ENEE 627 SPRING 2011 INFORMATION THEORY

MARKOV CHAINS

Throughout, let \mathcal{X} denote a finite set, and refer to its elements as states, hence the terminology state space used sometimes to denote \mathcal{X} . A (square) matrix \mathbf{P} on \mathcal{X} is simply an $|\mathcal{X}| \times |\mathcal{X}|$ array of scalars, one for each ordered pair of states, namely

$$(p_{xy}, x, y \in \mathcal{X})$$
.

We shall write $P = (p_{xy})$ when no confusion arises.

Stochastic matrices __

Consider a matrix $P = (p_{xy})$ on \mathcal{X} . It is said to be a *stochastic* matrix if

$$0 \le p_{xy} \le 1, \quad x, y \in \mathcal{X}$$

and

$$\sum_{y \in \mathcal{X}} p_{xy} = 1, \quad x \in \mathcal{X}.$$

Thus, for each x in \mathcal{X} , the row

$$(p_{xy}, y \in \mathcal{X})$$

can be interpreted as a pmf p_x on \mathcal{X} .

Furthermore, the matrix P is said to *doubly stochastic* if it is a stochastic matrix such that

$$\sum_{x \in \mathcal{X}} p_{xy} = 1, \quad y \in \mathcal{X}.$$

Powers of P_

The powers \boldsymbol{P} are defined by

$$P^0 = I$$
, $P^{n+1} = PP^n = P^nP$, $n = 0, 1, ...$

with the identity matrix I on \mathcal{X} naturally defined by

$$\boldsymbol{I} = (\delta_{xy})$$
.

We shall use the notation

$$\mathbf{P}^n = (p_{xy}^{(n)}), \ n = 0, 1, \dots$$

These definitions are well posed as indicated by the following fact.

Fact 0.1 We have

$$\mathbf{P}\mathbf{P}^n = \mathbf{P}^n\mathbf{P}, \quad n = 0, 1, \dots$$

Proof. Easy by induction.

Fact 0.2 For every non-negative integers r, s, t = 0, 1, ..., it is always the case that

$$\mathbf{P}^{r+s+t} = \mathbf{P}^r \mathbf{P}^s \mathbf{P}^t$$

Proof. Elementary by associativity of the matrix product.

Fact 0.3 If P is a stochastic matrix, then each of the matrices $\{P^n, n = 0, 1, \ldots\}$ of P is also a stochastic matrix.

Proof. Easy by induction.

Irreducibility_____

The stochastic matrix P is said to be *irreducible* if for every pair of distinct states x and y in \mathcal{X} there exist positive integers n(x,y) and n(y,x) such that

$$p_{xy}^{(n(x,y))} > 0$$
 and $p_{yx}^{(n(y,x))} > 0$.

Period

For any non-empty subset $\{n_{\alpha}, \ \alpha \in A\}$ of \mathbb{N} , we denote its *greatest common denominator* by

g.c.d.
$$(n_{\alpha}, \ \alpha \in A)$$
.

For each state x in \mathcal{X} we define its *period* d(x) as the integer

(1)
$$d(x) = \text{g.c.d.} \left(n = 1, 2, \dots : p_{xx}^{(n)} > 0 \right)$$

with the convention $d(x) = \infty$ if the set $(n = 1, 2, \dots : p_{xx}^{(n)} > 0)$ is empty. The state x is said to be *periodic* if $d(x) \ge 2$ and *aperiodic* if d(x) = 1.

Theorem 0.1 An irreducible Markov chain P on \mathcal{X} has the property that either all its states are aperiodic or they are all periodic with the same period.

