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Throughout, letY’ denote a finite set, and refer to its elements as states, hence
the terminology state space used sometimes to dekioté (square) matrixP
on X is simply an|X| x |X| array of scalars, one for each ordered pair of states,
namely
(Pay, x,y € X).

We shall writeP = (p,,,) when no confusion arises.

Stochastic matrices
Consider a matrif? = (p,,) on X Itis said to be &tochastianatrix if

0<py <1 =x,yecX

and
Zyepry =1, zedi.

Thus, for eachr in X, the row

(Pay, y € X)

can be interpreted as a pmf on X.
Furthermore, the matri¥? is said todoubly stochastidf it is a stochastic

matrix such that
ZxEpry - 17 Y < A

Powers of P
The powersP are defined by

P'=1, P""'=PP"=P'P, n=0,1,...
with the identity matrixI on X’ naturally defined by
I = (04y)-
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We shall use the notation
P" = (10(”))7 n=20,1,...

Ty

These definitions are well posed as indicated by the following fact.

Fact 0.1 We have

PP"=P"'P, n=0,1,...
Proof. Easy by induction. [ |
Fact 0.2 For every non-negative integers r,s,t = 0,1,.. ., it is always the case
that
Pr+s+t — PTPSPt.
Proof. Elementary by associativity of the matrix product. [ |

Fact 0.3 If P is a stochastic matrix, then each of the matrices {P", n =0,1,...}
of P is also a stochastic matrix.

Proof. Easy by induction. [ |

Irreducibility

The stochastic matriyP is said to barreducibleif for every pair of distinct
statesr andy in X there exist positive integergx, y) andn(y, x) such that

prEd) >0 and plr) > o,

Period
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For any non-empty subsét,,, o € A} of N, we denote itgreatest common
denominatotby
g.c.d.(n,, a € A).

For each state in X we define itperiodd(x) as the integer
(1) d(z) = g.C.d.(n =1,2,...:pl" > O)

T

with the conventioni(z) = ~ if the set(n = 1,2,... : pg(c’;) > 0) is empty. The
stater is said to beperiodicif d(x) > 2 andaperiodicif d(z) = 1.

Theorem 0.1 An irreducible Markov chain P on X has the property that either
all its states are aperiodic or they are all periodic with the same period.

Proof. Pick two states andy in X'. The chainP being irreducible, there exist
positive integers.(x, y) andn(y, x) such that

pnev) >0 and plnv®) > 0.

Therefore,
pz(,lz(y,x)m(a:,y)) _ Zzpév;(y,x))pgz(x,y))
(2) > pz(;(yw))pg(ay)) > 0.
On the other hand, whenever
plf) >0
forsomet = 1,2, ..., then
pl(/z(y,x)thJrn(:c,y)) _ Zszpz(lz(y,x))pgl;)pgz(x,y))
3) > plrea)ppnEy) 5 g,

Therefored(y) divides bothn(y, z) +n(z,y) andn(y, ) +t+n(z,y), hence
d(y) dividest sincen(y,z) + t + n(z,y) — (n(y,x) + n(z,y)) = t. Thus,d(y)

divides all the elements of the sét =1,2,...: pffﬁ > 0), so thatd(y) divides

d(x) (which is defined as the g.c.d of this set). A similar argument shows that
d(x) dividesd(y), whenced(z) = d(y). [
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Markov chains
Consider a stochastic matri® on X. A collection of X'-valued rvs{X,,, n =
0,1,...} (defined on some probability tripl&?, F,P)) is said to be a (time-
homogeneous) Markov chain with one-step transition probabilfiéfs

n—1
(4) P [XO = Io,Xl = T1,... 7Xn = l‘n] = ]P)[XO = I’O] . Hp$[$[+1

=0
for eachn = 1,2,... and allzy, z1,...,z, in X. The following fact is key to
many of the arguments involving Markov chains.

Theorem 0.2 Fix k = 0,1, .... Then foreachn = 1,2, ..., we have
n—1

B) P[Xy =0, Xpp1 = 21, ., Xiyn = 2] = P[Xp, = z0] - [ [ Prsases
=0

with arbitrary xo, z1,...,x, In X.

