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MARKOV CHAINS

Throughout, letX denote a finite set, and refer to its elements as states, hence
the terminology state space used sometimes to denoteX . A (square) matrixP
onX is simply an|X | × |X | array of scalars, one for each ordered pair of states,
namely

(pxy, x, y ∈ X ) .

We shall writeP = (pxy) when no confusion arises.

Stochastic matrices
Consider a matrixP = (pxy) onX . It is said to be astochasticmatrix if

0 ≤ pxy ≤ 1, x, y ∈ X

and ∑
y∈X

pxy = 1, x ∈ X .

Thus, for eachx in X , the row

(pxy, y ∈ X )

can be interpreted as a pmfpx onX .
Furthermore, the matrixP is said todoubly stochasticif it is a stochastic

matrix such that ∑
x∈X

pxy = 1, y ∈ X .

Powers ofP
The powersP are defined by

P 0 = I, P n+1 = PP n = P nP , n = 0, 1, . . .

with the identity matrixI onX naturally defined by

I = (δxy) .
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We shall use the notation

P n =
(
p(n)
xy

)
, n = 0, 1, . . .

These definitions are well posed as indicated by the following fact.

Fact 0.1 We have
PP n = P nP , n = 0, 1, . . .

Proof. Easy by induction.

Fact 0.2 For every non-negative integers r, s, t = 0, 1, . . ., it is always the case
that

P r+s+t = P rP sP t.

Proof. Elementary by associativity of the matrix product.

Fact 0.3 IfP is a stochastic matrix, then each of the matrices {P n, n = 0, 1, . . .}
of P is also a stochastic matrix.

Proof. Easy by induction.

Irreducibility

The stochastic matrixP is said to beirreducible if for every pair of distinct
statesx andy in X there exist positive integersn(x, y) andn(y, x) such that

p(n(x,y))
xy > 0 and p(n(y,x))

yx > 0.

Period
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For any non-empty subset{nα, α ∈ A} of N, we denote itsgreatest common
denominatorby

g.c.d.(nα, α ∈ A) .

For each statex in X we define itsperiodd(x) as the integer

d(x) = g.c.d.
(
n = 1, 2, . . . : p(n)

xx > 0
)

(1)

with the conventiond(x) = ∞ if the set(n = 1, 2, . . . : p
(n)
xx > 0) is empty. The

statex is said to beperiodic if d(x) ≥ 2 andaperiodicif d(x) = 1.

Theorem 0.1 An irreducible Markov chain P on X has the property that either
all its states are aperiodic or they are all periodic with the same period.

Proof. Pick two statesx andy in X . The chainP being irreducible, there exist
positive integersn(x, y) andn(y, x) such that

p(n(x,y))
xy > 0 and p(n(y,x))

yx > 0.

Therefore,

p(n(y,x)+n(x,y))
yy =

∑
z
p(n(y,x))
yz p(n(x,y))

zy

≥ p(n(y,x))
yx p(n(x,y))

xy > 0.(2)

On the other hand, whenever
p(t)
xx > 0

for somet = 1, 2, . . ., then

p(n(y,x)+t+n(x,y))
yy =

∑
z

∑
v
p(n(y,x))
yz p(t)

zvp
(n(x,y))
vy

≥ p(n(y,x))
yx p(t)

xxp
(n(x,y))
xy > 0.(3)

Therefore,d(y) divides bothn(y, x)+n(x, y) andn(y, x)+ t+n(x, y), hence
d(y) dividest sincen(y, x) + t + n(x, y) − (n(y, x) + n(x, y)) = t. Thus,d(y)

divides all the elements of the set
(
t = 1, 2, . . . : p

(t)
xx > 0

)
, so that,d(y) divides

d(x) (which is defined as the g.c.d of this set). A similar argument shows that
d(x) dividesd(y), whenced(x) = d(y).
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Markov chains
Consider a stochastic matrixP onX . A collection ofX -valued rvs{Xn, n =
0, 1, . . .} (defined on some probability triple(Ω,F ,P)) is said to be a (time-
homogeneous) Markov chain with one-step transition probabilitiesP if

P [X0 = x0, X1 = x1, . . . , Xn = xn] = P [X0 = x0] ·
n−1∏
`=0

px`x`+1
(4)

for eachn = 1, 2, . . . and allx0, x1, . . . , xn in X . The following fact is key to
many of the arguments involving Markov chains.

Theorem 0.2 Fix k = 0, 1, . . .. Then for each n = 1, 2, . . ., we have

P [Xk = x0, Xk+1 = x1, . . . , Xk+n = xn] = P [Xk = x0] ·
n−1∏
`=0

px`x`+1
(5)

with arbitrary x0, x1, . . . , xn in X .

