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INFORMATION THEORY

ANSWER KEY TO TEST # 1:

1.

1.a. As shown in class, H2(u) = H2(M) = log2 M .

1.b. The optimal code C?
2L : {1, . . . , 2L} → {0, 1}? is the one that corresponds to the

full tree with 2L terminal nodes (labelled 1, . . . , 2L). Every codeword having length L,
this code is indeed optimal since its average code length coincides with the entropy of
the source, namely H2(M) = log2 M = log2

(
2L
)

= L. One way to describe C?
2L is as

follows: For each m = 1, . . . , 2L, write C?
2L(m) as the L-bit binary expansion of m− 1.

1.c. Consider now the general case M = 2L +K with integers L and K satisfying

L = 1, 2, . . . and K = 0, . . . , 2L − 1.

With code C?
2L : {1, . . . , 2L} → {0, 1}? described in Part 1.b, we first set

C?
M(m) = C?

2L(m), m = 1, . . . 2L −K.

Next, on the remaining range m = 2L −K + 1, . . . , 2L +K, group the symbols in pairs,
say

2L −K + 2k + 1 and 2L −K + 2(k + 1), k = 0, 1, . . . , K − 1.

We now define the corresponding codewords by

C?
M(2L −K + 2k + 1) = [C?

2L(2L −K + k), 0]

and
C?
M(2L −K + 2(k + 1)) = [C?

2L(2L −K + k), 1].

This corresponds to the following procedure (up to a relabeling of the nodes): Starting
with the full binary tree associated with C?

2L (for the alphabet {1, . . . , 2L}), keep the
terminal nodes corresponding to the symbols m = 1, . . . , 2L −K, and at the remaining
nodes (which correspond to the symbols m = 2L − K + 1, . . . , 2L) for the alphabet
{1, . . . , 2L}), extend the tree by adding its two siblings.
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It is immediate that M − K codewords have length L, and that 2K codewords have
length L+ 1, so that

L(M) =
1

M

(
(2L −K)L+ 2K(L+ 1)

)
=

1

M

(
(2L +K)L+ 2K

)
= L+ 2

(
K

M

)
. (1.1)

1.d. To have L(M) = H2(M) means that the optimal code C?
M achieves the entropy

bound. However, we know that this happens if and only if the underlying pmf is D-adic
(here with D = 2), namely

1

M
= 2−m(x), x = 1, . . . ,M

with positive integers m(1), . . . ,m(M). Obviously this requires m(1) = . . . = m(M) =
m? with m? determined by

1

M
= 2−m

?

.

Put another way, the equality L(M) = H2(M) requires that M be a power of two!

2.

2.a.

String x C(x) Probability p(x)

1 1000 λ
01 1001 (1− λ)λ

001 1010 (1− λ)2λ
0001 1011 (1− λ)3λ

00001 1100 (1− λ)4λ
000001 1101 (1− λ)5λ

0000001 1110 (1− λ)6λ
00000001 1111 (1− λ)7λ
00000000 0 (1− λ)8

The procedure outlined in the problem statement can be intepreted as a binary code
C for an i.i.d. source (X,p) drawn from some alphabet X with

X = {1, 01, 001, 0001, 00001, 000001, 0000001, 00000001, 00000000}.

This is so because the binary digits {Yn, n = 1, 2, . . .} being i.i.d. rvs, the output
{Xk, k = 1, 2, . . .} produced by the new source is also a sequence of i.i.d. rvs.
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2.b. The code C : X → {0, 1}? is uniquely decodable because it is clearly a prefix code.

2.c. It is plain that

E [`C(X)] = 1P [X = 00000000] + 4 (1− P [X = 00000000])

= (1− λ)8 + 4
(
1− (1− λ)8

)
= 4− 3(1− λ)8. (1.2)

2.d. The codeword C(x) for symbol x = 00000000 has length one, and is therefore the
shortest codeword. By properties of optimal prefix codes (e.g., see arguments for the
optimality of Huffman codes), code C cannot be optimal if the symbol x = 00000000 is
the least likely symbol, and this occurs provided the condition

(1− λ)8 < (1− λ)kλ, k = 0, . . . , 7

holds. Since 0 < λ < 1, this is equivalent to (1 − λ)8 < (1 − λ)7λ, whence (1 − λ) < λ.
Thus, the prefix code C defined earlier is not optimal among all prefix codes if λ > 1

2
.

3.

3.a. The receiver receives the information encoded in the sequence {Yn, n = 01, 2, . . .}
where we have set

Yn = UnXn, n = 0, 1, 2, . . .

