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ENTROPY RATES OF SOURCES

ThroughoutX is a finite set. Consider an information sourcce modeled by the
X -valued sequenceX = {Xn, n = 1, 2, . . .} defined on some probability triple
(Ω,F ,P). We shall write

pn(xn) = P [X1 = x1, . . . , Xn = xn]

for eachxn = (x1, . . . , xn) in X n. Thus,pn = (pn(xn, xn ∈ X n) is the pmf of
the random vectorXn = (X1, . . . , Xn).

Defining entropy rates

The entropy rateH(X) of the sequenceX = {Xn, n = 1, 2, . . .} is defined by

H(X) = lim
n→∞

H(X1, . . . , Xn)

n
(1)

providedthis limit exists. Note that this definition is well adapted for the statement
of the Source Coding Theorem.

As seen in class, this definition is well posed in many cases of interest, includ-
ing i.i.d. sequences, Markov chains and stationary sequences. For a stationary
sequence, it is possible to show that the convergence (1) is always guaranteed and
that it takes place monotonically with

H(X1, . . . , Xn, Xn+1)

n+ 1
≤ H(X1, . . . , Xn)

n
, n = 1, 2, . . .

This is an easy consequence of the chain rule for entropies and of properties of
Cesaro convergence with

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|X i−1), n = 1, 2, . . .
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Asymptotic Equipartition Property (AEP)
In many instances there exists anon-random constantH?(X) such that the

convergence

− 1

n
log2 pn(X1, . . . , Xn)

P→ nH
?(X)(2)

takes place. This convergence in probability amounts to

lim
n→∞

P

[∣∣∣∣− 1

n
log2 pn(X1, . . . , Xn)−H?(X)

∣∣∣∣ > ε

]
= 0.(3)

In particular, this is equivalent to the following: For everyε > 0 andδ > 0, there
exists a finite integern?(ε, δ) such that

P

[∣∣∣∣− 1

n
log2 pn(X1, . . . , Xn)−H?(X)

∣∣∣∣ > ε

]
≤ δ, n ≥ n?(ε, δ)(4)

This is often applied withδ = ε (in which case we writen?(ε) = n?(ε, ε)).
This convergence gives rise to the Asymptotic Equipartition Property (AEP)

to be stated shortly: Forε > 0, set

An(ε) ≡
{
xn ∈ X n :

∣∣∣∣− 1

n
log2 pn(x1, . . . , xn)−H?(X)

∣∣∣∣ > ε

}
,

for eachn = 1, 2, . . .. A sequencexn in An(ε) is said to be anε-weak typical
sequence of lengthn for the sourceX.

Lemma 0.1 Assume the convergence (2) to hold for some non-random constant
H?(X). Then, for every ε > 0, the following statements are true:

(i) The convergence

lim
n→∞

P [(X1, . . . , Xn) ∈ An(ε)] = 1(5)

holds;

(ii) The upper bound
|An(ε)| ≤ 2n(H?(X)+ε)(6)

holds for all n = 1, 2, . . .; and



c©2011 by Armand M. Makowski 3

(ii) The lower bound
(1− ε)2n(H?(X)−ε) ≤ |An(ε)|(7)

holds for all n = 1, 2, . . . sufficiently large.

The AEP (and its variants) are key for establishing the Channel Coding Theo-
rem.

H(X) vs.H?(X)

A natural question arising from these definitions is whetherH?(X) andH(X)
always coincide when both are well defined. While in general this is not so, the
following relationship holds.

Lemma 0.2 Assume H(X) and H?(X) to be well defined according to (1) and
(2), respectively. It is always the case that

H?(X) ≤ H(X).(8)

The existence of a possible relationship between the quantitiesH?(X) and
H(X) is already suggested by the following observation:. For eachn = 1, 2, . . .,
we have

E [− log2 pn(X1, . . . , Xn)]

= −
∑
xn∈Xn

log2 pn(xn) · pn(xn)

= H(X1, . . . , Xn)(9)

so that

E

[
− 1

n
log2 pn(X1, . . . , Xn)

]
=
H(X1, . . . , Xn)

n
.(10)

In view of (1) and (2), it is tempting to letn go to infinity in this last equality. Were
we able to exchangle limits and expectations, we would establish the equality
H?(X) = H(X). Unfortrunately additional conditions are needed in order to
achieve this interchange.

Proof. Recall that convergence in probability implies a.s. convergence along
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some subsequence. Thus, in view of the convergence (2) there exists a subse-
quencek → nk with limk→∞ nk =∞ such that

lim
k→∞

(
− 1

nk
log2 pnk(X1, . . . , Xnk)

)
= H?(X) a.s.(11)

Note that under this subsequence, the definition ofH(X) also implies via (1) that

H(X) = lim
k→∞

H(X1, . . . , Xnk)

nk
(12)

With these preliminaries in mind, consider the equality (10) along the subse-
quence used in (11). Fatou’s Lemma yields

E

[
lim inf
k→∞

(
− 1

nk
log2 pnk(X1, . . . , Xnk)

)]
≤ lim inf

k→∞
E

[
− 1

nk
log2 pnk(X1, . . . , Xnk)

]
(13)

by the non-negativity

− 1

n
log2 pn(X1, . . . , Xn) ≥ 0, n = 1, 2, . . .

Using (11) we conclude that

E

[
lim inf
k→∞

(
− 1

nk
log2 pnk(X1, . . . , Xnk)

)]
= E

[
lim
k→∞

(
− 1

nk
log2 pnk(X1, . . . , Xnk)

)]
= H?(X).(14)

On the other hand, it follows from (10) and (12) that

lim inf
k→∞

E

[
− 1

nk
log2 pnk(X1, . . . , Xnk)

]
= lim

k→∞
E

[
− 1

nk
log2 pnk(X1, . . . , Xnk)

]
= H(X).(15)

Combining (14) and (15) with (13) gives the desired conclusion (8).


