Xn, then it is also the case that
Xn → Xn−1 → . . .→ X2 → X1.

Proof. From (1) we note that

P [Xn = y1, Xn−1 = y2, . . . , X1 = yn]

= P [X1 = yn, X2 = yn−1, . . . , Xn−1 = y2, Xn = y1]

= P [X1 = yn]
n−1∏
k=1

pk+1(yk|yk−1), (yn, . . . , y1) ∈ X n(4)

Data Processing Inequalities
We begin with the Data Processing Inequality in its standard form.
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Lemma 0.1 For any Markov chain X → Y → Z, it is the case that

I(X;Z) ≤ I(X;Y )(5)

and
I(X;Z) ≤ I(Z;Y ).(6)

Proof. By the chain rule for mutual informations applied toI(X; (Y, Z)) twice,
we find

I(X; (Y, Z)) = I(X;Y ) + I(X;Z|Y )(7)

and
I(X; (Y, Z)) = I(X;Z) + I(X;Y |X)(8)

The Markov propertyX → Y → Z implies thatX andZ are conditionally
independent givenY , whenceI(X;Z|Y ) = 0. Thus,

I(X; (Y, Z)) = I(X;Y )(9)

and we conclude that

I(X;Z) + I(X;Y |X) = I(X;Y ).(10)

The desired conclusion (5) now follows sinceI(X;Y |X) ≥ 0.
By Fact 0.3 we note thatZ → Y → X sinceX → Y → Z, and applying (5)

(this time withX ← Z, Y ← Y andZ ← X) yields (6).

In the context of the Channel Coding Theorem, the following version of the
Data Processing Inequality is needed.

Lemma 0.2 For any Markov chain X → U → V → Y , we have

I(X;Y ) ≤ I(U ;V ).(11)



c©2011 by Armand M. Makowski 5

Proof. By Fact 0.2 the Markov propertyX → U → V → Y implies both

X → V → Y(12)

and
X → U → V.(13)

Applying Lemma 0.1 to (12) and (13) we get

I(X;Y ) ≤ I(X;V )(14)

and
I(X;V ) ≤ I(U ;V ).(15)

The conclusion (11) follows by combining (14) and (15).

The Markov property and the DMC
Consider the DMC with channel matrixP = (p(y|x), x ∈ X , y ∈ Y). The

messageW to be sent is selected from a set ofM distinct messagesM ≡
{1, 2, . . . ,M} with M some positive integer. For eachn = 1.2. . . ., consider the
(M,n)-codeCn = (fn, gn) with encoding functionfn : M→ X n and decoding
functiongn : Yn →M.

The string of symbolsXn to be sent over the channel is specified by

Xn = fn(W ),

and upon receiving the string of symbolsY n, the estimatêW is generated accord-
ing to

Ŵ = gn(Y n).

As usual the DMC assumption is encapsulated through

P [Y n = yn|Xn = xn] =
n∏
k=1

p(yk|xk), xn ∈ X n,yn ∈ Yn.

Lemma 0.3 With the usual notation, for each n = 1, 2, . . ., we have

W →Xn → Y n → Ŵ(16)

provided W is selected independently of the operation of the DMC.
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Proof. Selectw inM, xn in X n, yn in Yn andv inM. Note that

P

[
W = w,Xn = xn,Y n = yn, Ŵ = v

]
= P [W = w,Xn = xn,Y n = yn, gn(Y n) = v]

= P [W = w,Xn = xn,Y n = yn, gn(yn) = v]

= P [W = w,Xn = xn,Y n = yn] · δ(gn(yn), v)

= P [W = w,Xn = xn] ·
n∏
k=1

p(yk|xk) · δ(gn(yn), v)

= P [W = w, fn(W ) = xn] ·
n∏
k=1

p(yk|xk) · δ(gn(yn), v)

= P [W = w] · δ(fn(w),xn) ·
n∏
k=1

p(yk|xk) · δ(gn(yn), v).(17)

Basic arguments in the converse of the CCT
The converse to the Channel Coding Theorem results from the following chain

of arguments:
AssumeW to be uniformly distributed over the message setM, and indepen-

dent of the operation of the DMC. Thus,

log2 M

= H(W )

= H(W |Ŵ ) + I(W ; Ŵ )

≤ 1 + log2 M · P
[
Ŵ 6= W

]
+ I(W ; Ŵ ) (Fano’s Inequality)

≤ 1 + log2 M · P
[
Ŵ 6= W

]
+ I(Xn;Y n) (Data Processing)

= 1 + log2 M · P
[
Ŵ 6= W

]
+H(Y n)−H(Y n|Xn)

= 1 + log2 M · P
[
Ŵ 6= W

]
+H(Y n)−

n∑
i=1

H(Yi|Xn,Y i−1)

(Chain rule for conditional entropy)
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= 1 + log2 M · P
[
Ŵ 6= W

]
+H(Y n)−

n∑
i=1

H(Yi|Xi) (DMC)

≤ 1 + log2 M · P
[
Ŵ 6= W

]
+

n∑
i=1

H(Yi)−
n∑
i=1

H(Yi|Xi)

= 1 + log2 M · P
[
Ŵ 6= W

]
+

n∑
i=1

I(Xi;Yi)

≤ 1 + log2 M · P
[
Ŵ 6= W

]
+ nC (Definition of channel capacity for the DMC)

In short,

log2 M

n
≤ 1

n
+

log2 M

n
· P
[
Ŵ 6= W

]
+ C(18)