Proof. Fixk =1,2,...,n = 1,2,... and statesq, z1,...,x, iIn X'. For any
collection of stategy, ..., y,_1 In X, we have from (4) that

P[Xo =90y, Xk—1 = Yk—1, X = To, Xpt1 = T1, .- ., X = T

k—2 n—1
(6) = F [XO - yo] ' prjyjH * Pyp—120 prgmg+l'
J=0 =0
Therefore,
]P)[Xk = x07Xk+1 = T1,... 7Xk?+n = Qj'n]
- Z P[Xo =90, -, Xkc1 = Yk—1, X = To, Xpt1 = T1, . . ., Xppn = T
Yo,-- Yk—1
k=2 n—1
- Zyo Yk 1P [XO - yo] ' prjy.7'+1 *Pyp_1z0 Hpmgmg_;rl
77777 : J=0 0=0

k—2

n—1
= <Zy0 " 1P [XO = yO] : prjyj+l : pyk—ﬂfo) ’ le’eﬂ»‘eﬂ
""" - §=0 £=0
- (..
n—1

=P [Xk = xO] ) Hpﬂfzxeﬂ

=0

n—1
P [XO = Yo, -- >Xk71 = Yk—1, Xk = $0]> : prmﬂ
{=0

k—1
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as desired. m
From (4), for allzg, x4, ..., x,, 2,1 In X, we get both
n—1
(7) P [XO = ﬂfo,Xl =T1,. .. aXn = -Tn] =P [XO = .730] : Hpachg_H
=0
and

IED[XO = xo,Xl = xl,...,Xn = .ﬁEn,Xn+1 = Tn+1

(8) - IP) [XO - xo} : le‘gﬂ?[+1>
=0

whence

P [Xo =20, X1 =21, ., Xy = Ty, Xppy1 = $n+1]
(9) = P[onxoaXl:Ilg---an:xn]'pxnanrl

upon direct comparison of (7) and (8).
Building upon these observations, if

(10) P[Xy =0, X1 =21,..., X,y = 2,] >0,

it follows that

(11) P X1 = Tpg1|Xo = 20, X1 =21, ..., Xoo = T0) = Pavarnyr s
suggesting the validity of the relatibn

(12) P[Xpt1 = 2nt1|Xn = Tn] = Prnznis-

To see that this is indeed the case, we argue as follows: By Theorem 0.2 we
get
(13) P [Xn = Tn, Xn—H = xn—H] =P [Xn = 'Tn] Prpaniq-

Under (10) we necessarily have

(14) P[X, = z,] > 0,

1See discussion below.
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and the standard definition

P [Xn = Tn, Xn+1 - $n+1]

(15) P[Xnt1 = 2o | X = 2] = P[X, = z,]

applies. The desired conclusion (12) now follows from (13).

Alternate definition of Markov chains
In most textbooks Markov chains are given a different definition which we now
present: A collection oft-valued rvs{X,, n = 0,1,...} (defined on some
probability triple (2, F,P)) is said to be a (time-homogeneous) Markov chain
with one-step transition probabilitieB if

IP) [Xn—l—l = C(Zn+1|X0 = l’o,Xl = T1,... 7Xn = In]

(16) = P[Xop1 = 21| X0 = 7,
forall xg, x1,..., 2., xo1 IN X, With
(17) P [Xn+1 - xn+1’Xn = xn] = pxnxn+1-

The difficulty with this definition is that the conditional probabilities involved
in (16) are well defined only when

(18) P[onxo,Xlle,...,Xn::En]>O
and
(19) P[X, =2,] >0

Obviously, (18) implies (19) but the converse is not true, possibly creating ambi-
guities with the definitions being inconsistent with each other.
A possible solution to this difficulty is to read (16)-(17) as stating instead that

(20) I[D [Xn+1 = anrl’XO = T, Xl =T1,y... 7Xn = CEn] = pxn$n+1
with the understanding that if
IP)[XO :.To,Xl :.Z'l,...,Xn :l'n] :O,

then the right handside of (20) is taken to be the definition of the conditional
probability thatX,,.; = =, given thatX, = xq, X1 = z1,..., X, = z,. With
this definition it is easy to check that both (4) and (12) hold.

2Recall that the conditional probabili§[A|B] is not uniquely defined whel [B] = 0 with
each other.




©2011 by Armand M. Makowski 7

Stationary Markov chains

Consider the (time-homogeneous) Markov chaip, » = 0,1, ...} with one-
step transition probabilitie®. We write

and organize these probabilities into a row vector
7, = (m(x), x € X).
Using the law of total probabilities we get

reX
Toii(#) =D mn(WPus ) Z o)

or in vector notation
(21) T =7, P, n=0,1,...

Theorem 0.3 Let p denote the pmf of the initial condition X,. Then, the (time-
homogeneous) Markov chain{ X,,, n = 0,1, ...} with one-step transition proba-
bilities P is stationary if and only if

(22) pP = p.

Any pmf on X’ which satisfies (22) is calledsaationarypmf for P.