Proof. Fix k = 1, 2, . . ., n = 1, 2, . . . and statesx0, x1, . . . , xn in X . For any
collection of statesy0, . . . , yk−1 in X , we have from (4) that

P [X0 = y0, . . . , Xk−1 = yk−1, Xk = x0, Xk+1 = x1, . . . , Xk+n = xn]

= P [X0 = y0] ·
k−2∏
j=0

pyjyj+1
· pyk−1x0 ·

n−1∏
`=0

px`x`+1
.(6)

Therefore,

P [Xk = x0, Xk+1 = x1, . . . , Xk+n = xn]

=
∑

y0,...,yk−1

P [X0 = y0, . . . , Xk−1 = yk−1, Xk = x0, Xk+1 = x1, . . . , Xk+n = xn]

=
∑

y0,...,yk−1

P [X0 = y0] ·
k−2∏
j=0

pyjyj+1
· pyk−1x0 ·

n−1∏
`=0

px`x`+1

=

(∑
y0,...,yk−1

P [X0 = y0] ·
k−2∏
j=0

pyjyj+1
· pyk−1x0

)
·
n−1∏
`=0

px`x`+1

=

(∑
y0,...,yk−1

P [X0 = y0, . . . , Xk−1 = yk−1, Xk = x0]

)
·
n−1∏
`=0

px`x`+1

= P [Xk = x0] ·
n−1∏
`=0

px`x`+1
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as desired.

From (4), for allx0, x1, . . . , xn, xn+1 in X , we get both

P [X0 = x0, X1 = x1, . . . , Xn = xn] = P [X0 = x0] ·
n−1∏
`=0

px`x`+1
(7)

and

P [X0 = x0, X1 = x1, . . . , Xn = xn, Xn+1 = xn+1]

= P [X0 = x0] ·
n∏
`=0

px`x`+1
,(8)

whence

P [X0 = x0, X1 = x1, . . . , Xn = xn, Xn+1 = xn+1]

= P [X0 = x0, X1 = x1, . . . , Xn = xn] · pxnxn+1(9)

upon direct comparison of (7) and (8).
Building upon these observations, if

P [X0 = x0, X1 = x1, . . . , Xn = xn] > 0,(10)

it follows that

P [Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn] = pxnxn+1 ,(11)

suggesting the validity of the relation1

P [Xn+1 = xn+1|Xn = xn] = pxnxn+1 .(12)

To see that this is indeed the case, we argue as follows: By Theorem 0.2 we
get

P [Xn = xn, Xn+1 = xn+1] = P [Xn = xn] pxnxn+1 .(13)

Under (10) we necessarily have

P [Xn = xn] > 0,(14)
1See discussion below.
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and the standard definition

P [Xn+1 = xn+1|Xn = xn] =
P [Xn = xn, Xn+1 = xn+1]

P [Xn = xn]
(15)

applies. The desired conclusion (12) now follows from (13).

Alternate definition of Markov chains
In most textbooks Markov chains are given a different definition which we now
present: A collection ofX -valued rvs{Xn, n = 0, 1, . . .} (defined on some
probability triple (Ω,F ,P)) is said to be a (time-homogeneous) Markov chain
with one-step transition probabilitiesP if

P [Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn]

= P [Xn+1 = xn+1|Xn = xn](16)

for all x0, x1, . . . , xn, xn+1 in X , with

P [Xn+1 = xn+1|Xn = xn] = pxnxn+1 .(17)

The difficulty with this definition is that the conditional probabilities involved
in (16) are well defined only when

P [X0 = x0, X1 = x1, . . . , Xn = xn] > 0(18)

and
P [Xn = xn] > 0(19)

Obviously, (18) implies (19) but the converse is not true, possibly creating ambi-
guities with the definitions being inconsistent with each other.2

A possible solution to this difficulty is to read (16)-(17) as stating instead that

P [Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn] = pxnxn+1(20)

with the understanding that if

P [X0 = x0, X1 = x1, . . . , Xn = xn] = 0,

then the right handside of (20) is taken to be the definition of the conditional
probability thatXn+1 = xn+1 given thatX0 = x0, X1 = x1, . . . , Xn = xn. With
this definition it is easy to check that both (4) and (12) hold.

2Recall that the conditional probabilityP [A|B] is not uniquely defined whenP [B] = 0 with
each other.
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Stationary Markov chains

Consider the (time-homogeneous) Markov chain{Xn, n = 0, 1, . . .}with one-
step transition probabilitiesP . We write

πn(x) = P [Xn = x] ,
x ∈ X

n = 0, 1, . . .

and organize these probabilities into a row vector

πn = (πn(x), x ∈ X ) .

Using the law of total probabilities we get

πn+1(x) =
∑

y
πn(y)pyx,

x ∈ X
n = 0, 1, . . .

or in vector notation
πn+1 = πnP , n = 0, 1, . . .(21)

Theorem 0.3 Let µ denote the pmf of the initial condition X0. Then, the (time-
homogeneous) Markov chain{Xn, n = 0, 1, . . .} with one-step transition proba-
bilities P is stationary if and only if

µP = µ.(22)

Any pmf onX which satisfies (22) is called astationarypmf forP .

Proof. First, assume that the Markov chain{Xn, n = 0, 1, . . .} is stationary. This
implies that for eachn = 0, 1, . . ., the rvXn has the same distribution asX0, i.e.,
πn = µ. Substituting this information into (21) yields (22).