Proof. Pick two states x and y in \mathcal{X} . The chain P being irreducible, there exist positive integers n(x, y) and n(y, x) such that

$$p_{xy}^{(n(x,y))}>0\quad\text{and}\quad p_{yx}^{(n(y,x))}>0.$$

Therefore,

$$p_{yy}^{(n(y,x)+n(x,y))} = \sum_{z} p_{yz}^{(n(y,x))} p_{zy}^{(n(x,y))}$$

$$\geq p_{yx}^{(n(y,x))} p_{xy}^{(n(x,y))} > 0.$$

On the other hand, whenever

$$p_{xx}^{(t)} > 0$$

for some $t = 1, 2, \ldots$, then

$$p_{yy}^{(n(y,x)+t+n(x,y))} = \sum_{z} \sum_{v} p_{yz}^{(n(y,x))} p_{zv}^{(t)} p_{vy}^{(n(x,y))}$$

$$\geq p_{yx}^{(n(y,x))} p_{xx}^{(t)} p_{xy}^{(n(x,y))} > 0.$$

Therefore, d(y) divides both n(y,x)+n(x,y) and n(y,x)+t+n(x,y), hence d(y) divides t since n(y,x)+t+n(x,y)-(n(y,x)+n(x,y))=t. Thus, d(y) divides all the elements of the set $\Big(t=1,2,\ldots:\,p_{xx}^{(t)}>0\Big)$, so that, d(y) divides d(x) (which is defined as the g.c.d of this set). A similar argument shows that d(x) divides d(y), whence d(x)=d(y).

Markov chains

Consider a stochastic matrix P on \mathcal{X} . A collection of \mathcal{X} -valued rvs $\{X_n, n = 0, 1, \ldots\}$ (defined on some probability triple $(\Omega, \mathcal{F}, \mathbb{P})$) is said to be a (time-homogeneous) Markov chain with one-step transition probabilities P if

(4)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] = \mathbb{P}\left[X_0 = x_0\right] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}$$

for each $n = 1, 2, \ldots$ and all x_0, x_1, \ldots, x_n in \mathcal{X} . The following fact is key to many of the arguments involving Markov chains.

Theorem 0.2 Fix $k = 0, 1, \ldots$ Then for each $n = 1, 2, \ldots$, we have

(5)
$$\mathbb{P}\left[X_k = x_0, X_{k+1} = x_1, \dots, X_{k+n} = x_n\right] = \mathbb{P}\left[X_k = x_0\right] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}$$

with arbitrary x_0, x_1, \ldots, x_n in \mathcal{X} .

Proof. Fix k = 1, 2, ..., n = 1, 2, ... and states $x_0, x_1, ..., x_n$ in \mathcal{X} . For any collection of states $y_0, ..., y_{k-1}$ in \mathcal{X} , we have from (4) that

$$\mathbb{P}\left[X_0 = y_0, \dots, X_{k-1} = y_{k-1}, X_k = x_0, X_{k+1} = x_1, \dots, X_{k+n} = x_n\right]$$
(6)
$$= \mathbb{P}\left[X_0 = y_0\right] \cdot \prod_{j=0}^{k-2} p_{y_j y_{j+1}} \cdot p_{y_{k-1} x_0} \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}.$$

Therefore,

$$\mathbb{P}\left[X_{k} = x_{0}, X_{k+1} = x_{1}, \dots, X_{k+n} = x_{n}\right]$$

$$= \sum_{y_{0}, \dots, y_{k-1}} \mathbb{P}\left[X_{0} = y_{0}, \dots, X_{k-1} = y_{k-1}, X_{k} = x_{0}, X_{k+1} = x_{1}, \dots, X_{k+n} = x_{n}\right]$$

$$= \sum_{y_{0}, \dots, y_{k-1}} \mathbb{P}\left[X_{0} = y_{0}\right] \cdot \prod_{j=0}^{k-2} p_{y_{j}y_{j+1}} \cdot p_{y_{k-1}x_{0}} \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

$$= \left(\sum_{y_{0}, \dots, y_{k-1}} \mathbb{P}\left[X_{0} = y_{0}\right] \cdot \prod_{j=0}^{k-2} p_{y_{j}y_{j+1}} \cdot p_{y_{k-1}x_{0}}\right) \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

$$= \left(\sum_{y_{0}, \dots, y_{k-1}} \mathbb{P}\left[X_{0} = y_{0}, \dots, X_{k-1} = y_{k-1}, X_{k} = x_{0}\right]\right) \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

$$= \mathbb{P}\left[X_{k} = x_{0}\right] \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

as desired.