For each n = 0, 1, . . ., the rv Yn takes values in the finite alphabet {0, 1, . . . ,M}, and
knowing Yn is equivalent to knowing both Yn and Un – This is so because Yn = 0 if and
only if Un = 0 and Xn 6= 0.

The entropy rate of the information source as experienced by the receiver is given by

lim
n→∞

H(Y0, . . . , Yn)

n+ 1

provided this limit exists. Fix n = 0, 1, . . .. By the last remark, using the chain rule for
entropy we have

H(Y0, . . . , Yn) = H(U0, Y0, . . . , Un, Yn)

= H(U0, . . . , Un) +H(Y0, . . . , Yn|U0, . . . , Un). (1.3)

For arbitrary (u0, u1, . . . , un) in {0, 1}M and arbitrary (y0, y1, . . . , yn) in {0, 1, . . . ,M}, it
is now elementary to see that

P [Y0 = y0, . . . , Yn = yn|U0 = u0, . . . , Un = un]

= P [U0X0 = y0, . . . , UnXn = yn|U0 = u0, . . . , Un = un]

= P [u0X0 = y0, . . . , unXn = yn|U0 = u0, . . . , Un = un]

= P [u0X0 = y0, . . . , unXn = yn] (1.4)
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since the two sequences {Xn, n = 0, 1, . . .} and {Un, n = 0, 1, . . .} are mutually inde-
pendent. As a result, we find

H(Y0, . . . , Yn|U0 = u0, . . . , Un = un) = H(u0X0, . . . , unXn).

If we assume further that the rvs {Xn, n = 0, 1, . . .} are i.i.d. rvs, each distributed
according to the pmf p on X , then the rvs u0X0, . . . , unXn are mutually independent,
and basic properties of entropy yield

H(u0X0, . . . , unXn) = H(u0X0) + . . .+H(unXn)

= u0H(X0) + . . .+ unH(Xn)

= (u0 + . . .+ un)H(X0). (1.5)

Combining these facts readily leads to

H(Y0, . . . , Yn|U0, . . . , Un) = E [U0 + . . .+ Un] ·H(X0)

and we can conclude that

H(Y0, . . . , Yn) = H(U0, . . . , Un) + E [U0 + . . .+ Un] ·H(p) (1.6)

since H(X0) = H(p).
Finally,

H(Y0, . . . , Yn)

n+ 1
=
H(U0, . . . , Un)

n+ 1
+
P [U0 = 1] + . . .+ P [Un = 1]

n+ 1
·H(p)

for each n = 0, 1, . . .. Letting n go to infinity, we note that

lim
n→∞

H(U0, . . . , Un)

n+ 1
= H(U)

whereH(U) is the entropy rate of the sequence {Un, n = 0, 1, . . .} which evolves according
to a time-homogeneous irreducible Markov chain with one-step transition probability
matrix P , say

P =

(
p00 p01

p10 p11

)
.

By limiting properties for irreducible Markov chains, the limit

a = lim
n→∞

P [U0 = 1] + . . .+ P [Un = 1]

n+ 1

exists with 0 < a < 1 satisfying

(a, 1− a) = (a, 1− a)

(
p00 p01

p10 p11

)
.

The conclusion
H(U) + aH(p) (1.7)
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follows with a > 0 as determined above.

3.b. If the rvs {Un, n = 0, 1, . . .} are modeled only as a strictly stationary sequence,
then its entropy rate H(U) still exists and is given by

lim
n→∞

H(U0, . . . , Un)

n+ 1
= H(U)

and
P [U0 = 1] + . . .+ P [Un = 1] = (n+ 1)P [U0 = 1] , n = 0, 1, . . .

Because (1.6) still holds in this case, it is plain that (1.7) will also holds with a =
P [U0 = 1].

3.c. Assume again that assumptions (i) and (ii) are enforced. The operator at the
receiving end forwards to the main office only the symbols which have been correctly
received without ever mentioning the possibility that some of the symbols originally
transmitted by the source have been corrupted and are missing. We model this situation
with the help of the {1, . . . ,M}-valued rvs {Zk, k = 1, 2, . . .} given by

Zk = Xνk , k = 1, 2, . . .

where νk is the kth symbol received correctly, namely

νk+1 = min (n > νk : Un = 1)

with
ν1 = min (n = 0, 1, . . . : Un = 1) .