Conversely, assume that the initial stateX0 is distributed according to a pmfµ
which satisfies the fixed -point equation (22). Using this fact in conjunction with
(21) we get that

π1 = π0P = µP = µ

so thatπ0 = µ. Iterating we conclude that

πn = µ, n = 0, 1, . . .
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Fix k = 0, 1, . . . andn = 1, 2, . . .. With arbitraryx0, x1, . . . , xn in X , Theo-
rem 0.2 states that

P [Xk = x0, Xk+1 = x1, . . . , Xk+n = xn]

= P [Xk = x0] ·
n−1∏
`=0

px`x`+1

= P [X0 = x0] ·
n−1∏
`=0

px`x`+1

= P [X0 = x0, X1 = x1, . . . , Xn = xn] .(23)

This establishes the stationarity of the Markov chain.

Existence and uniqueness of stationary pmfs

The stationary pmf isnot unqiue ifP is not irreducible: For instance, with
X = {0, 1} andP = I, everypmf onX is a stationary pmf.

More generally, partitionX into two non-empty subsetsX1 andX2 so that
X = X1 ∪ X2. Assume the stochastic matrixP onX to be of the form

P =

(
P 1 O12

O21 P 2

)
(24)

with P 1 andP 2 stochastic matrices onX1 andX2, respectively. HereO11 and
O21 are matrices with all zero entries of the appropriate dimensions. Assume now
thatµ1 andµ2 are stationary pmfs forP 1 andP 2, respectively. For eachλ in
(0, 1), the pmfµλ onX defined by

µλ = (λµ1, (1− λ)µ2)

is stationary pmf forP .

Limit theorems for Markov chains

Several limit results are available under certain conditions. The strongest such
results guarantee the convergence

lim
n→∞

πn(x) = π(x), x ∈ X(25)
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for some pmfπ onX , or in vector notation

lim
n→∞

πn = π.(26)

Sometimes it is only possible to show that

lim
n→∞

1

n

n−1∑
k=0

πk(x) = π(x), x ∈ X(27)

for some pmfπ onX , or in vector notation

lim
n→∞

1

n

n−1∑
k=0

πk = π.(28)

Obviously (25)-(26) implies (27)-(28) since usual convergence implies Cesaro
convergence.

Before giving conditions for either (25)-(26) or (27)-(28) to hold, we make a
couple of comments as to the identify of the limit pmfπ appearing there.

If (25)-(26) takes place, then lettingn go to infinity in (21) we conclude that

lim
n→∞

πn+1 = lim
n→∞

(πnP )

=
(

lim
n→∞

πn

)
P

(29)

since finite summation permute with limits. Thus, in the limit

π = πP(30)

andπ is necessarily a stationary pmf forP .
In a similar vein, for eachn = 1, 2, . . ., we find

1

n+ 1

n∑
k=0

πk

1

n+ 1

(
π0 +

n∑
k=1

πk−1P

)

=
1

n+ 1
π0 +

n

n+ 1
·

(
1

n

n∑
k=1

πk−1

)
P .(31)
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Letting n go to infinity and assuming that (27)-(28) holds, we readily conclude
that the limitπ in (27)-(28) again satisfies (30), andπ is necessarily a stationary
pmf forP .

The case

P =

(
0 1
1 0

)
with X = {0, 1} is quite instructive. ObviouslyP is irreducible and periodic with
all states having period two. It is also easy to see that for any pmfπ on the initial
stateX0, we have

P [Xn = 1] =


P [X0 = 1] = π(1) if n odd

P [X0 = 0] = 1− π(1) if n even

It is now plain that (25)-(26) does not hold unlessπ(1) = π(0) = 1
2
, i.e., the

uniform pmf onX . Observe also that (27)-(28) always holds in this case withπ
uniform onX . Thus, irreducibility is not sufficient by itself to ensure (25)-(26).
Failure to have convegence can be traced to peridicity.

Theorem 0.4 If the Markov chain is irreducible and aperiodic, then there exists a
uniqiue stationary pmf µ for P and (25)-(26) always holds with limit µ.

Theorem 0.5 If the Markov chain is irreducible (and possibly periodic), then
there exists a uniqiue stationary pmf µ for P and (27)-(28) always holds with
limit µ.

Consider the case

P =

(
a 1− a

1− b b

)
with 0 ≤ a, b ≤ 1(32)

The casesa = b = 1 anda = b = 0 have already been discussed. It is straightfor-
ward to check that (22) takes the form

µ(0) = aµ(0) + (1− b)µ(1)

µ(1) = (1− a)µ(0) + bµ(1)

(33)

This reduces to
(1− a)µ(0) = (1− b)µ(1)
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and the constraintµ(0) + µ(1) = 1 yields

µ(0) =
1− a

2− (a+ b)
and µ(1) =

1− b
2− (a+ b)

provideda+ b < 2, in which case (22) has a unique solution! The casea+ b = 2
is equivalent toa = b = 1, for which there are infinitely solutions as we have seen
earlier.