From (4), for all $x_0, x_1, \ldots, x_n, x_{n+1}$ in \mathcal{X} , we get both

(7)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] = \mathbb{P}\left[X_0 = x_0\right] \cdot \prod_{\ell=0}^{n-1} p_{x_\ell x_{\ell+1}}$$

and

(8)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n, X_{n+1} = x_{n+1}\right]$$
$$= \mathbb{P}\left[X_0 = x_0\right] \cdot \prod_{\ell=0}^n p_{x_\ell x_{\ell+1}},$$

whence

(9)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n, X_{n+1} = x_{n+1}\right] \\ = \mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] \cdot p_{x_n x_{n+1}}$$

upon direct comparison of (7) and (8).

Building upon these observations, if

(10)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] > 0,$$

it follows that

(11)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} | X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] = p_{x_n x_{n+1}},$$

suggesting the validity of the relation¹

(12)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} | X_n = x_n\right] = p_{x_n x_{n+1}}.$$

To see that this is indeed the case, we argue as follows: By Theorem 0.2 we get

(13)
$$\mathbb{P}\left[X_n = x_n, X_{n+1} = x_{n+1}\right] = \mathbb{P}\left[X_n = x_n\right] p_{x_n x_{n+1}}.$$

Under (10) we necessarily have

¹See discussion below.

and the standard definition

(15)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} | X_n = x_n\right] = \frac{\mathbb{P}\left[X_n = x_n, X_{n+1} = x_{n+1}\right]}{\mathbb{P}\left[X_n = x_n\right]}$$

applies. The desired conclusion (12) now follows from (13).

Alternate definition of Markov chains

In most textbooks Markov chains are given a different definition which we now present: A collection of \mathcal{X} -valued rvs $\{X_n, n = 0, 1, \ldots\}$ (defined on some probability triple $(\Omega, \mathcal{F}, \mathbb{P})$) is said to be a (time-homogeneous) Markov chain with one-step transition probabilities P if

(16)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} | X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right]$$
$$= \mathbb{P}\left[X_{n+1} = x_{n+1} | X_n = x_n\right]$$

for all $x_0, x_1, \ldots, x_n, x_{n+1}$ in \mathcal{X} , with

(17)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} | X_n = x_n\right] = p_{x_n x_{n+1}}.$$

The difficulty with this definition is that the conditional probabilities involved in (16) are well defined only when

(18)
$$\mathbb{P}\left[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] > 0$$

and

Obviously, (18) implies (19) but the converse is not true, possibly creating ambiguities with the definitions being inconsistent with each other.²

A possible solution to this difficulty is to read (16)-(17) as stating instead that

(20)
$$\mathbb{P}\left[X_{n+1} = x_{n+1} \middle| X_0 = x_0, X_1 = x_1, \dots, X_n = x_n\right] = p_{x_n x_{n+1}}$$

with the understanding that if

$$\mathbb{P}[X_0 = x_0, X_1 = x_1, \dots, X_n = x_n] = 0,$$

then the right handside of (20) is taken to be the definition of the conditional probability that $X_{n+1} = x_{n+1}$ given that $X_0 = x_0, X_1 = x_1, \dots, X_n = x_n$. With this definition it is easy to check that both (4) and (12) hold.

²Recall that the conditional probability $\mathbb{P}[A|B]$ is not uniquely defined when $\mathbb{P}[B]=0$ with each other.