For each k = 1, 2, . . . and arbitrary x1, . . . , xk in X we have

P [Z1 = x1, . . . , ZK = xk]

= P [Xν1 = x1, . . . , XνK = xk]

=
∑

0≤n1<...<nk

P [Xν1 = x1, . . . , XνK = xk, ν1 = n1, . . . , νk = nk]

=
∑

0≤n1<...<nk

P [Xn1 = x1, . . . , XnK = xk, ν1 = n1, . . . , νk = nk]

=
∑

0≤n1<...<nk

P [Xn1 = x1, . . . , XnK = xk]P [ν1 = n1, . . . , νk = nk]

=
∑

0≤n1<...<nk

(
k∏
`=1

P [Xn` = x`]

)
· P [ν1 = n1, . . . , νk = nk]

=
∑

0≤n1<...<nk

(
k∏
`=1

p(x`)

)
· P [ν1 = n1, . . . , νk = nk]

=

(
k∏
`=1

p(x`)

)
·

∑
0≤n1<...<nk

P [ν1 = n1, . . . , νk = nk]

=

(
k∏
`=1

p(x`)

)
(1.8)
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as we make use of the fact that the rvs {Un, n = 0, 1, . . .} (hence the rvs {νk, k =
1, 2, . . .}) are independent of the rvs {Xn, n = 0, 1, . . .}. It follows that the rvs {Zk, k =
1, 2, . . .} form a sequence of i.i.d. rvs, each distributed according to the pmf p. Hence,

H(Z1, . . . , Zk) = kH(p)

and the conclusion

lim
k→∞

H(Z1, . . . , Zk)

k
= H(p)

is obtained.
A careful inspection of the discussion above shows that the conclusion is crucially

dependent on assumption (i) (and not on assumption (ii)).

4.

4.a. The set Y of values assumed by Y is the subset of X ? given by

Y = ∪Ii=1X ni .

Fix i in {1, . . . , I} and y in Y . Then there exists some j in {1, . . . , I} such that
y = (x1, . . . , xnj) for some element (x1, . . . , xnj) in X nj . Under the enforced assumptions,
we get

P [ν = ni, Y = y] = P

[
ν = ni, ν = nj, Y = (x1, . . . , xnj)

]
= δij · P [ν = nj]P

[
(X1, . . . , Xnj) = (x1, . . . , xnj)

]
= δij · P [ν = nj]

nj∏
k=1

P [Xk = xk]

= δij · P [ν = nj]

(
1

M

)nj
. (1.9)

It is now plain for each i = 1, . . . , I that

P [ν = ni, Y = y] = P [ν = ni]

(
1

M

)ni
, y ∈ X ni

and

P [Y = y] = P [ν = ni]

(
1

M

)ni
, y ∈ X ni .

4.b. In order to compute the mutual information I(ν;Y ), we note that

I(ν;Y ) =
∑

(n,y)
P [ν = n, Y = y] log2

(
P [ν = n, Y = y]

P [ν = n]P [Y = y]

)
where (n, y) ranges over

∪Ii=1 ({ni} × X ni) .
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From earlier calculations, if n = ni and y = (x1, . . . , xni) for i = 1, . . . , I, then

P [ν = ni, Y = y]

P [ν = ni]P [Y = y]
=

P [ν = ni]
(

1
M

)ni
P [ν = ni]P [ν = ni]

(
1
M

)ni
=

1

P [ν = ni]
. (1.10)

Consequently,

I(ν;Y ) =
I∑
i=1

∑
(x1,...,xni )∈X

ni

P [ν = ni]

(
1

M

)ni
log2

(
1

P [ν = ni]

)

=
I∑
i=1

P [ν = ni] log2

(
1

P [ν = ni]

)
(1.11)

since |X ni| = Mni . As a result,
I(ν;Y ) = H(ν).

A more direct derivation of this last fact starts with the decomposition

I(ν;Y ) = H(ν)−H(ν|Y )

and then makes use of the fact H(ν|Y ) = 0 because knowledge of Y automatically
provides the value of ν – See below.

4.c. The conditional entropy H(Y |ν) is given by

H(Y |ν) =
I∑
i=1

P [ν = ni]H(Y |ν = ni)

where for each i = 1, 2, . . . , I, we find

H(Y |ν = ni) = log2 M
ni = ni log2 M

since the rv Y , conditionally on ν = ni, is uniformly distributed on X ni . Consequently,

H(Y |ν) =
∑
i=1

I (ni log2 M)P [ν = ni] = log2 M · E [ν] .

4.d. Recall that
I(ν;Y ) = H(Y )−H(Y |ν)

whence
H(Y ) = I(ν;Y ) +H(Y |ν) = H(ν) + log2 M · E [ν] .

The answer is not too surprising as it formalizes the following decomposition: Upon
observing Y , the value of ν is revealed (say, by counting the number of components of
Y ) and this contributes the term H(ν) to the uncertainty in Y . Once the value ni of
ν is known, the actual value of Y resolves an uncertainty ni · log2 M , which averages to
log2 M · E [ν].