Proof. First, assume that the Markov ch&iXi,,, » = 0,1,...} is stationary. This
implies that for eaclh = 0, 1, .. ., the rv.X,, has the same distribution 3§, i.e.,
7, = . Substituting this information into (21) yields (22).

Conversely, assume that the initial staigis distributed according to a prpf
which satisfies the fixed -point equation (22). Using this fact in conjunction with
(21) we get that

m =1 P =uP =pu

so thatry = u. Iterating we conclude that

T, =, n=01 ...
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Fixk =0,1,...andn = 1,2,.... With arbitraryzg, x4, ..., z, In X, Theo-
rem 0.2 states that

P [Xk = 20, Xp41 = T1,- -+, Xppn = Ty
n—1
=P [Xk - IO] : Hpa:gazg+1
=0
n—1
=P [XO = ‘TO] ) prﬂu-l
=0
(23) = P[X():J](),Xl:l’l,..an:In}.
This establishes the stationarity of the Markov chain. [ |

Existence and uniqueness of stationary pmfs

The stationary pmf i:mot ungiue if P is notirreducible: For instance, with
X ={0,1} andP = I, everypmf onX is a stationary pmf.

More generally, partitiont’ into two non-empty subset¥; and X, so that
X = X, U X,. Assume the stochastic matd® on X’ to be of the form

Pl 012
24 P =
(24) ( 0, P,
with P; and P, stochastic matrices o, and X5, respectively. Her&,; and
O, are matrices with all zero entries of the appropriate dimensions. Assume now

that 4, and e, are stationary pmfs foP; and P, respectively. For each in
(0,1), the pmfu, on X' defined by

py = Ay, (1= A)py)
is stationary pmf forP.

Limit theorems for Markov chains

Several limit results are available under certain conditions. The strongest such
results guarantee the convergence

(25) lim m,(x) =7n(x), z€X

n—oo
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for some pmfr on X', or in vector notation

(26) lim m, = x.

n—oo

Sometimes it is only possible to show that

(27) 7}13)10 1 Zﬂk(:v) =m(x), zekX

for some pmfr on X, or in vector notation

n—1
(28) lim 1 Zﬂ'k = .
noeen k=0
Obviously (25)-(26) implies (27)-(28) since usual convergence implies Cesaro
convergence.
Before giving conditions for either (25)-(26) or (27)-(28) to hold, we make a
couple of comments as to the identify of the limit pm&ppearing there.
If (25)-(26) takes place, then lettinggo to infinity in (21) we conclude that

lim 7,1 = lim (7, P)
= (hm 7'rn> P

(29)
since finite summation permute with limits. Thus, in the limit
(30) m=nP

andm is necessarily a stationary pmf fé?.
In a similar vein, for each = 1,2, ..., we find

n

1
n—i—lzﬂ-k

k=0

1 n
—— | ™y + w1 P
Hl(o > )

1 n 1 &
31 = N - 1| P.
(31) n+1ﬂ-0+n+1 (n;ﬂ-k 1)
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Letting » go to infinity and assuming that (27)-(28) holds, we readily conclude
that the limitz in (27)-(28) again satisfies (30), amdis necessarily a stationary

pmf for P.
01
(1)

The case
with X = {0, 1} is quite instructive. Obviously is irreducible and periodic with
all states having period two. It is also easy to see that for anyrponf the initial
stateX,, we have

P[Xo = 1] = n(1) if n odd
P[Xo=0=1—-mx(1) if neven

It is now plain that (25)-(26) does not hold unlessl) = = (0) = 3, i.e., the
uniform pmf onX’. Observe also that (27)-(28) always holds in this case with
uniform onX. Thus, irreducibility is not sufficient by itself to ensure (25)-(26).
Failure to have convegence can be traced to peridicity.

Theorem 0.4 If the Markov chain is irreducible and aperiodic, then there exists a
uniqiue stationary pmf p for P and (25)-(26) always holds with limit p.

Theorem 0.5 If the Markov chain is irreducible (and possibly periodic), then
there exists a uniqiue stationary pmf p for P and (27)-(28) always holds with
limit .

Consider the case

(32) P:(lfb 1266) with 0<a,b<1

The casea = b = 1 anda = b = 0 have already been discussed. It is straightfor-
ward to check that (22) takes the form

#(0) = ap(0) + (1 =b)u(1)
p(1) = (1=a)p0) +bu(1)
(33)

This reduces to
(1 —a)u(0) = (1 —b)u(1)
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and the constraint(0) + x(1) = 1 yields

1—a 1—-0

1(0) = 5 (ath) and u(1) = (D)

provideda + b < 2, in which case (22) has a unique solution! The caseb = 2
is equivalent tar = b = 1, for which there are infinitely solutions as we have seen
earlier.