Stationary Markov chains

Consider the (time-homogeneous) Markov chain $\{X_n, n = 0, 1, ...\}$ with one-step transition probabilities P. We write

$$\pi_n(x) = \mathbb{P}[X_n = x], \quad x \in \mathcal{X}$$

 $n = 0, 1, \dots$

and organize these probabilities into a row vector

$$\boldsymbol{\pi}_n = (\pi_n(x), \ x \in \mathcal{X}).$$

Using the law of total probabilities we get

$$\pi_{n+1}(x) = \sum_{y} \pi_n(y) p_{yx}, \quad x \in \mathcal{X}$$

$$n = 0, 1, \dots$$

or in vector notation

(21)
$$\pi_{n+1} = \pi_n P, \quad n = 0, 1, \dots$$

Theorem 0.3 Let μ denote the pmf of the initial condition X_0 . Then, the (time-homogeneous) Markov chain $\{X_n, n = 0, 1, \ldots\}$ with one-step transition probabilities P is stationary if and only if

$$\mu P = \mu.$$

Any pmf on \mathcal{X} which satisfies (22) is called a *stationary* pmf for P.

Proof. First, assume that the Markov chain $\{X_n, n=0,1,\ldots\}$ is stationary. This implies that for each $n=0,1,\ldots$, the rv X_n has the same distribution as X_0 , i.e., $\pi_n=\mu$. Substituting this information into (21) yields (22).

Conversely, assume that the initial state X_0 is distributed according to a pmf μ which satisfies the fixed -point equation (22). Using this fact in conjunction with (21) we get that

$$\boldsymbol{\pi}_1 = \boldsymbol{\pi}_0 \boldsymbol{P} = \boldsymbol{\mu} \boldsymbol{P} = \boldsymbol{\mu}$$

so that $\pi_0 = \mu$. Iterating we conclude that

$$\pi_n = \mu, \quad n = 0, 1, \dots$$

Fix k = 0, 1, ... and n = 1, 2, ... With arbitrary $x_0, x_1, ..., x_n$ in \mathcal{X} , Theorem 0.2 states that

$$\mathbb{P}\left[X_{k} = x_{0}, X_{k+1} = x_{1}, \dots, X_{k+n} = x_{n}\right]$$

$$= \mathbb{P}\left[X_{k} = x_{0}\right] \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

$$= \mathbb{P}\left[X_{0} = x_{0}\right] \cdot \prod_{\ell=0}^{n-1} p_{x_{\ell}x_{\ell+1}}$$

$$= \mathbb{P}\left[X_{0} = x_{0}, X_{1} = x_{1}, \dots, X_{n} = x_{n}\right].$$
(23)

This establishes the stationarity of the Markov chain.

Existence and uniqueness of stationary pmfs.

The stationary pmf is *not* unquie if P is *not* irreducible: For instance, with $\mathcal{X} = \{0, 1\}$ and P = I, every pmf on \mathcal{X} is a stationary pmf.

More generally, partition \mathcal{X} into two non-empty subsets \mathcal{X}_1 and \mathcal{X}_2 so that $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$. Assume the stochastic matrix \mathbf{P} on \mathcal{X} to be of the form

(24)
$$P = \begin{pmatrix} P_1 & O_{12} \\ O_{21} & P_2 \end{pmatrix}$$

with P_1 and P_2 stochastic matrices on \mathcal{X}_1 and \mathcal{X}_2 , respectively. Here O_{11} and O_{21} are matrices with all zero entries of the appropriate dimensions. Assume now that μ_1 and μ_2 are stationary pmfs for P_1 and P_2 , respectively. For each λ in (0,1), the pmf μ_{λ} on \mathcal{X} defined by

$$\boldsymbol{\mu}_{\lambda} = (\lambda \boldsymbol{\mu}_1, (1 - \lambda) \boldsymbol{\mu}_2)$$

is stationary pmf for P.

Limit theorems for Markov chains _

Several limit results are available under certain conditions. The strongest such results guarantee the convergence

(25)
$$\lim_{n \to \infty} \pi_n(x) = \pi(x), \quad x \in \mathcal{X}$$

for some pmf π on \mathcal{X} , or in vector notation

$$\lim_{n\to\infty} \boldsymbol{\pi_n} = \boldsymbol{\pi}.$$

Sometimes it is only possible to show that

(27)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \pi_k(x) = \pi(x), \quad x \in \mathcal{X}$$

for some pmf π on \mathcal{X} , or in vector notation

(28)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \pi_k = \pi.$$

Obviously (25)-(26) implies (27)-(28) since usual convergence implies Cesaro convergence.

Before giving conditions for either (25)-(26) or (27)-(28) to hold, we make a couple of comments as to the identify of the limit pmf π appearing there.

If (25)-(26) takes place, then letting n go to infinity in (21) we conclude that

$$\lim_{n \to \infty} \boldsymbol{\pi}_{n+1} = \lim_{n \to \infty} (\boldsymbol{\pi}_n \boldsymbol{P})$$
 $= \left(\lim_{n \to \infty} \boldsymbol{\pi}_n\right) \boldsymbol{P}$

(29)

since finite summation permute with limits. Thus, in the limit

$$\pi = \pi P$$

and π is necessarily a stationary pmf for P.

In a similar vein, for each n = 1, 2, ..., we find

(31)
$$\frac{1}{n+1} \sum_{k=0}^{n} \boldsymbol{\pi}_{k}$$

$$\frac{1}{n+1} \left(\boldsymbol{\pi}_{0} + \sum_{k=1}^{n} \boldsymbol{\pi}_{k-1} \boldsymbol{P} \right)$$

$$= \frac{1}{n+1} \boldsymbol{\pi}_{0} + \frac{n}{n+1} \cdot \left(\frac{1}{n} \sum_{k=1}^{n} \boldsymbol{\pi}_{k-1} \right) \boldsymbol{P}.$$

Letting n go to infinity and assuming that (27)-(28) holds, we readily conclude that the limit π in (27)-(28) again satisfies (30), and π is necessarily a stationary pmf for P.

The case

$$\boldsymbol{P} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

with $\mathcal{X} = \{0, 1\}$ is quite instructive. Obviously \boldsymbol{P} is irreducible and periodic with all states having period two. It is also easy to see that for any pmf $\boldsymbol{\pi}$ on the initial state X_0 , we have

$$\mathbb{P}\left[X_n=1\right] = \left\{ \begin{array}{ll} \mathbb{P}\left[X_0=1\right] = \pi(1) & \text{if } n \text{ odd} \\ \\ \mathbb{P}\left[X_0=0\right] = 1 - \pi(1) & \text{if } n \text{ even} \end{array} \right.$$

It is now plain that (25)-(26) does not hold unless $\pi(1) = \pi(0) = \frac{1}{2}$, i.e., the uniform pmf on \mathcal{X} . Observe also that (27)-(28) always holds in this case with π uniform on \mathcal{X} . Thus, irreducibility is not sufficient by itself to ensure (25)-(26). Failure to have convegence can be traced to peridicity.

Theorem 0.4 If the Markov chain is irreducible and aperiodic, then there exists a unique stationary pmf μ for P and (25)-(26) always holds with limit μ .

Theorem 0.5 If the Markov chain is irreducible (and possibly periodic), then there exists a unique stationary pmf μ for P and (27)-(28) always holds with limit μ .

Consider the case

(32)
$$P = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix} \text{ with } 0 \le a, b \le 1$$

The cases a=b=1 and a=b=0 have already been discussed. It is straightforward to check that (22) takes the form

$$\mu(0) = a\mu(0) + (1-b)\mu(1)$$

$$\mu(1) = (1-a)\mu(0) + b\mu(1)$$

(33)

This reduces to

$$(1-a)\mu(0) = (1-b)\mu(1)$$

and the constraint $\mu(0)+\mu(1)=1$ yields

$$\mu(0) = \frac{1-a}{2-(a+b)}$$
 and $\mu(1) = \frac{1-b}{2-(a+b)}$

provided a+b<2, in which case (22) has a unique solution! The case a+b=2 is equivalent to a=b=1, for which there are infinitely solutions as we have seen earlier.